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Abstract: To discover anti-acetylcholinesterase agents for the treatment of Alzheimer’s disease (AD),
a series of novel Schiff base-coumarin hybrids was rationally designed, synthesized successfully,
and structurally characterized using Fourier transform infrared (FTIR), Nuclear magnetic resonance
(NMR), and High-Resolution Mass Spectrometry (HRMS) analyses. These hybrids were evaluated
for their potential inhibitory effect on acetylcholinesterase (AChE). All of them exhibited excellent
inhibitory activity against AChE. The IC50 values ranged from 87.84 to 515.59 µg/mL; hybrids 13c
and 13d with IC50 values of 0.232 ± 0.011 and 0.190 ± 0.004 µM, respectively, showed the most
potent activity as acetylcholinesterase inhibitors (AChEIs). The reference drug, Galantamine, yielded
an IC50 of 1.142 ± 0.027 µM. Reactivity descriptors, including chemical potential (µ), chemical
hardness (η), electrophilicity (ω), condensed Fukui function, and dual descriptors are calculated at
wB97XD/6-311++ G (d,p) to identify reactivity changes of the designed compounds. An in-depth
investigation of the natural charge pattern of the studied compounds led to a deep understanding of
the important interaction centers between these compounds and the biological receptors of AChE.
The molecular electrostatic surface potential (MESP) of the most active site in these derivatives
was determined using high-quality information and visualization. Molecular docking analysis was
performed to predict binding sites and binding energies. The structure-activity-property relationship
studies indicated that the proposed compounds exhibit good oral bioavailability properties. To
explore the stability and dynamic behavior of the ligand-receptor complexes, molecular dynamics
simulations (MDS) were performed for 100 ns on the two best docked derivatives, 13c and 13d, with
the AChE (4EY7) receptor. A popular method for determining the free binding energies (MM/GBSA)
is performed using snapshots taken from the systems’ trajectories at 100 ns. These results revealed
that the complex system of compound 13d acquired a relatively more stable conformation and
exhibited better descriptors than the complex system of compound 13c and the Galantamine drug,
suggesting its potential as an effective inhibiting drug. The binding free energy analysis revealed that
the 13d-4EY7 complex exhibited greater stability with AChE receptors compared to other complexes.
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1. Introduction

Alzheimer’s disease (AD) is the main cause of dementia and one of the most prevalent
neurodegenerative diseases that impact people around the world. It is characterized by
progressive memory loss, severe behavioral abnormalities, and cognitive impairments [1].
By 2050, the number of AD patients will have tripled from the present level of more than 50
million worldwide [2]. The cholinergic hypothesis is one of the most significant hypotheses,
despite the fact that the etiology of AD has not yet been fully explained. In the brains of
AD patients, it was found that the level of the neuromodulator acetylcholine (ACh) was
abnormal. Studies have shown that acetylcholine levels rise when acetylcholinesterase
(AChE) is inhibited, thereby enhancing memory and cognitive function in patients [3].
Therefore, a major treatment strategy for AD involves inhibiting the acetylcholinesterase
(AChE) enzyme, which catalyzes the hydrolysis of ACh neurotransmitters. Currently,
drugs such as donepezil, rivastigmine, and galantamine, which belong to the class of
acetylcholinesterase inhibitors (AChEIs), are approved and administered as therapeutic
options for the management of AD [4]. However, while these medications can provide
temporary improvements in memory and cognitive function, they are unable to prevent
or reverse the progression of the disease. Given the limitations of current treatments and
the urgent need to address both symptomatic relief and disease progression, researchers
are continually seeking and developing potential agents that can effectively treat AD and
potentially modify its course.Heterocyclic-based compounds have been reported as active
inhibitors against the acetylcholinesterase enzyme (AChE). Medicinal chemists have devel-
oped and used a variety of coumarin cores to design novel treatments with a wide spectrum
of pharmacological properties [4]. Mohammadi-Khanaposhtani et al. have investigated the
inhibition of AChE with a series of coumarin-3-carboxamide-N-morpholine derivatives.
The obtained IC50 values ranged in micromolar levels (6.21–26.4 µM). Compounds 1 and
2 were found to be the most active among the series [5]. Kara et al. reported the synthe-
sis and AChE inhibition activity of a series of coumarin-based compounds. Among the
series, derivative 3, with an IC50 value of 0.04 µM, displayed higher activity [6]. On the
other hand, Schiff bases represent an important group of organic compounds with various
biological activities [7–11]. The study of novel biologically significant Schiff bases has been
drawing the attention of chemists and pharmacists [12–15]. Wang et al. have designed
and synthesized a series of Schiff bases containing coumarin cores. The synthesized com-
pounds were assessed for their anti-Alzheimer activity. The obtained results showed that
derivative 4 showed higher inhibitory activities with IC50 values of 0.673 and 0.711 µM
for human monoamine oxidasehMAO-A and hMAO-B, respectively [16]. Compound 5
showed promising inhibitory activity against AChE with an IC50 value of 4.12 µM [17]. In
2019, 16 hybrids of acrine-isatin Schiff bases were designed and synthesized by Riazimon-
tazer and co-workers. The designed compounds were tested as potential anti-Alzheimer
agents. Compound 6, with an IC50 value of 0.42 nM, was the most potent (IC50 = 38.72 nM).
Interestingly, chloro-substituent compounds displayed stronger inhibitory activity than
those with nitro and methoxy substituents [18]. Figure 1 shows that some coumarin and
Schiff base-containing compounds were reported as AChE inhibitors.
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Figure 1. Some reported anticholinesterase agents and designed compounds in this work. 

Our research group has reported chalcone-based coumarin scaffolds and psoralen 
derivatives as potential acetylcholinesterase inhibitors [19,20] in our ongoing search for a 
lead compound in drug discovery, as illustrated in Figure 1. This concept led us to design 
and synthesize a novel series of coumarin-Schiff base hybrids. This may contribute to 
discovering more effective inhibitors against AChE. Molecular modeling analyses of the 
synthesized compounds were performed to clarify their interaction modes and stabilities 
with the amino acid residues of AChE and explore their pharmacological effects. Finally, 
comprehensive reports were provided on the density functional theory (DFT) 
calculations, in silico assessments of local and global reactivity, and drug-likeness 
predictions using ADMET for the designed hybrids. 

2. Results and Discussion 
2.1. Chemistry 

The Pechmann condensation was performed between 3-methoxyphenol 7 and ethyl 
4-chloroacetoacetate 8 in the presence of concentrated sulfuric acid. This reaction resulted 
in the formation of 4-(chloromethyl)-7-methoxy-2H-chromen-2-one 9 as a white powder 
with a yield of 94.0% (Scheme 1). Schiff bases (12a-j) were synthesized via an acid-
catalyzed condensation reaction between commercially available hydroxybenzaldehydes 
(11a-d) and various aniline substituents (10a-d) in ethanol for 24 h. These compounds 
were synthesized in moderate to good yields (56.7–89.6%). 

Figure 1. Some reported anticholinesterase agents and designed compounds in this work.

Our research group has reported chalcone-based coumarin scaffolds and psoralen
derivatives as potential acetylcholinesterase inhibitors [19,20] in our ongoing search for a
lead compound in drug discovery, as illustrated in Figure 1. This concept led us to design
and synthesize a novel series of coumarin-Schiff base hybrids. This may contribute to
discovering more effective inhibitors against AChE. Molecular modeling analyses of the
synthesized compounds were performed to clarify their interaction modes and stabilities
with the amino acid residues of AChE and explore their pharmacological effects. Finally,
comprehensive reports were provided on the density functional theory (DFT) calculations,
in silico assessments of local and global reactivity, and drug-likeness predictions using
ADMET for the designed hybrids.

2. Results and Discussion
2.1. Chemistry

The Pechmann condensation was performed between 3-methoxyphenol 7 and ethyl
4-chloroacetoacetate 8 in the presence of concentrated sulfuric acid. This reaction resulted
in the formation of 4-(chloromethyl)-7-methoxy-2H-chromen-2-one 9 as a white powder
with a yield of 94.0% (Scheme 1). Schiff bases (12a-j) were synthesized via an acid-catalyzed
condensation reaction between commercially available hydroxybenzaldehydes (11a-d) and
various aniline substituents (10a-d) in ethanol for 24 h. These compounds were synthesized
in moderate to good yields (56.7–89.6%).

The formation of Schiff bases (12a-j) is illustrated in Scheme 1. The presence of
the expected CH=N group in these imines is strong evidence for the formation of target
compounds and could be confirmed by IR and 1H NMR. The IR spectra of compounds
(12a-j) showed characteristic C=N bands from (1603–1627 cm−1). Moreover, their 1H NMR
spectra exhibited singlet signals in the range (δ 8.44–8.54). Thus, they are in agreement with
previous studies [21–23]. Finally, the newly synthesized 4-(chloromethyl)-7-methoxy-2H-
chromen-2-one 9 and Schiff bases (12a-j) were combined to form coumarin-imine hybrids
(13a-j) following the procedure outlined in Scheme 2.
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comparison to those without a substituent or with a methoxy group at C-4 of the ring-B 
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respectively. These two compounds were more potent than galantamine by ~5-fold. 
However, the IC50 value calculated for coumarin 13h (1.175 μM) was lower than the 
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2.2. Anti-Acetylcholinesterase of Coumarin-Imine Hybrids (13a-j)

The in vitro activity of the coumarin-imine series (13a-j) was mentioned in Table 1. The
study found that all hybrids (except for compound 13h) had excellent inhibition activity. It
was observed that the compounds with chloro substituent, which reduced electron density
on the aromatic ring [24], exhibited better biological activity in comparison to those without
a substituent or with a methoxy group at C-4 of the ring-B (Figure 2). As for chloro-hybrids,
13c and 13d showed activity at 0.232 and 0.190 µM, respectively. These two compounds
were more potent than galantamine by ~5-fold. However, the IC50 value calculated for
coumarin 13h (1.175 µM) was lower than the positive control.

Table 1. The dock scores and IC50 values (µM) of compounds (13a-j) and galantamine against AChE.

Compounds Binding Energy (kcal/mol) IC50 [µM]

13a −11.9 0.440 ± 0.016
13b −11.7 0.466 ± 0.007
13c −13.2 0.232 ± 0.011
13d −13.2 0.190 ± 0.004
13e −13.1 0.297 ± 0.006
13f −12.7 0.365 ± 0.025
13g −11.5 1.090 ± 0.058
13h −10.6 1.175 ± 0.063
13i −11.7 0.712 ± 0.044
13j −12.3 0.651 ± 0.003

GAL. −9.6 1.142 ± 0.027
Data are expressed as mean ± Standard Deviation of seven independent experiments performed in triplicate.
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Figure 2. Summary for SAR study of the target hybrids (13a-j).

Furthermore, the introduction of a methoxy group on the ring-B, as in compounds 13b,
13f, 13g, and 13h, decreased anti-AChE activity, whereas the inhibitory activity against the
enzyme was increased by the incorporation of a chloro group, as in compounds 13c, 13d,
13i and 13j. That is worth mentioning; the connection of the imine moiety to the coumarin
core at 4-O was preferred. The structure-activity relationship (SAR) study of hybrids (13a-j)
was summarized as follows (Figure 2): (1) The anti-AChE activity of the target compounds,
which substituent group on imine ring-B was the electron-withdrawing group was better
than that of the electron-donating group (-Cl > H > OCH3). (2) The bioassay outcome
pointed out that the presence of chloro on C-4 of ring-B together with methoxy substituents
on phenyl ring-A at the third position of the imine scaffold enhanced the AChE inhibition.
(3) The coumarin core attached to the imine moiety via the O atom at C-4 was more active
than those attached at C-3.
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2.3. Molecular Docking

The proposed molecular docking scores and binding mode with representation keys
for the type of interaction docking in the active site of the acetylcholinesterase (4EY7)
protein of newly synthesized hybrids (13a-j) studied in this work are presented in Table 2
and Figure S1. Upon careful inspection of these results, derivatives (13a-j) displayed
binding affinity values ranging from −10.60 to −13.2 kcal/mol, which was the highest as
compared to the positive compound, galantamine (−9.60 kcal/mol). As shown in Figure S1,
the coumarin moiety, located in the catalytic anionic site (CAS) of the receptor, established
hydrogen bonds (HBs) between carbonyl oxygen and amino acid residues. Compounds
13a, 13c, and 13d formed HBs with GLY121 and SER203, but in cases 13c and 13d (Figure 3),
another HBs was observed with TYR337, while hybrid 13a formed HBs with amino acid
residues of GLY122 and PHE295 with affinity energies of−11.9,−13.2, and−13.2 kcal/mol,
respectively. Hybrids 13b and 13e formed another HBs with GLY122, but 13b formed one
HBs with SER203 while 13e formed with TYR13, and their affinity energies values were
−11.7 and −13.1 kcal/mol, respectively.

Table 2. Molecular docking scores and interaction modes between synthesized compounds (13a-j)
against AChE (PDB ID: 4EY7).

Compound
Binding
Energy

(Kcal/mol)

Interactions

H-Bond Hydrophobic Electrostatic or
Other

Alkyl π-Alkyl π-Sigma π-π T-Shape
π-anion/π-

Donor/Carbon
H Bond

13a −11.9

GLY121,
GLY122,
SER203,
PHE295

ALA204,
TRP236,
PHE297

VAL294 His447

TYR337,
TRP286,
TYR341,
PHE338

13b −11.7 SER203,
GLY122

LEU289,
ILE451,

VAL294,
PHE338

TRP286,
TRP86,
HIS447

GLU202/TYP133

13c −13.2
GLY121,
SER203,
TYR337

TYR72,
TYR124,
TRP86,
TRP286

TRP286,
TYR341,
TRP86

TRP86, TYR341

13d −13.2
GLY121,
SER203,
TYR337

LEU289
TRP286,
TYR341,
TRP86

TRP86,
TYR341,
SER293

13e −13.1 GLY122,
TYR133

PRO88,
PHE297, VAL294 VAL294

PHE295,
HIS447,
GLY126,
TYR124,
SER125,

GLN71, TYR72,
TRP86
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Table 2. Cont.

Compound
Binding
Energy

(Kcal/mol)

Interactions

H-Bond Hydrophobic Electrostatic or
Other

Alkyl π-Alkyl π-Sigma π-π T-Shape
π-anion/π-

Donor/Carbon
H Bond

13f −12.7 TYR133

PHE297,
ALA204,
HIS447,
PRO88,
TRP286

TRP86 TRP86

PHE295,
GLY126,
TYR124,
SER125,

GLN71, TYR72,
ARG296,
SER293,
VAL294

13g −11.5 TYR124 VAL294
TRP286,
TYR337,
PHE338

TYR72,
TYR124,
TYR341

13h −10.6 SER203

TRP286,
TRP86,

PHE297,
LEU289,
VAL294,
TYR337

VAL294 TRP236 TRP86,
TYR341

PHE295,
TYR124,
ARG296,
SER293,
HIS447

13i −11.7 TYR133
PRO88,
TYR387,
TRP86

TRP286,
VAL294 TRP86 TYR124

PHE295,
GLY126,
TYR124,
SER125,

GLN71, TYR72,
HIS447

13j −12.3 TYR124,
TYR337 PRO88 LEU289,

TRP286 VAL294
PHE338,
TRP286,
TYR341

ASP74/TRP86,
GLN71,
TYR341,

Compounds 13f, 13h, 13i, and 13j formed HBs with the TYR132, SER203, TYR132,
and TYR337 amino acid residues, respectively, and the corresponding binding energies
were −12.7, −10.6, −11.7, and −12.3 kcal/mol, respectively, with more than one HBs
for compound 13j with TYR124 amino acid residues (Table 2). In the case of hybrids 13c
and 13d, the aryl ring of the coumarin core formed two π-π T-shaped interactions with
residues of TRP86. Additionally, another aryl ring was established through two π-π stacking
interactions with TRP286 amino acid residues. The CH3 group of coumarin interacted
with residues of TYR74, TYR124, TRP86, and TRP286 through π-alkyl interactions. Careful
inspection of the binding site pattern and binding energy between the AChE enzyme
and the studied hybrids (13a-j) indicated that both hybrids (13c and 13d) could be good
candidates for the treatment of AChE, which is correlated with experimental results. We
will be focusing on both (13c and 13d) in our next discussion of stability complexes by
molecular dynamics simulation.
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2.4. Structural Activity Relationships (SARs)

In this study, the physicochemical properties such as molar volume (V), hydration
energy (HE), molar refractivity (MR), surface area grid (SAG), and polarizability (Pol) for
hybrids (13a-j) were calculated (Table 3) and discussed using HyperChem (v8.0.7). The
molecular polarizability (Pol) characteristics of a compound are determined based on how
efficiently its electronic system controls itself in response to the presence of an external
electric field of light. The importance of molecular polarizability is that it plays a crucial role
in simulating a variety of compound characteristics and bioactivities [25]. Molecule volume,
which controls things like blood-brain barrier permeability and intestinal absorption, is
the main factor that influences molecular polarizability. Thus, molecular volume must
be used in QSAR investigations to simulate molecular characteristics and bioactivities. A
further SAR parameter is molar refractivity (MR), a steric characteristic that is dependent
on the spatial arrangement of the phenyl ring in the compounds under evaluation. The
spatial arrangement is significant because it is crucial to understanding how drug molecules
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interact with biological receptors. The London dispersive force, which is greatly involved
in the interaction between drug molecules and receptors, is another factor that influences
molar refractivity in addition to its dependence on molecular volume.

Table 3. The physicochemical properties analysis and QSAR properties of the synthesized compounds
(13a-j) against AChE.

Compounds Polarizability
(A3)

Refractivity
(A3) Vol (A3)

Surface Area
(Grid) A2

HE
(kcal/mol) Log P MW (DA)

13a 44.00 110.22 1111.03 668.68 −11.09 4.53 385.42

13b 46.47 116.68 1187.79 704.70 −12.67 4.28 415.45

13c 45.93 115.02 1156.57 692.72 −10.72 5.05 419.86

13d 48.40 121.48 1231.94 732.87 −10.84 4.80 449.89

13e 46.47 116.68 1188.57 708.71 −11.21 4.28 415.45

13f 48.94 123.14 1263.19 750.75 −12.78 4.03 445.47

13g 46.47 116.68 1187.79 704.73 −12.52 4.28 415.45

13h 48.94 123.14 1260.71 754.84 −12.58 4.03 445.47

13i 48.40 121.48 1230.12 732.60 −10.62 4.80 449.89

13j 45.93 115.02 1156.40 690.79 −10.57 5.05 419.86

According to the findings in Table 3, the size (volume) and molecular weight of pro-
posed hybrids are often proportional to polarizability data, molecular refractivity, and
surface area grid, such as hybrid 13f, which has the highest volume value (1263.19 Å3),
refractivity (123.14 Å3), maximum polarizability value (48.94 Å3), surface area grid (750.75
Å3), and the highest molecular weight (MW) (445.47 amu). On the other hand, compound
13a, which has lower values in all five descriptors (molecular volume, polarizability, refrac-
tivity, surface area grid, and MW) are (1111.03 Å3, 44.0 Å3, 110.22 Å3, 668.68 Å2, and 445.47
amu), respectively. From Table 3, other compound gradients decrease in order as 13h > 13d
> 13i > 13b > 13e > 13g > 13c > 13j is the same pattern in all hybrids.

The obtained results in Table 3 exhibit an increase in the values of hydrophobicity,
causing a decline in hydration energy. The hydration energy determines the various
molecular conformations’ stability in aqueous solutions [26,27]. The change in the hydration
energy value is affected by the increase or decrease in the number of hydrogen bonds
(acceptors and donors). Table 3 illustrates the absolute values of hydration energy ordered
as 13f < 13h < 13d < 13i < 13b < 13e < 13g < 13c < 13j < 13a with values of (−12.78,
−12.58, −10.84, −10.62, −12.67, −11.21, −12.52, −10.72, −10.57, and −11.09 kcal/mol),
respectively, and characterized by hydrogen bonds (acceptors and donors).

Lipophilicity is a major determinant of many ADME properties. Log P expresses the
portioning of the drug molecules between the aqueous medium outside the cell membrane
and the lipid nature of the cell membrane. This means that compounds with a lower Log P
are more polar and have poorer lipid bilayer permeability, whereas hybrids with a higher
Log P are more nonpolar and poorly soluble in water [28]. For that reason, all compounds
except compounds 13c and 13j have good aqueous solubility. Furthermore, Log P values
of compounds 13f = 13h < 13d = 13i < 13b = 13e = 13g < 13a are in the field of optimal
values (0 < Log P < 5) [29]. It can be concluded that these hybrids have optimal biological
activity and good oral bioavailability. Hybrids 13c and 13j need a drug delivery carrier to
deposit them on the surface of a suitable nanomaterial with specific properties to enhance
oral bioavailability.

2.5. Molecular Dynamics Simulation and System Stability

The conformational stability of the complex interaction is influenced by the molecular
interactions and the solvent conditions around the receptor. As the initial structure, the
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best-docked pose of the most active compounds (13c and 13d) with the highest binding
affinity was chosen. Moreover, MD was performed to explore the interaction modes and
stability of these compounds [30,31]. For this reason, a long-range MD simulation of 100 ns
was investigated to study structural stability and conformational stability as well as the
dynamics of protein-ligand complexes. Herein, the root-mean-square deviation (RMSD)
throughout the 100 ns simulations was used to determine the stability of the systems. An
RMSD value lower than 3.0 Å was the most acceptable; it shows that the system is the most
stable [20]. For all frames of the AChE protein, ligands (13c or 13d), and ligand-protein
complex systems, as presented in Figure 4, the average RMSD values were 1.530, 1.691,
and 2.364 Å in the 13d complex, whereas in the 13c complex, they were 1.631, 2.229 and
2.396 Å, respectively. The standard deviation of the average RMSD values were 0.199, 0.296,
and 0.218 Å, in the 13d complex, whereas in the 13c complex, they were 0.208, 0.328, and
0.262 Å, respectively. These results revealed that, compared to the 13c-AChE complex, the
other complex (13d-AChE) established a significantly more stable conformation. During
MD simulation production, examining amino acid residue behavior and its interaction
with the compound necessitates assessing receptor structural flexibility upon compound
binding [20].
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and 13d), and the receptor.

The residue changes were evaluated through the root-mean-square fluctuation (RMSF)
method to study the effect of ligand binding to the relevant targets throughout the simu-
lations (100 ns). The calculated average RMSF value for the 13c-AChE complex was 0.85
Å, whereas its value for the 13d-AChE complex was 0.83 Å to protein systems. Figure 5
illustrates the overall amino acid residue fluctuations of both complex systems. These
findings indicate that the inhibition of the 13d-AChE complex system is lower than that of
the complex (13c-AChE) system, which will reflect well on the complex stability. Figure 6
depicts the number of hydrogen bond interactions between hybrids (13c and 13d) and the
target protein (AChE) with an angle cut of 10 degrees and an rcut of 3.0 Å, plotted against
simulation time (100 ns). The average number of hydrogen bonds per timeframe was
calculated to be 1.09 for 13c-AChE and 1.005 for 13d-AChE. It could be observed that the
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interactions dramatically increased the number of hydrogen bonds per trajectory analysis
from 1 to 5 HBs. Therefore, the obtained results show that the system 13d complex acquired
a relatively more stable conformation than the other system, the 13c complex. The radius
of gyration (Rg) provides evidence for both simulation stability and protein structural
compactness. Rg values for the studied complexes were 23.077 and 23.198 Å, respectively,
as shown in Figure 7. Rg of 13c-AChE showed a more rigid structure than 13d-AChE.
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The MD simulation in ligand-bound conditions was utilized to determine the solvent-
accessible surface area (SASA) of the receptor. As shown in Figure 8, when the ligand bound
to the target receptor, the SASA values changed. The analysis shows that the 13d-protein
complex is more stable upon ligand binding than the 13c-protein complex in regards to
protein folding states and stability. To estimate the binding between the ligands 13c or 13d
and AChE complexes, the contactFreq.tcl module on VMD and a cutoff of 4 Å were used
to perform a contact frequency (CF) study, as shown in Figure 9a,b. In the simulation 13c
complex case study, the following amino acid residues exhibited higher CF values: TYR72,
THR75, LEU76, TYR124, TRP286, and TYR341. Whereas in the 13d complex, there were
good contact surfaces with the protein pocket. Through this study, the following residues
displayed higher CF values: TRP86, GLY121, TYR124, TRP286, LEU289, PRO290, GLN291,
GLU292, ARG296, PHE297, TYR337, PHE338, and TYR341.
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2.6. Binding Free Energy by MM/GBSA Methods

The molecular mechanics energy approach (MM/GBSA), which combines surface area
continuum solvation and generalized Born, is a commonly used approach for calculating
the free binding energies of small molecules to biological macromolecules. This approach
might be more reliable compared to docking scores [32]. Therefore, to validate the docking
scores that were anticipated by molecular docking studies for hybrids 13c and 13d against
the AChE receptor, the binding free energy of the simulated ligand-protein was determined.
The binding free energy of the simulated complex was computed to revalidate the inhibitor
affinity predicted by docking simulation studies for the hybrids 13c and 13d with the
AChE receptor. The MolAICal tool was used to take snapshots of the system trajectories
being investigated in order to determine the binding free energy [33]. All the reported
computed energy solvation components are presented in Table 4. Most negative values
demonstrate favorable interactions. The binding free energy of both complexes 13c and 13d
was calculated to be −23.645 and −36.042 kcal/mol, respectively. A close inspection of the
individual energy contributions displays that the van der Waal energy of both complexes
was found to be 13c-AChE with−44.913 kcal/mol, which had less binding affinity. Whereas
13d-AChE (−51.081 kcal/mol) exhibited strong binding affinity. The electrostatic energy
for both complexes has considerable and moderate values. The binding free energy shows
that the 13d-AChE complex was found to have more stability than the 13d-AChE complex.

Table 4. Summary of the binding energy calculated for two top docking binding scores hybrids (13c
and 13d) with target receptor AChE (PDB ID: 4EY7).

Complexes ∆EVDW ∆Eele + ∆Gsol ∆Gbin

13c-AChE −44.913 12.267 −32.645 ± 0.119

13d-AChE −51.081 15.039 −36.042 ± 0.121
∆EVDW = van der Waals energy; ∆Eele = electrostatic energy; ∆Gsol = solvation free energy; ∆Gbin = calculated
total binding free energy (kcal/mol).
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2.7. Density Functional Theory (DFT)
2.7.1. Molecule Orbital Calculations

The optimized geometrical parameters (dihedral angles, bond angles, and bond
lengths), natural charges, natural population of the nucleus of proposed derivatives, the
energetics of the ground state, molecular electrostatic potential maps, and reactivity de-
scriptors of synthesized hybrids were calculated and analyzed utilizing the spectroscopic
data and elemental analysis.

Ground State Geometric Parameters (S281–S299)

The optimized geometry, dihedral angles, bond angles, bond lengths, vector of the
dipole moment, and numbering system of coumarin hybrids (13a-j) are presented in Table
S1 and Figure S2. In the present work, the gas-phase wB97XD/6-311++G(d,p) has been
compared to the available crystal data of 7-acetoxy-coumarin (ref. CCDC 1113091) [34] to
evaluate the geometrical parameters. The mean absolute errors (MAE) that were calculated
for the bond lengths and angles of the coumarin nucleus are given in Table S2. Careful
inspection shows that MAEs range from 0.001 to 0.051 Å in bond length, from 0.014
to 0.562 degrees in bond angles, and from 0.004 to 1.354 degrees in dihedral angles in
long-range corrected hybrid functionals (wB97XD), which give complete reducibility in
predicting bond lengths and angles with experimental results with respect to experimental
results and computational time and power uses. Therefore, the wB97XD/6-311++G (d,p)
level of theory was selected for geometry optimizations and all calculations. The majority
of the calculated bond lengths show underestimated values with percentages ranging from
0.25 to 1.1% in O1-O11 and an overestimation with values ranging from 1.1 to 5.1% in
C8-C17. Generally, there is no major change. Inspection of the values of the dihedral angles
compiled in Table S1 shows that almost all molecules are planar except the N36-phenyl
moiety, which is out of plane and perpendicular in all the studied compounds (13a-j) with
dihedral angle values of −41.8 to −47.6 degrees. The bond angle values calculated are
shown in Table S1. Results vary from 109.7 to 125.0 degrees, which nicely compares to a
regular SP2 hybridization geometry.

Natural Charges and Natural Population

Natural charge analysis performed on the electronic structures of synthesized com-
pounds (13a-j) clearly describes the distribution of electrons in various subshells of their
atomic orbitals. The charge analysis carried out for all compounds using wB97XD/6-
311++G(d,p) level of calculation is presented in Table 5. In Table 5, the most electronegative
charges for hybrids (13a-j) are accumulated on O11, O24, O16, O1, N36, and C7, respectively,
from −0.563 e to −0.313 e. According to an electrostatic point of view, these electronegative
atoms tend to have active sites for electrons. However, the most electropositive atoms, such
as C2, C10, C8, and C25, from +0.774e to +0.271e, respectively, tend to accept electrons at
their active sites. Going from 13a to 13j is a minor change in natural charge with the same
pattern of electrostatic mapping with the order. An in-depth study of the natural charge
pattern of hybrids is extremely beneficial for gaining insight into the crucial interactions
between title hybrids and biological receptors of AChE, which enhances the investigation
of cytotoxicity activity.
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Table 5. Natural charge of selected atoms of newly synthesized compounds (13a-j) using wb97xd/6-
311++g(d,p) level of theory.

13a 13b 13c 13d 13e 13f 13g 13h 13i 13j

O1 −0.519 −0.519 −0.518 −0.520 −0.521 −0.521 −0.519 −0.521 −0.521 −0.519

C2 0.774 0.774 0.774 0.774 0.774 0.774 0.774 0.775 0.774 0.774

C3 −0.313 −0.314 −0.313 −0.319 −0.319 −0.319 −0.313 −0.318 −0.317 −0.313

C4 0.032 0.033 0.032 0.039 0.040 0.040 0.034 0.039 0.038 0.033

C5 −0.175 −0.175 −0.175 −0.174 −0.173 −0.173 −0.174 −0.173 −0.173 −0.175

C6 −0.138 −0.138 −0.138 −0.136 −0.136 −0.136 −0.138 −0.137 −0.137 −0.138

C7 −0.314 −0.314 −0.314 −0.316 −0.316 −0.316 −0.315 −0.316 −0.316 −0.315

C8 0.357 0.357 0.357 0.355 0.355 0.354 0.356 0.354 0.355 0.357

C9 −0.277 −0.277 −0.277 −0.279 −0.279 −0.279 −0.278 −0.279 −0.279 −0.278

C10 0.380 0.380 0.380 0.380 0.380 0.380 0.380 0.380 0.380 0.380

O11 −0.562 −0.563 −0.562 −0.566 −0.567 −0.567 −0.563 −0.567 −0.566 −0.562

O16 −0.535 −0.535 −0.535 −0.536 −0.537 −0.537 −0.536 −0.537 −0.536 −0.535

C17 −0.211 −0.211 −0.211 −0.211 −0.210 −0.210 −0.211 −0.210 −0.210 −0.211

C21 −0.043 −0.043 −0.043 −0.051 −0.051 −0.051 −0.042 −0.047 −0.047 −0.042

O24 −0.547 −0.548 −0.546 −0.571 −0.572 −0.572 −0.553 −0.572 −0.572 −0.552

C25 0.344 0.342 0.346 0.287 0.285 0.282 0.326 0.270 0.271 0.327

C26 −0.246 −0.246 −0.246 −0.222 −0.217 −0.222 −0.195 −0.183 −0.181 −0.192

C27 −0.131 −0.132 −0.130 −0.165 −0.177 −0.168 −0.096 −0.140 −0.146 −0.103

C28 −0.159 −0.155 −0.162 −0.124 −0.115 −0.117 −0.208 −0.150 −0.147 −0.206

C29 −0.136 −0.138 −0.134 −0.257 −0.252 −0.261 −0.182 −0.299 −0.300 −0.182

C30 −0.310 −0.310 −0.310 0.290 0.287 0.290 −0.285 0.310 0.314 −0.281

C34 0.154 0.146 0.157 0.171 0.151 0.158 0.140 0.145 0.156 0.153

N36 −0.453 −0.450 −0.456 −0.455 −0.444 −0.450 −0.436 −0.449 −0.455 −0.441

C37 0.135 0.099 0.133 0.129 0.132 0.095 0.095 0.099 0.132 0.130

C38 −0.209 −0.180 −0.192 −0.190 −0.207 −0.177 −0.175 −0.180 −0.191 −0.189

C39 −0.195 −0.289 −0.218 −0.218 −0.196 −0.291 −0.290 −0.289 −0.218 −0.217

C40 −0.221 0.320 −0.050 −0.048 −0.219 0.323 0.324 0.321 −0.049 −0.048

C41 −0.196 −0.237 −0.218 −0.218 −0.196 −0.237 −0.237 −0.238 −0.219 −0.218

C42 −0.238 −0.213 −0.221 −0.220 −0.237 −0.211 −0.210 −0.213 −0.221 −0.219

A47 0.208 −0.545 −0.003 −0.001 0.208 −0.545 −0.545 −0.545 −0.003 −0.001

A48 0.213 0.213 0.214 −0.546 −0.547 −0.547 0.212 −0.538 −0.537 0.213

A=O, H, or Cl means different atoms in derivatives series; Values are mean ± SD triplicate assays.

Frontier Molecular Orbitals (FMOs) Analysis

As presented in Table 6, among all synthesized hybrids, 13e displayed higher sta-
bility and less reactivity with an energy gap value of 7.96 eVm, whereas hybrid 13b
(∆Egap = 7.38 eV) showed the lowest stability and highest reactivity [35–38]. The energy
gaps of the rest of the hybrids were ordered as follows: 13j < 13i < 13d < 13c < 13a < 13f <
13h < 13g. Due to the significance of the parameters such as I (potential ionization) and A
(electron affinity), their calculations enable us to determine the global reactivity descriptors.
The I and A parameters are related to the one-electron orbital energies of the HOMO and
LUMO. The obtained results (Table 6) exhibited that hybrids 13j had the highest values of I
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(8.29 eV) and A (0.37 eV). The I value of the other hybrids are 13d > 13c > 13e > 13i > 13a >
13g > 13f > 13b > 13h. Whereas in the case of A values, the order is as follows: 13d > 13c
> 13a > 13b > 13i > 13g > 13e > 13f > 13h. Then we can predict that derivatives 13j, 13d,
and 13c are the best candidates for interaction with other biological AChE receptors. All of
the hybrids have almost similar HOMO and LUMO isodensity dispersion as depicted in
Figure S3, except for 13c and 13d (Figure 10), which have slightly different dispersion on
the coumarin rings and the (E)-N-benzylideneaniline moiety. The direction of the electronic
charge transfer motion is represented by the dipole moment vector with the order norm
vector; synthesized compounds are ordered as 13j > 13i > 13f > 13e > 13a > 13d > 13c >
13h > 13b > 13g.

Table 6. Energetic parameters of synthesized derivatives (13a-j) using wb97xd/6-311++g(d,p) level
of theory.

Parameters ET, au EHOMO, au ELUMO, au Eg, eV µ, D I, eV A, eV

13a −1281.51218 −0.29732 −0.00966 7.83 8.73 8.09 0.26

13b −1396.03187 −0.27977 −0.00871 7.38 8.18 7.61 0.24

13c −1741.11979 −0.29937 −0.01125 7.84 8.50 8.15 0.31

13d −1855.63488 −0.30068 −0.01208 7.85 8.54 8.18 0.33

13e −1396.02739 −0.29860 −0.00589 7.96 9.31 8.13 0.16

13f −1510.54717 −0.28213 −0.00252 7.61 9.78 7.68 0.07

13g −1396.03041 −0.28300 −0.00735 7.50 7.68 7.70 0.20

13h −1510.54851 −0.27929 −0.00012 7.60 8.42 7.60 0.00

13i −1855.63633 −0.29807 −0.00737 7.91 9.89 8.11 0.20

13j −1741.11801 −0.30477 −0.01351 7.93 10.33 8.29 0.37

Values are mean ± SD duplicate assays.

Global Reactivity Descriptors

The density functional theory (DFT) uses the chemical system’s electron density to
explain several basic ideas about how chemicals react [39]. In chemistry, understanding
the nature of chemical interactions and predicting the chemical reactivity of molecules,
atoms, or ions are the two most challenging problems. Herein, we studied the reactivity of
novel synthesized derivatives (13a-j). Table 7 shows the values of the important reactivity
descriptors that help us figure out how reactive and stable hybrids (13a-j) are. Among all
compounds, coumarin 13j, with the highest value of η = 3.98 eV, is the chemically hardest
compound, while coumarin 13b, with the lowest value (η = 3.69 eV), is chemically soft and
more reactive. The chemical hardness of other hybrids is ordered as 13j > 13i > 13d > 13c >
13a > 13f > 13h > 13g. A general idea of charge transfer in any molecule’s ground state can
be obtained from the electronic chemical potential (V) value. In terms of chemical potential,
hybrid 13h has the greatest value (−3.8 eV), whereas hybrid 13j has the lowest (−4.33 eV),
and other coumarin hybrids are in the following order: 13f > 13b > 13g > 13e > 13i > 13a >
13c > 13d (Table 7).
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Table 7. Reactivity indices of hybrids (13a-j) using wb97xd/6-311++g(d,p) level of theory.

Parameters X, eV η, eV S, eV V, eV ω, eV N, eV

13a 4.18 3.91 0.128 −4.18 2.23 −3.88

13b 3.92 3.69 0.136 −3.92 2.09 −3.40

13c 4.23 3.92 0.128 −4.23 2.28 −3.94

13d 4.26 3.93 0.127 −4.26 2.31 −3.97

13e 4.14 3.98 0.126 −4.14 2.15 −3.91

13f 3.87 3.80 0.131 −3.87 1.97 −3.47

13g 3.95 3.75 0.133 −3.95 2.08 −3.49

13h 3.80 3.80 0.132 −3.80 1.90 −3.39

13i 4.16 3.96 0.126 −4.16 2.18 −3.90

13j 4.33 3.96 0.126 −4.33 2.37 −4.08
Values are mean ± SD triplicate assays.

A thermodynamic parameter that is represented by the electrophilicity index (ω)
estimates the energy changes that occur when a chemical system reaches saturation with
the addition of more electrons. This is very beneficial in determining a system’s chemical
reactivity. As shown in Table 7, coumarin hybrid 13h is nucleophilic in nature with the
lowest electrophilicity index value equal to 1.9 eV, while hybrid 13j is strongly electrophilic
in nature (ω = 2.37 eV). The lowest electrophilicity index (ω) order of other coumarins is the
same as electron affinity (A). The electronegativity (X) describes the tendency of an atom in
a covalent bond to draw electrons towards it. From the obtained electronegativity of the
synthesized hybrids, coumarin 13j is the best electron acceptor with X = 4.33 eV, which had
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the highest electronegativity value as compared to the other hybrids. The electronegativity
(X) order of other coumarins shows the same behavior in both the electron affinity and
electrophilicity indexes. In terms of global softness, hybrid 13b displayed the highest
reactivity and softness values (0.14 eV), whereas the other hybrids exhibited almost the
same values of softness (0.126 to 0.133 eV) with order 13g > 13h > 13f > 13a > 13c > 13d >
13i > 13j > 13e.

Local Reactivity Descriptor

To study the site selectivity and chemical reactivity of a molecule, the principles of
local reactivity descriptors have been frequently applied [40,41]. The Fukui function is
a local descriptor that can be used to study molecular site selectivity [42]. It is the first
derivative of the electronic density ρ(r) in relation to the electron numbers (N) of a system
at a constant external potential ν(r) [43], as represented in the following equation:

f (r) =
(

∂ρ(r)
∂N

)
v(r)

=
1
2

(
∂µ

∂v(r)

)
v(r)

Based on the changes in electrical density throughout a reaction process, we can
calculate Fukui functions to identify the active sites. As shown in the following equation,
for the three different environments of chemicals, the Fukui functions f+ (r), f– (r), and f0 (r)
are determined [44–46]:

f−(r) = qk(N)− qk(N − 1) ≈ ρHOMO(r) for electrophilic attack

f+(r) = qk(N + 1)− qk(N ) ≈ ρLUMO(r) for nucleophilic attack

f 0(r) = 1
2 [qk(N + 1)− qk(N − 1)] ≈ 1

2
[
ρHOMO(r) + ρLUMO(r)

]
for radical attack

where qk(N), qk(N + 1) and qk(N− 1) are the atomic populations on the kth atom for the
neutral molecule, anionic and cationic species, respectively. Tables S3 and S4 represent
the descriptor values of coumarin hybrids (13a-j) computed at the wb97xd/6-311++G (d,
p) level. In addition to knowing how an atomic site in a molecule could be electrophilic
or nucleophilic, Labbe et al. [47] suggested an additional dual descriptor (∆ f (r)) that is
provided by the following equation:

∆ f (r) = f+(r)− f−(r)

The obtained results indicate that the most electrophilic reactivity is on the imine
moiety, which is mostly found on the atoms O24, N36, C37, C40, and C42, while the
nucleophilic active site on the coumarin moiety is located on O1, C2, C3, C4, C6, C8, O11,
and O16 localized. From Tables S3 and S4, when considering the dual descriptor ∆ f (r)
for the nucleophilic and electrophilic attacks, as well as the philicity indices, the same
result could be obtained. The high electronegativity of atoms N and O led to an electron
density redistribution, in addition to the effect of -OCH3 insertion groups in R1 and R2
substitutions, that causes these characteristic changes. These findings are in agreement
with the analysis of the natural population using calculated HOMO and LUMO. In 2004,
Chattaraj et al. proposed the generalized philicity concept; with the help of corresponding
condensed-to-atom Fukui function variations, they developed a local quantity known as
philicity coupled with a site k in a molecule ( f α

k ), as given in the following equation [48].

ωα
k = ω f α

k

where α represents the local philic quantities, radical (α = 0), nucleophilic (α = +), and elec-
trophilic (α = −) attacks. According to the aforementioned equation, the most electrophilic
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property has the highest value of ωα
k . Moreover, different local softness was proposed by

Lee et al. to define the reactivity of a molecule [49] as in the following Equation.

sα
k = s f α

k

In the aforementioned equation, α is represented by local softness quantities for
nucleophilic (α = +), electrophilic (α = −), and radical attacks (α = 0). In order to complete
the picture, the software package Multiwfn (v. 3.7) determined the local electrophilicity and
nucleophilicity index, condensed local softness, and relative electrophilicity/nucleophilicity
for each atom in the compounds from a CDFT point of view [50]. A close inspection would
show that all the compounds had the donating and the back-donating processes at the
center of their active sites, in agreement with the Fukui functions and also with the frontier
orbital, as shown in the results obtained, which are boldly given in Tables S5 and S6.
These findings showed the studied compounds to have several active sites, making them
able to interact with the surface of pocket proteins via donating electrons. Lastly, the
aforementioned local descriptors show that the experimental data in this study are in
agreement with the theoretical variation of the compound’s efficiency.

Molecular Electrostatic Potential (MEP)

In several fields of chemistry, the electrostatic potential (ESP) on molecular surfaces
has become one of the most effective tools for identifying, analyzing, and understanding
trends [51,52]. It is related to electronic density, which is an excellent descriptor for describ-
ing the charge distributions on a molecule, identifying regions that are differently charged,
and identifying the sites where hydrogen-bonding interactions, electrophilic properties,
and nucleophilic properties are most likely to take place [53]. Electrostatic potentials (ESPs)
are essential for predicting and understanding intermolecular interactions [52]. The crucial
interactions between the synthesized hybrids and biological targets must be better under-
stood with the help of an in-depth analysis of their ESPs. The ESP, as denoted by V(r) (in
a.u.) at a given point r (x,y,z) in the molecule’s vicinity, is a calculation of the electrostatic
energy that a positive unit test charge would experience at that point. Negative and positive
ESPs corresponded to attractive and repulsion interactions, respectively. The following
equation defines the ESP as the interaction energy between a proton at r and the electrical
charge produced by the electrons and nuclei.

V(r) =
nuclei

∑
A

ZA

|RA − r| −
∫

ρ(r′)
|r− r′|dr′

where ZA is the charge, RA is the position of nucleus A, and ρ (r’) is the electron density at
position r’.

The electrostatic potentials-mapped surfaces of the hybrids (13a-j) are presented in
Figure S4. The overall van der Waals surface can be divided into several fragments by
the quantitative molecular surface analysis module of the Multiwfn package, and this
capability enables us to analyze the features of the ESP distribution. For hybrid 13a, the
surface displays a high negative value of ESP at the O11, O16, O24, and N36 (−43.97, −16.9,
−11.0, and −28.01 kcal/mol), respectively, with the positive charge being distributed
among various active sites. As for the potential of various derivatives (13b-j) to redistribute
electrons, the global minima of ESPs around O11, O16, O24, and N36 centers increase,
reaching minimum values in case 13f with sequence (−46.9, −18.5, −22.0, and −27.9
kcal/mol) due to the electron-donating OCH3 group but in case 13c and 13d (Figure 11), Cl
derivatives show that the negative decrease due to electron drawing behavior as sequence
(−43.3, −16.3, −9.8 and −24.5 kcal/mol) and (−45.9, −18.5, −6.5 and −23.5 kcal/mol),
respectively. The global maxima of ESPs on the derivatives (13b-j) surfaces are located
on the carbon with the proton of these derivatives, which vary from +36.2, +35.6, +37.4,
+29.4, +28.3, +27.6, +34.1, +26.8, +28.7 and +35.9 kcal/mol for hybrids (13a-j), respectively.
This indicates that electrostatic or hydrogen bonding will be the main interaction between
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hybrids and their target receptors. The ability to generate hydrogen bond interaction and
intramolecular charge transfer (ICT) is confirmed by a careful examination of these ESP
values, indicating that they can act as therapeutics. These values show the same findings
from the analyses of the NBO population and local reactivity descriptors reported in the
previous section.
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3. Experimental
3.1. General Procedures

Reagents and solvents used in the research were commercially available. The reagents 3-
Methoxyphenol, ethyl 4-chloroacetoacetate, 4-hydroxy-3-methoxybenzaldehyde, 3-hydroxy-4-
methoxybenzaldehyde, 4-chloroaniline, and 4-methoxyaniline were purchased from Sigma-
Aldrich. The other materials were purchased from Acros Organics, such as aniline, glacial
acetic acid, anhydrous potassium carbonate, acetone, chloroform, dichloromethane, ethyl
acetate, methanol, ethanol, and n-hexane. Analytical grade (AR) solvents such as ethanol
absolute AR (99.9%) were purchased from Fisher Scientific. The purity of these chemicals
was 90–99.9%, and they were used without further purification. Thin-layer chromatography
(TLC) was used to detect compounds present in the products. The TLC plates used were
the thin aluminum plates from Merck, pre-coated with silica gel F254 with 0.2 mm thickness.
The spots were visualized under UV light at 254 nm or 365 nm. Melting points (uncorrected)
were determined using a Barnstead Electrothermal 9100 melting point. The infrared IR
spectra were recorded using a Perkin Elmer FTIR spectrometer. Samples were prepared as
KBr discs. The 1H NMR (400 MHz) and 13C NMR (100 MHz) were recorded on a Bruker
Avance II 400 MHz NMR Spectrometer using dimethyl sulfoxide (DMSO-d6, Sigma-Aldrich,
99.9%) as the solvent. Chemical shift values were given in δ (ppm) scales. The HRMS were
recorded on an Agilent Technologies 6545 Q-TOF LC/MS.

3.1.1. Synthesis of 4-(Chloromethyl)-7-methoxy-2H-chromen-2-One (9)

3-Methoxyphenol (30 mmol) was added to a cooled aqueous solution of 70% H2SO4
(60 mL) and followed by adding ethyl 4-chloroacetoacetate (35 mmol). The solution was
stirred in an ice-bath for a period of 9 h and continuously stirred for 96 h. The reaction mix-
ture was poured into cold water. The precipitate was filtered off, washed several times with
cold water, dried, and recrystallized from ethanol to afford 4-(chloromethyl)-7-methoxy-2H-
chromen-2-one (9) as a white powder (6.34 g, 94%); Rf = 0.51 (hexane: EtOAc = 3:2); m.p
197–198 ◦C (lit. 199–200 ◦C [54]). IR (KBr) (υ max/cm−1): 3072 (C-H sp2), 2942 (C-H sp3),
1727 (C=O), 1615 (C=C olefinic), 1560–1499 (C=C aromatic), 1058 (C-O). 1H NMR (400 MHz,
DMSO-d6): δ 3.87 (3H, s, OCH3), 5.00 (2H, s, CH2Cl), 6.50 (1H, s, H-3), 7.00 (1H, dd, J = 2.4
and 8.8 Hz, H-6), 7.05 (1H, d, J = 2.4 Hz, H-8), 7.76 (1H, d, J = 8.8 Hz, H-5).
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3.1.2. General Procedure of Synthesis of Schiff bases (12a-j)

Glacial acetic acid (1 mL) was added dropwise into a solution of hydroxybenzaldehyde
(10 mmol) and substituted aniline (10 mmol) in 95% EtOH (20 mL). The reaction mixture
was refluxed for one hour at 80 ◦C and left to stir at room temperature overnight. After
that, the mixture was poured into iced water (25 mL). The solvent was removed by vacuum
filtration to form a solid. The solids were purified by crystallization from ethanol to afford
the desired Schiff bases (12a-j).

(E)-4-((Phenylimino)methyl)phenol (12a)

Pale yellow powder; yield: (1.24 g, 63%); Rf = 0.47 (hexane: EtOAc = 3:2); m.p
193–194 ◦C (lit. 195–196 ◦C [55]). IR (KBr) (υ max/cm−1): 3438 (O-H), 1603 (C=N), 1577,
and 1515 (C=C aromatic). 1H NMR (400 MHz, DMSO-d6): δ 6.88 (2H, d, J = 8.8 Hz, H-2
and H-6), 7.19 (3H, m, H-3′, H-4′ and H-5′), 7.37 (2H, t, J = 7.6 and 8.0 Hz, H-2′ and H-6′),
7.77 (2H, d, J = 8.8 Hz, H-3 and H-5), 8.45 (1H, s, CH=N), 10.15 (1H, s, OH).

(E)-4-(((4-Methoxyphenyl)imino)methyl)phenol (12b)

Pale yellow powder; yield: (1.48 g, 65%); Rf = 0.51 (hexane: EtOAc = 3:2); m.p 208–209 ◦C
(lit. 210–212 ◦C [56]). IR (KBr) (υ max/cm−1): 3432 (O-H), 1605 (C=N), 1575, and 1513 (C=C
aromatic). 1H NMR (400 MHz, DMSO-d6): δ 3.76 (3H, s, OCH3), 6.86 (2H, d, J = 8.8 Hz,
H-2 and H-6), 6.94 (2H, d, J = 8.8 Hz, H-3′ and H-5′), 7.21 (2H, d, J = 8.8 Hz, H-2′ and H-6′),
7.74 (2H, d, J = 8.8 Hz, H-3 and H-5), 8.45 (1H, s, CH=N), 10.15 (1H, s, OH).

(E)-4-(((4-Chlorophenyl)imino)methyl)phenol (12c)

Pale yellow powder; yield: (1.83 g, 79%); Rf = 0.58 (hexane: EtOAc = 3:2); m.p
187–188 ◦C (lit. 184–185 ◦C [57]). IR (KBr) (υ max/cm−1): 3447 (O-H), 1600 (C=N), 1572,
and 1515 (C=C aromatic). 1H NMR (400 MHz, DMSO-d6): δ 6.88 (2H, d, J= 8.4 Hz, H-2 and
H-6), 7.22 (2H, d, J= 8.8 Hz, H-2′ and H-6′), 7.42 (2H, d, J= 8.8 Hz, H-3′ and H-5′), 7.77 (2H,
d, J= 8.4 Hz, H-3 and H-5), 8.46 (1H, s, CH=N), 10.19 (1H, s, OH).

(E)-4-(((4-Chlorophenyl)imino)methyl)-2-methoxyphenol (12d) [58]

Yellow powder; yield: (2.35 g, 90%); Rf = 0.54 (hexane: EtOAc = 3:2); m.p 193–194 ◦C.
IR (KBr) (υ max/cm−1): 3394 (O-H), 1623 (C=N), 1584, and 1513 (C=C aromatic). 1H NMR
(400 MHz, DMSO-d6): δ 3.84 (3H, s, OCH3), 6.89 (1H, d, J = 8.0 Hz, H-6), 7.22 (2H, d,
J = 8.4 Hz, H-2′ and H-6′), 7.33 (1H, dd, J = 1.2 and 8.4 Hz, H-5), 7.42 (2H, d, J = 8.4 Hz, H-3′

and H-5′), 7.52 (1H, d, J = 1.6 Hz, H-3), 8.44 (1H, s, CH=N), 9.88 (1H, s, OH).

(E)-2-Methoxy-4-((phenylimino)methyl)phenol (12e)

Pale yellow powder; yield: (1.29 g, 57%); Rf = 0.62 (hexane: EtOAc = 3:2); m.p
116–117 ◦C (lit. 110–114 ◦C [59]). IR (KBr) (υ max/cm−1): 3450 (O-H), 1621 (C=N), 1584,
and 1515 (C=C aromatic). 1H NMR (400 MHz, DMSO-d6): δ 3.85 (3H, s, OCH3), 6.91 (1H, d,
J = 8.0 Hz, H-6), 7.20 (3H, m, H-3′, H-4′ and H-5′), 7.33 (1H, dd, J = 1.2 and 8.0 Hz, H-5),
7.39 (2H, t, J = 7.6 and 8.0 Hz, H-2′ and H-6′), 7.54 (1H, d, J = 1.2 Hz, H-3), 8.44 (1H, s,
CH=N), 9.80 (1H, s, OH).

(E)-2-Methoxy-4-(((4-methoxyphenyl)imino)methyl)phenol (12f)

Greenish-yellow powder; yield: (1.54 g, 60%); Rf = 0.67 (hexane: EtOAc = 3:2); m.p
131–132 ◦C (lit. 133 ◦C [60]). IR (KBr) (υ max/cm−1): 3430 (O-H), 1622 (C=N), 1586, and
1506 (C=C aromatic). 1H NMR (400 MHz, DMSO-d6): δ 3.76 (3H, s, OCH3), 3.84 (3H, s,
OCH3), 6.88 (1H, d, J = 8.0 Hz, H-6), 6.94 (2H, d, J = 8.8 Hz, H-3′ and H-5′), 7.22 (2H, d,
J = 8.8 Hz, H-2′ and H-6′), 7.29 (1H, dd, J = 2.0 and 8.0 Hz, H-5), 7.51 (1H, d, J = 1.6 Hz,
H-3), 8.46 (1H, s, CH=N), 9.71 (1H, s, OH).
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(E)-3-(((4-Methoxyphenyl)imino)methyl)phenol (12g)

Greenish-yellow powder; yield: (1.49 g, 65%); Rf = 0.38 (hexane: EtOAc = 3:2); m.p
123–125 ◦C (lit. 122.0 ◦C [61]). IR (KBr) (υ max/cm−1): 3443 (O-H), 1626 (C=N), 1592, and
1502 (C=C aromatic). 1H NMR (400 MHz, DMSO-d6): δ 3.77 (3H, s, OCH3), 6.90 (1H, d,
J = 4.8 Hz, H-5), 6.96 (2H, d, J = 8.8 Hz, H-3′ and H-5′), 7.27 (4H, m, H-2′, H-4, H-6 and
H-6′), 7.35 (1H, d, J = 2.4 Hz, H-2), 8.54 (1H, s, CH=N), 9.69 (1H, s, OH).

(E)-2-Methoxy-5-(((4-methoxyphenyl)imino)methyl)phenol (12h)

Beige color; yield: (1.46 g, 57%); Rf = 0.55 (hexane: EtOAc = 3:2); m.p 255–257 ◦C (lit.
257–259 ◦C [62]). IR (KBr) (υ max/cm−1): 3422 (O-H), 1627 (C=N), 1610, and 1576 (C=C
aromatic). 1H NMR (400 MHz, DMSO-d6): δ 3.76 (3H, s, OCH3), 3.83 (3H, s, OCH3), 6.94
(2H, d, J = 8.8 Hz, H-3′ and H-5′), 7.01 (1H, d, J = 8.0 Hz, H-3), 7.22 (2H, d, J = 8.8 Hz, H-2′

and H-6′), 7.26 (1H, dd, J = 2.0 and 8.4 Hz, H-4), 7.51 (1H, d, J = 2.0 Hz, H-6), 8.44 (1H, s,
CH=N), 9.33 (1H, s, OH).

(E)-5-(((4-Chlorophenyl)imino)methyl)-2-methoxyphenol (12i) [63]

Yellow powder; yield: (1.86 g, 71%); Rf = 0.39 (hexane: EtOAc = 3:2); m.p 179–181 ◦C.
IR (KBr) (υ max/cm−1): 3432 (O-H), 1618 (C=N), 1599, and 1578 (C=C aromatic). 1H NMR
(400 MHz, DMSO-d6): δ 3.84 (3H, s, OCH3), 7.03 (1H, d, J = 8.0 Hz, H-3), 7.23 (2H, d,
J = 8.4 Hz, H-2′ and H-6′), 7.30 (1H, dd, J = 2.0 and 8.4 Hz, H-4), 7.42 (3H, m, H-3′, H-5′ and
H-6), 8.44 (1H, s, CH=N), 9.40 (1H, s, OH).

(E)-3-(((4-Chlorophenyl)imino)methyl)phenol (12j)

Pale yellow powder; yield: (1.69 g, 73 %); Rf = 0.41 (hexane: EtOAc = 3:2); m.p
134–136 ◦C (lit. 135 ◦C [61]). IR (KBr) (υ max/cm−1): 3384 (O-H), 1621 (C=N), 1598, and
1482 (C=C aromatic). 1H NMR (400 MHz, DMSO-d6): δ 6.94 (1H, d, J = 6.8 Hz, H-5), 7.27
(2H, d, J = 8.4 Hz, H-2′ and H-6′), 7.32 (3H, m, H-2, H-4 and H-6), 7.45 (2H, d, J = 8.4 Hz,
H-3′ and H-5′), 8.53 (1H, s, CH=N), 9.78 (1H, s, OH).

3.1.3. General Procedure of Synthesis of Coumarin-Schiff Base Hybrids (13a-j)

Anhydrous K2CO3 (250 mg) was added to a solution of the previously prepared Schiff
bases (12a-j) (1 mmol) and 4-(chloromethyl)-7-methoxy-2H-chromen-2-one (9) in acetone
(30 mL). The reaction mixture was boiled at 65 ◦C for 24 h. The mixture was cooled, and
ice water was added to form precipitates. The solvent was removed by vacuum filtration,
washed several times with cold water, dried, and recrystallized to afford the desired hybrids
(13a-j).

(E)-7-Methoxy-4-((4-((phenylimino)methyl)phenoxy)methyl)-2H-chromen-2-one (13a)

Pale yellow powder; yield: (0.21 g, 55%); Rf = 0.37 in hexane: CH2Cl2 (2:1); m.p
147–149 ◦C. IR (KBr) (υ max/cm−1): 3064 (C-H sp2), 2940 (C-H sp3), 1704 (C=O), 1609 (C=N),
1574 and 1510 (C=C aromatic). 1H NMR (400 MHz, DMSO-d6): δ 3.87 (3H, s, OCH3),
5.49 (2H, s, OCH2), 6.43 (1H, s, H-3”), 7.00 (1H, dd, J = 2.4 and 8.8 Hz, H-6”), 7.05 (1H, d,
J = 2.4 Hz, H-8”), 7.21 (3H, m, H-3′, H-4′ and H-5′), 7.28 (2H, d, J = 8.8 Hz, H-3 and H-5),
7.39 (2H, t, J = 7.8, H-2′ and H-6′), 7.79 (1H, d, J = 8.8 Hz, H-5”), 7.92 (2H, d, J = 8.8 Hz, H-2
and H-6), 8.55 (1H, s, CH=N). 13C NMR (100 MHz, DMSO-d6): δ 163.0, 160.6, 160.5, 160.2,
155.5, 152.1, 151.5, 130.9, 130.2, 129.6, 126.4, 126.0, 121.3, 115.7, 112.7, 110.8, 109.4, 101.4, 65.8,
56.4. HRMS (ESI): calcd. for C24H19NO4 [M + H]+ 385.1314, found 385.1312.

(E)-7-Methoxy-4-((4-(((4-methoxyphenyl)imino)methyl)phenoxy)methyl)-2H-chromen-2-
one (13b)

Beige powder; yield: (0.13 g, 30%); Rf = 0.42 in hexane:CH2Cl2 (2:1); m.p 162–163 ◦C.
IR (KBr) (υ max/cm−1): 3076 (C-H sp2), 2956 (C-H sp3), 1708 (C=O), 1607 (C=N), 1574 and
1506 (C=C aromatic). 1H NMR (400 MHz, DMSO-d6): δ 3.78 (3H, s, OCH3), 3.88 (3H, s,
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OCH3), 5.48 (2H, s, OCH2), 6.44 (1H, s, H-3”), 6.96 (2H, d, J = 8.8 Hz, H-3 and H-5), 7.01
(1H, dd, J = 2.4 and 8.8 Hz, H-6”), 7.06 (1H, d, J = 2.4 Hz, H-8”), 7.25 (4H, m, H-2′, H-3′,
H-5′ and H-6′), 7.80 (1H, d, J = 8.8 Hz, H-5”), 7.90 (2H, d, J = 8.8 Hz, H-2 and H-6), 8.57 (1H,
s, CH=N). 13C NMR (100 MHz, DMSO-d6): δ 163.0, 160.5, 160.3, 158.1, 158.0, 155.5, 151.5,
144.8, 130.6, 130.5, 126.4, 122.6, 115.6, 114.8, 112.7, 110.8, 109.4, 101.4, 65.8, 56.4, 55.7. HRMS
(ESI): calcd. for C25H21NO5 [M + H]+ 415.1420, found 415.1424.

(E)-4-((4-(((4-Chlorophenyl)imino)methyl)phenoxy)methyl)-7-methoxy-2H-chromen-2-
one (13c)

Brown powder; yield: (0.33 g, 78%); Rf = 0.33 in hexane:CH2Cl2 (2:1); m.p 161–163 ◦C.
IR (KBr) (υ max/cm−1): 3071 (C-H sp2), 2936 (C-H sp3), 1699 (C=O), 1605 (C=N), 1574 and
1508 (C=C aromatic). 1H NMR (400 MHz, DMSO-d6): δ 3.87 (3H, s, OCH3), 5.48 (2H, s,
OCH2), 6.43 (1H, s, H-3”), 7.00 (1H, dd, J = 1.2 and 8.8 Hz, H-6”), 7.05 (1H, d, J = 2.0 Hz,
H-8”), 7.25 (2H, d, J= 8.4 Hz, H-3 and H-5), 7.28 (2H, d, J= 8.4 Hz, H-2′ and H-6′), 7.44 (2H,
d, J= 8.4 Hz, H-3′ and H-5′), 7.79 (1H, d, J = 8.8 Hz, H-5”), 7.92 (2H, d, J= 8.4 Hz, H-2 and
H-6), 8.56 (1H, s, CH=N). 13C NMR (100 MHz, DMSO-d6): δ 163.0, 160.9, 160.7, 160.5, 155.4,
151.4, 150.9, 131.1, 130.3, 129.9, 129.5, 129.5, 123.2, 115.7, 112.7, 110.8, 109.4, 101.4, 65.8, 56.4.
HRMS (ESI): calcd. for C24H18ClNO4 [M + H]+ 419.0924, found 419.0920.

(E)-4-((4-(((4-Chlorophenyl)imino)methyl)-2-methoxyphenoxy)methyl)-7-methoxy-2H-
chromen-2-one (13d)

Pale yellow powder; yield: (0.26 g, 58%); Rf = 0.40 in hexane: CH2Cl2 (2:1); m.p
173–175 ◦C. IR (KBr) (υ max/cm−1): 3078 (C-H sp2), 2958 (C-H sp3), 1703 (C=O), 1614 (C=N),
1579 and 1511 (C=C aromatic). 1H NMR (400 MHz, DMSO-d6): δ 3.87 (3H, s, OCH3), 3.89
(3H, s, OCH3), 5.46 (2H, s, OCH2), 6.40 (1H, s, H-3”), 6.99 (1H, dd, J = 2.4 and 8.8 Hz, H-6”),
7.04 (1H, d, J = 2.4 Hz, H-8”), 7.26 (2H, d, J = 8.8 Hz, H-2′ and H-6′), 7.33 (1H, d, J = 8.4 Hz,
H-6), 7.44 (2H, d, J = 8.8 Hz, H-3′ and H-5′), 7.47 (1H, dd, J = 1.6 and 8.4 Hz, H-5), 7.61 (1H,
d, J = 2.0 Hz, H-3), 7.78 (1H, d, J = 8.8 Hz, H-5”), 8.53 (1H, s, CH=N). 13C NMR (100 MHz,
DMSO-d6): δ 163.0, 161.2, 160.6, 155.4, 151.6, 150.8, 150.4, 149.7, 130.3, 130.2, 129.5, 126.4,
124.3, 123.2, 113.8, 112.7, 110.8, 110.5, 109.2, 101.4, 66.3, 56.4, 56.2. HRMS (ESI): calcd. for
C25H20ClNO5 [M + H]+ 449.1030, found 449.1028.

(E)-7-Methoxy-4-((2-methoxy-4-((phenylimino)methyl)phenoxy)methyl)-2H-chromen-2-
one (13e)

White powder; yield: (0.28 g, 67%); Rf = 0.47 in hexane:CH2Cl2 (2:1); m.p 177–178 ◦C.
IR (KBr) (υ max/cm−1): 3079 (C-H sp2), 2939 (C-H sp3), 1705 (C=O), 1611 (C=N), 1579 and
1507 (C=C aromatic). 1H NMR (400 MHz, DMSO-d6): δ 3.87 (3H, s, OCH3), 3.90 (3H, s,
OCH3), 5.45 (2H, s, OCH2), 6.41 (1H, s, H-3”), 6.99 (1H, dd, J = 2.4 and 8.8 Hz, H-6”), 7.04
(1H, d, J = 2.0 Hz, H-8”), 7.23 (3H, m, H-3′, H-4′ and H-5′), 7.33 (1H, d, J = 8.4 Hz, H-6), 7.39
(2H, t, J = 7.6 Hz, H-2′ and H-6′), 7.47 (1H, d, J = 8.4 Hz, H-5), 7.62 (1H, s, H-3), 7.78 (1H, d,
J = 8.8 Hz, H-5”), 8.52 (1H, s, CH=N). 13C NMR (100 MHz, DMSO-d6): δ 163.0, 160.5, 160.5,
155.4, 152.0, 151.6, 150.3, 149.7, 130.5, 129.6, 126.4, 126.1, 124.0, 121.3, 113.8, 112.7, 110.8,
110.5, 109.2, 101.4, 66.3, 56.4, 56.2. HRMS (ESI): calcd. for C25H21NO5 [M + H]+ 415.1421,
found 415.1420.

(E)-7-Methoxy-4-((2-methoxy-4-(((4-methoxyphenyl)imino)methyl)phenoxy)methyl)-2H-
chromen-2-one (13f)

White powder; yield: (0.31 g, 69.3%); Rf = 0.51 in hexane:CH2Cl2 (2:1); m.p 183–184 ◦C.
IR (KBr) (υ max/cm−1): 3077 (C-H sp2), 2917 (C-H sp3), 1717 (C=O), 1610 (C=N), 1579 and
1505 (C=C aromatic). 1H NMR (400 MHz, DMSO-d6): δ 3.77 (3H, s, OCH3), 3.88 (3H, s,
OCH3), 3.90 (3H, s, OCH3), 5.47 (2H, s, OCH2), 6.41 (1H, s, H-3”), 6.96 (2H, d, J = 8.8 Hz,
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H-3′ and H-5′), 7.00 (1H, dd, J = 2.4 and 8.8 Hz, H-6”), 7.05 (1H, d, J = 2.4 Hz, H-8”), 7.26
(2H, d, J = 8.8 Hz, H-2′ and H-6′), 7.32 (1H, d, J = 8.4 Hz, H-6), 7.44–7.46 (1H, dd, J = 2.0 and
8.4 Hz, H-5), 7.60 (1H, d, J = 1.6 Hz, H-3), 7.80 (1H, d, J = 8.8 Hz, H-5”), 8.55 (1H, s, CH=N).
13C NMR (100 MHz, DMSO-d6): δ 163.0, 160.5, 158.3, 158.1, 155.4, 151.7, 150.0, 149.7, 144.7,
130.8, 126.5, 123.6, 122.7, 114.8, 113.8, 112.7, 110.8, 110.3, 109.2, 101.4, 66.3, 56.4, 56.1, 55.7.
HRMS (ESI): calcd. for C26H23NO6 [M + H]+ 445.1525, found 445.1519.

(E)-7-Methoxy-4-((3-(((4-methoxyphenyl)imino)methyl)phenoxy)methyl)-2H-chromen-2-
one (13g)

Brown powder; yield: (0.30 g, 72%); Rf = 0.52 in hexane:CH2Cl2 (2:1); m.p 198–199 ◦C.
IR (KBr) (υ max/cm−1): 3067 (C-H sp2), 2935 (C-H sp3), 1710 (C=O), 1612 (C=N), 1578 and
1503 (C=C aromatic). 1H NMR (400 MHz, DMSO-d6): δ 3.78 (3H, s, OCH3), 3.87 (3H, s,
OCH3), 5.46 (2H, s, OCH2), 6.44 (1H, s, H-3”), 6.97 (3H, m, H-3′, H-5′ and H-6”), 7.04 (1H,
d, J = 2.4 Hz, H-8”), 7.29 (3H, m, H-2′, H-4 and H-6′), 7.45 (1H, t, J = 7.8 Hz, H-5), 7.55 (1H,
d, J = 7.6 Hz, H-6), 7.67 (1H, s, H-3), 7.79 (1H, d, J = 8.8 Hz, H-5”), 8.52 (1H, s, CH=N). 13C
NMR (100 MHz, DMSO-d6): δ 163.0, 160.5, 158.5, 158.4, 158.2, 155.5, 141.7, 144.4, 138.4,
130.5, 126.5, 122.8, 122.4, 118.8, 118.3, 114.9, 112.7, 110.8, 109.5, 101.4, 65.8, 56.4, 55.7. HRMS
(ESI): calcd. for C25H21NO5 [M + H]+ 415.1420, found 415.1417.

(E)-7-Methoxy-4-((2-methoxy-5-(((4-methoxyphenyl)imino)methyl)phenoxy)methyl)-2H-
chromen-2-one (13h)

Yellow powder; yield: (0.36 g, 80%); Rf = 0.67 in hexane:CH2Cl2 (2:1); m.p 166–168 ◦C.
IR (KBr) (υ max/cm−1): 3073 (C-H sp2), 2935 (C-H sp3), 1728 (C=O), 1612 (C=N), 1577 and
1507 (C=C aromatic). 1H NMR (400 MHz, DMSO-d6): δ 3.76 (3H, s, OCH3), 3.86 (3H, s,
OCH3), 3.88 (3H, s, OCH3), 5.43 (2H, s, OCH2), 6.43 (1H, s, H-3”), 6.94 (2H, d, J = 8.8 Hz,
H-3′ and H-5′), 6.99 (1H, d, J = 2.0 Hz, H-6”), 7.02 (1H, d, J = 2.8 Hz, H-8”), 7.14 (1H,
d, J = 8.8 Hz, H-3), 7.22 (2H, d, J = 8.8 Hz, H-2′ and H-6′), 7.50 (1H, d, J = 8.4 Hz, H-4),
7.73 (1H, s, H-6), 7.77 (1H, d, J = 9.2 Hz, H-5”), 8.50 (1H, s, CH=N). 13C NMR (100 MHz,
DMSO-d6): δ 162.9, 160.6, 158.3, 158.0, 155.4, 152.2, 151.8, 147.6, 144.7, 129.7, 126.5, 124.7,
122.6, 115.5, 114.8, 112.7, 112.3, 110.9, 109.4, 101.3, 66.4, 56.3, 56.3, 55.7. HRMS (ESI): calcd.
for C26H23NO6 [M + H]+ 445.1525, found 445.1512.

(E)-4-((5-(((4-Chlorophenyl)imino)methyl)-2-methoxyphenoxy)methyl)-7-methoxy-2H-
chromen-2-one (13i)

Beige powder; yield: (0.27 g, 60%); Rf = 0.44 in hexane:CH2Cl2 (2:1); m.p 156–157 ◦C.
IR (KBr) (υ max/cm−1): 3086 (C-H sp2), 2970 (C-H sp3), 1704 (C=O), 1614 (C=N), 1578 and
1510 (C=C aromatic). 1H NMR (400 MHz, DMSO-d6): δ 3.87 (3H, s, OCH3), 3.90 (3H, s,
OCH3), 5.44 (2H, s, OCH2), 6.40 (1H, s, H-3”), 6.98 (1H, dd, J = 2.4 and 8.8 Hz, H-6”), 7.03
(1H, d, J = 2.4 Hz, H-8”), 7.25 (2H, d, J = 8.8 Hz, H-2′ and H-6′), 7.33 (1H, d, J = 8.4 Hz, H-3),
7.43 (2H, d, J = 8.8 Hz, H-3′ and H-5′), 7.46 (1H, dd, J = 1.6 and 8.4 Hz, H-4), 7.60 (1H, d,
J = 1.6 Hz, H-6), 7.78 (1H, d, J = 8.8 Hz, H-5”), 8.52 (1H, s, CH=N). 13C NMR (100 MHz,
DMSO-d6): δ 163.0, 161.2, 160.5, 155.4, 151.6, 150.8, 150.5, 149.7, 130.3, 130.2, 129.5, 126.4,
124.3, 123.2, 113.8, 112.7, 110.8, 110.5, 109.2, 101.4, 66.3, 56.4, 56.2. HRMS (ESI): calcd. for
C25H20ClNO5 [M + H]+ 449.1030, found 449.1029.

(E)-4-((3-(((4-Chlorophenyl)imino)methyl)phenoxy)methyl)-7-methoxy-2H-chromen-2-
one (13j)

Pale yellow powder; yield: (0.32 g, 76%); Rf = 0.29 in hexane: CH2Cl2 (2:1); m.p
184–186 ◦C. IR (KBr) (υ max/cm−1): 3079 (C-H sp2), 2933 (C-H sp3), 1703 (C=O), 1612 (C=N),
1579 and 1487 (C=C aromatic). 1H NMR (400 MHz, DMSO-d6): δ 3.87 (3H, s, OCH3),
5.47 (2H, s, OCH2), 6.44 (1H, s, H-3”), 6.99 (1H, dd, J = 2.0 and 8.8 Hz, H-6”), 7.05 (1H,
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d, J = 2.4 Hz, H-8”), 7.29 (2H, d, J = 8.4 Hz, H-2′ and H-6′), 7.32 (1H, dd, J = 2.4 and 8.4
Hz, H-4), 7.46 (2H, d, J = 8.4 Hz, H-3′ and H-5′), 7.50 (1H, d, J = 8.0 Hz, H-5), 7.57 (1H, d,
J = 7.6 Hz, H-6), 7.70 (1H, s, H-2), 7.79 (1H, d, J = 8.8 Hz, H-5”), 8.61 (1H, s, CH=N). 13C
NMR (100 MHz, DMSO-d6): δ 163.0, 161.6, 160.5, 158.4, 155.5, 151.6, 150.5, 148.1, 137.8,
130.6, 129.5, 129.6, 128.9, 123.2, 119.0, 114.6, 112.7, 110.8, 109.5, 101.4, 65.8, 56.4. HRMS (ESI):
calcd. for C24H18ClNO4 [M + H]+ 419.0924, found 419.0908.

3.2. Biological Evaluation of Hybrids against AChE

The procedure described by Ellman [64], slightly modified, was performed to assess
the AChE inhibitory activity of synthesized compounds, according to reported procedures
in the literature [20,65–67]. Detailed protocol is provided in supplementary materials.

3.3. Molecular Docking Study

The 3D structures of all synthesized hybrids were previously geometry optimized and
then saved in PDBQT file format utilizing Autodock Tools (v1.5.6rc3) [68]. This involves
the following steps: developing a torsion tree by detecting and choosing a root and saving
it as a pdpqt file for mapping prior to molecular docking simulation. The crystallographic
structure of AChE (PDB ID: 4EY7) was downloaded from the protein data bank website
(https://www.rcsb.org/structure/4EY7, accessed on 15 June 2023). The protein structure
was cleaned from heteroatoms, and the Swiss-PdbViewer was used for molecular mechanics
energy minimization [69]. The protein structure was prepared for molecular docking study
according to our previous studies and saved in PDBQT format [28,70]. Finally, molecular
docking simulation was performed, visualized, and analyzed as previously reported [71–73].

3.4. Molecular Dynamics Simulation (MDS)

MD simulations were investigated to calculate binding energies and study the rela-
tive stabilities of the interactions between the two top hybrids (13c and 13d), consensus
docking scores, and target receptors. The simulation studies were carried out utilizing
the NAMD (v2.13) suit [74] and the CHARMM36 [75] force field. Furthermore, the latest
CHARMM/CGenFF force field was used to generate the parameters and topological files
for the selected compounds [19,76]. The complex structure (ligand-protein) was placed
in the middle of a box that solvated molecules of water with a TIP3P explicit solvation
model. A 0.15 molar solution of (145 Na+ and 135 Cl-) ions, to mimic the physiological
salt concentrations, was added to provide electrostatic screening and charge neutralization
which extended 20 Å from the protein. CHARMM and the periodic boundary conditions
were set with dimensions of a rectangle-cubic system of 117.0, 117.0, and 117.0 Å in x, y,
and z directions, respectively.

The MD studies include minimization, equilibration, and data analysis. There were no
atoms restricted in the MD simulations. The isothermal-isobaric (NPT) ensemble and a 2 fs
time integration step were selected in this study, and the pressure was set at 1 atm utilizing
the Nose’-Hoover Langevin piston barostat [77]. The Langevin thermostat has been used
to set the temperature at 300.0 K [78]. The force-field parameters were assumed in order
to minimize and equilibrate the complexes in the system, which have a scaling of 1.0 Å.
The preliminary energy of the complex was minimized through 2000 steps at 300 K. The
temperature, kinetic energy, and/or pressure of the system were controlled by Langevin
dynamics simulation through another 144,000 steps. The 500,000 minimization steps were
used to equilibrate the solvated system, and 50,000,000 runs for 100 ns. The VMD package
was used for the analysis of the output data [79]. A 20.0 Å for the distance cut-off was used
for Lennard Jones interactions, and short-range non-bonded interactions with a pair list
distance of 12 Å were smoothly truncated at 8.0 Å. The long-range electrostatic interactions
were analyzed and visualized using the particle-mesh Ewald (PME) procedure [80], where
simulated cells were placed in a grid box with 1.0 Å.

https://www.rcsb.org/structure/4EY7
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3.5. Binding Energy Calculations

The relative binding energy calculations were carried out by the one-average molecular
mechanics generalized Born surface area (MM/GBSA) method [81]. The MolAICal [33]
was employed to calculate the MM/GBSA for complex (ligands and receptors) based on
molecular dynamical (MD) simulated results by NAMD, in which the ligand (L) binds to
the target receptor (R) to generate the receptor-ligand (RL). We were only interested in
relative binding energies based on MM/GBSA calculations, which were the Gibbs relative
binding energy, given by:

∆Gbind = ∆GRL − ∆GR − ∆GL

3.6. Geometry DFT Optimization

During this study, packages of programs were used to run the molecular modeling
calculations of all synthesized hybrids utilizing the Gaussian 09W software package [82].
The molecular structures of hybrids were geometrically optimized using density functional
theory (DFT) with long-range corrections functional wB97XD (DFT/wB97XD) [83], which
includes empirical dispersion with basis set 6-311++G (d,p) [84]. During the geometry opti-
mization, no symmetry restrictions were used [85,86]. The choice of long-range corrections
functional wB97XD with a large basis set was due to the accuracy, consistency, flexibil-
ity, and better performance of Grimme’s D2 dispersion model, which includes empirical
dispersion [83,87]. The same level of theory has been applied to calculate the vibrational
frequency for each compound, and the molecular structures of each hybrid were found
to correspond to real minima of the potential energy surface [88]. In order to identify
the reactive site of the molecules, the DFT/wB97XD was employed to describe reactivity
descriptors and molecular stability. A descriptor of local reactivity was computed using
the Fukui function and the dual descriptor [40,42,47].

Furthermore, the quantum chemical descriptors from conceptual density functional
theory (CDFT) were calculated by utilizing the Multiwfn (v3.7) package [41]. The electro-
static potential (ESP) of the molecules was rendered by the Visual Molecular Dynamics
package (VMD 1.9 program) based on the data outputted by the Multiwfn program [50,79].
Natural bond orbital (NBO) analyses have been calculated utilizing NBO 3.1, which is
provided in the Gaussian 09W program. The GaussView (v6.1) [89] and ChemCraft (v1.6)
packages [90] were used to visualize the optimized structure and molecular orbitals. The
QSAR features included in the HyperChem program (v8.0.7) [91] were used to determine
the SAR properties of all synthesized compounds.

4. Conclusions

A series of Schiff base-coumarin hybrids (13a-j) were designed with the assistance
of a molecular docking study. The affinity energy of hybrids (13a-j) on the active site
of acetylcholinesterase (AChE) was in the range of −10.6 to −13.2 kcal/mol, while the
affinity energy of positive controls, donepezil and galantamine, was recorded at −11.4
and −9.6 kcal/mol, respectively. The obtained results showed that most of the designed
hybrids were more active than the positive controls. Hybrids were synthesized and bio-
evaluated against AChE. Results showed that most of them could potentially inhibit the
target enzyme. Compounds 13c and 13d with IC50 values of 0.232 ± 0.011 and 0.190 ±
0.004 yielded the lowest IC50 values and were 5-fold stronger than the positive control. The
detailed insights into the electronic structure properties, its link to drug-like properties,
and the structure-activity relationships of the designed compounds were provided by
applying the high level of computational approaches of DFT/wB97XD methods by using
6-311++G(d,p) as the basis set wave function. Moreover, the molecular docking studies
revealed that the synthesized compounds exhibit molecular interactions via hydrogen
bonds with GLY121, GLY122, TYR132, SER203, PHE295, and TYR337 amino acid residues
of the target enzyme. Careful inspection of the pattern of binding sites and binding energy
indicated 13c and 13d compounds could be good candidates for AChE inhibitors, which
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is correlated with experimental results. The drug likeness and QSAR descriptors show
that compound 13f has the highest value, while compound 13a has the lowest values in
all descriptors for other derivatives. All target compounds except 13c and 13j have good
aqueous solubility. Furthermore, Log P values of compounds 13f = 13h < 13d = 13i < 13b =
13e = 13g < 13a are in the field of optimal values (0 < Log P < 5). Based on these, it can be
stated that these compounds have good oral bioavailability and optimal biological activity.
The stability of the systems was measured using RMSD during the 100 ns simulations.
Obtained results revealed that the 13d complex system acquired a relatively more stable
conformation than the 13c complex. The calculated average RMSF values for the 13c-AChE
and 13d-AChE complexes to protein systems were 0.85 and 0.83 Å, respectively, which
demonstrate that the system inhibition of the 13d-AChE protein complex system is lower
than the other systems inhibition, which will reflect well on the complex stability. The
binding free energy technique (MM/GBSA) of the simulated complex was computed, and
it was found to be −23.645 and −36.042 kcal/mol for complexes 13c and 13d, respectively.
Thus, it is suggested that the stability of the 13d-4EY7 complex over the other is better.
The overall study indicates that 13d has comparable and even better descriptors than
Galantamine and can be a potential AChE candidate.
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