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Abstract: Insulin resistance (IR), accompanied by an impaired cellular glucose uptake, characterizes
diverse pathologies that include, but are not limited to, metabolic disease, prediabetes and type 2
diabetes. Chronic inflammation associated with deranged cellular signaling is thought to contribute
to IR. The key molecular players in IR are plasma membrane proteins, including the insulin receptor
and glucose transporter 4. Certain natural products, such as lipids, phenols, terpenes, antibiotics and
alkaloids have beneficial effects on IR, yet their mode of action remains obscured. We hypothesized
that these products belong to a novel class of bioactive molecules that we have named membrane-
active immunomodulators (MAIMs). A representative MAIM, the naturally occurring medium
chain fatty acid ester diethyl azelate (DEA), has been shown to increase the fluidity of cell plasma
membranes with subsequent downstream effects on cellular signaling. DEA has also been shown to
improve markers of IR, including blood glucose, insulin and lipid levels, in humans. The literature
supports the notion that DEA and other natural MAIMs share similar mechanisms of action in
improving IR. These findings shed a new light on the mechanism of IR mitigation using natural
products, and may facilitate the discovery of other compounds with similar activities.

Keywords: insulin resistance; type 2 diabetes; natural product; membrane-active immunomodulator;
diethyl azelate; drug discovery; drug development

1. Introduction

Insulin resistance (IR) is clinically defined as the inability of a known quantity of
exogenous or endogenous insulin to increase glucose uptake and its utilization in an in-
dividual as much as it does in a normal population [1]. IR is associated with conditions
beyond prediabetes and type 2 diabetes (T2D), including cardiovascular and metabolic
pathologies, collectively referred to as a metabolic syndrome, nonalcoholic fatty liver dis-
ease, as well as atherosclerosis, hypertension, polycystic ovarian syndrome and infectious
diseases with sepsis sequelae [2–8]. The cause of IR is poorly understood, but the major
contributors are thought to comprise systemic chronic inflammation [9] associated with ab-
normal lipid levels, oxidative and endoplasmic reticulum stress, insulin receptor mutations
and mitochondrial dysfunctions [10].

The plasma membrane plays an essential role in cellular communication, as its struc-
ture and composition affect cellular signal transduction in health and disease [11]. We
hypothesized that certain small lipophilic or amphiphilic molecules, which we have named
membrane-active immunomodulators (MAIMs), affect cellular communications by modu-
lating plasma membrane fluidity in a feedback-regulated mechanism that we refer to as
adaptive membrane fluidity modulation (AMFM) [12,13].

Thanks to their membrane-fluidizing properties, MAIMs can indirectly impact the
structures and functions of membrane proteins, such as receptors and ion channels. MAIMs
can also directly interact with plasma membrane proteins [12,13]. In some cases, MAIMs
display a nonlinear or inversed U-shaped dose response effect, which suggests their role in
the maintenance of an optimal plasma membrane fluidity [13,14].
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A natural product can be defined as a small molecule produced by a biological
source [15]. In adherence to this definition, we have focused on single-chemical enti-
ties that were examined in pure forms or identified as active moieties in various extracts,
mixtures or decoctions.

Natural products have been extensively exploited in drug development [16,17]. Some
natural products comprising lipids, phenols, terpenes, antibiotics, alkaloids and gut micro-
biome metabolites were reported to mitigate IR, but their mode of action remains obscured.
We have sought to understand how such diverse compounds can elicit comparable IR
benefits. Upon the examination of the physicochemical properties of individual molecules,
we realized that the mitigation of IR could be due to the “MAIM-ness” of superficially
unrelated compounds.

The aim of this review is to highlight how natural products in the MAIMs family might
alleviate IR through direct or indirect interactions with plasma membrane proteins. Two
key players in the pathology of IR are of special interest, because their functions are affected
by fluctuations in membrane fluidity [18–21]: the insulin receptor, an integral plasma
membrane protein, and glucose transporter type 4 (GLUT4), which resides in insulin-
responsive vesicles inside cells and shuttles between the membrane and cytoplasm [22].
Other membrane proteins, including potassium and calcium channels [23,24], ectopically
expressed olfactory receptors and other G-protein-coupled receptors, implicated as players
in IR [25–27] are also susceptible to the effects of naturally derived MAIMs.

2. Methods

A PUBMED search was conducted to identify peer-reviewed research articles, re-views
and meta-analyses published through February 2023. The search terms included “plasma
membrane” and “fluidity” or “plasticity” or “rigidity”. Secondary searches combined
keywords consisting of individual chemical entities listed below and “insulin resistance” or
“insulin sensitivity”, and specific pathologies, including metabolic syndrome or metabolic
diseases, atherosclerosis, hypertension, polycystic ovarian syndrome, prediabetes and
T2D. The collected abstracts and full papers were surveyed by the authors to confirm
the relevance of the article to the topic of this review. The chemical structures were
obtained from PubChem’s database (https://pubchem.ncbi.nlm.nih.gov); URL accessed
on 5 June 2023.

3. Results

The literature reports discussed below describe the IR-modulating effects of natural
products that were selected based on their MAIM features, such as being typically lipophilic
or amphiphilic small molecules, combined with reported effects of these natural products
on plasma membrane fluidity, interactions with plasma membrane proteins and the modu-
lation of biomarkers relevant for IR, as demonstrated preclinically and also preferably in
the clinic. Given that MAIMs lack a single target, the structure–function relationship (SAR)
used as a standard in the development of targeted drugs was not applicable here.

The representative compounds were grouped into classes of lipids, phenols, terpenes,
antibiotics and alkaloids. We also added a section on gut metabolites comprising some
lipids produced by gut microbiota as secondary metabolites, which, nevertheless, stood
out as a separate group because of their local and systemic role within the human body.

The compounds that met the criteria of reported effects on IR mitigation and MAIM
features are referenced in the text as links to the PubChem database. We presented examples
of functional similarities in the regulation of IR between the lead MAIM, diethyl azelate
(DEA), and other natural MAIMs.

3.1. Lipids

Lipids are hydrophobic or amphiphilic small molecules, including fatty acids and
their derivatives, in particular esters, sterols, steroids and phospholipids.

https://pubchem.ncbi.nlm.nih.gov
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Azelaic acid (AZA) [28] and the best characterized azelate, diethyl azelate DEA [29],
(Figure 1A) are both MAIMs. Yet, as can be expected from the large differences in respective
water–octanol partitioning coefficients, the respective interactions of AZA and DEA with
plasma membrane are quite different [30]. DEA is a membrane fluidizer that interacts with
the plasma membrane and membrane proteins, while AZA, due to its lower lipophilicity,
has limited membrane interactions [12,30].
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AZA and azelates occur naturally in plants, animals and humans. Archaeological
records provide evidence that even ancient humans consumed AZA and its esters in
the form of grains, olives, soybeans, fermented foods and alcoholic beverages [12,13,30].
Endogenous AZA produced from longer chain carboxylic acids, mainly oleic acid, is present
at micromolar levels in human cerebrospinal fluid, saliva and also in breast milk [30]. The
levels of AZA and azelates in the body appear to increase in response to environmental
insults [31] and fasting [32].

AZA and its esters act as immunomodulators in multicellular organisms. AZA primes
plant systemic immunity after infection [33]. AZA modulates the innate immune responses
in human skin and induces the expression of peroxisome proliferator-activated receptor
gamma (PPARγ), a key regulator of inflammation, activated by fatty acids and products of
lipid peroxidation [34]. DEA and related azelates exert immunomodulatory actions in vitro
and in vivo [12]. DEA is a metabolic precursor of AZA, and is rapidly converted into AZA
under physiological conditions [30].

Although DEA and AZA are pharmacologically distinct entities, they share some com-
mon effects in the mitigation of IR, albeit at quite different doses. Oral AZA administered
to diabetic mice at 80 mg/kg over 11–15 weeks improved glucose tolerance and decreased
plasma triglycerides, glucose and cholesterol plaque formation in the arteries [35]. In a
human study in overweight adult males, daily oral DEA at 1 mg/kg over 3 weeks signif-
icantly reduced fasting glucose and insulin in subjects with IR and/or hemoglobin A1c
(A1c) ≥ 5.6%, and improved diagnostic lipid ratios in all cases. The impact of DEA on
biomarkers of disease correlated with the degree of IR [36]. These findings are in line with
the physicochemical differences between AZA and DEA. Notably, sebacic acid [37], a C10
dicarboxylic acid, purportedly has some hypoglycemic effects [38], albeit at doses nearly
100 times higher than those achieved with DEA in humans [36].

Some effects of DEA and AZA on IR may be mediated by mitochondria. Mitochondrial
dysfunction has been found to be associated with obesity-induced IR and T2D [39], while
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the enrichment of mitochondria in skeletal muscle was reported to lower the risk of
T2D [40].

AZA was reported to bind to a murine olfactory receptor Olfr544 [41]. Olfactory
receptors are G-protein-coupled plasma membrane receptors that constitute over 5% of the
mammalian genome. Olfr544 is widely expressed in nonolfactory murine tissues, such as
the small intestine, colon, adipose tissue, liver and skeletal muscle [32]. The activation of
Olfr544 with AZA stimulated mitochondrial biogenesis in mouse skeletal muscle [25,42].
In vivo treatment with AZA increased insulin sensitivity and ketone body levels [32] and
upregulated genes involved in insulin signal transduction [43]. It was proposed that AZA
is a fasting signaling molecule that can activate Olfr544 in various tissues [32]. In the
pancreas, AZA upregulated glucagon secretion through pancreatic islets [41]. In the gut,
AZA’s activation of Olfr544 increased the secretion of an insulinotropic hormone glucagon-
like peptide-1 (GLP-1) [26]. Since IR and T2D are associated with the impaired postprandial
secretion of GLP-1 [44,45], the endogenous activity of AZA might be beneficial in these
conditions. The putative human analogue of murine Olfr544 is encoded by the OR52K1
gene, but its function, like that of many other ectopically expressed olfactory receptors, is
presently unknown.

Phospholipids are the main components of cell plasma membranes, and are also
canonical MAIMs. Human studies have demonstrated the association between IR and
the levels of the two most abundant phospholipids, phosphatidylcholine (PC) [46] and
phosphatidylethanolamine (PE) [47,48]. Interestingly, the PC/PE ratio in skeletal muscle
has been found to be elevated in T2D [49]. Abnormally high or low PC/PE ratios (and even
small alterations thereof) influence the mitochondrial energy metabolism and have been
linked to IR and metabolic syndrome [50,51]. A U-shaped dose response of phospholipids
in the control of IR was reminiscent of the dose responsiveness of some MAIMs [13].

Other lipid MAIMs, such as n-3 and n-6 polyunsaturated fatty acids (PUFAs), repre-
sented by α-linoleic acid [52] and linoleic acid [53], respectively, affect membrane fluidity
upon incorporation into phospholipids [54] or as free fatty acids. The dietary n-3 PUFA
counteracted IR by modulating mitochondrial bioenergetics and decreasing endoplasmic
reticulum stress [55]. Higher adipose tissue levels of α-linoleic acid have been inversely
associated with IR in healthy adults [56]. Rats fed a high-fat diet enriched in n-3 and n-6
PUFAs developed hyperglycemia and hyperinsulinemia, consistent with IR. The expression
of insulin receptors was significantly reduced in the liver, but not in the muscle, and the n-3
PUFA diet maintained normal GLUT-4 levels in the muscle [57]. Isomers of linoleic acids
activated nuclear factor kappa-B (NFκB), elevated interleukin-6 (IL-6) and induced IR in
human adipocytes [58].

Cholesterol [59] is the most common steroid in human physiology and a classical lipid
MAIM. Cholesterol organizes and rigidifies plasma membranes [60] where cholesterol-
enriched lipid rafts regulate protein diffusion and distribution [61]. An association between
IR, increased cholesterol synthesis and decreased cholesterol absorption was reported in
normoglycemic men [62] and subjects with metabolic syndrome [63]. Insulin sensitivity
affected the cholesterol metabolism to a greater extent than obesity [64].

Cholesterol is a precursor of primary bile salts produced by the liver. The regulation
of bile acid levels is linked to the lipid and glucose metabolism. Increased plasma levels
of α-hydroxylated bile acids were found to be associated with IR [65], while bile acid
sequestrants reduced glucose and cholesterol levels in T2D [66,67].

As a footnote, we wanted to mention natural statins, which are not classical lipids,
but inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, a key
enzyme in cholesterol biosynthesis. Statins reduce systemic cholesterol with a subsequent
increase in membrane fluidity. Statins are “secondary MAIMs”, which we defined as
compounds that do not directly interact with the plasma membrane, but that affect the
membrane composition. A natural statin, lovastatin [68], a secondary metabolite produced
by fungi, was shown to modulate IR [69], presumably due to the increased signaling
through the insulin receptor pathway [70].
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3.2. Phenols

Natural phenolic compounds produced in plants are present in many foods consumed
by humans [71]. Natural phenols can be viewed as MAIMs [13]. Due to their lipophilicity
and usually low molecular masses, phenols can rapidly diffuse in and out of membranes
and exert physiological effects promptly after absorption.

The large family of over 8000 phenolic compounds includes flavonoids and non-
flavonoids. The simple nonflavonoid phenol salicylic acid [72] was recognized for the
control of hyperglycemia for over a century. This activity was linked to mitochondrial
uncoupling, anti-inflammatory effects mediated via NF-κB signaling and the regulation of
AMP-activated protein kinase (AMPK) [73], which was reported to enhance insulin effects
on GLUT4 by lowering cholesterol in plasma membranes [20]. Since salicylate is soluble in
the plasma membrane [74], its aspirin-like effect [13] may explain the activity of salicylate
in the control of IR. Another simple nonflavonoid, caffeic acid [75], also appears to have
antihyperglycemic, hypolipidemic and hypotensive activity in vitro and in vivo [76].

Flavonoids are the most abundant polyphenols. Some flavonoids were reported to
mitigate IR by affecting glucose transport and blood levels, improving insulin signaling
and the function of pancreatic β-cells [77,78].

A simple flavonoid trans-chalcone [79] was shown to reduce body weight, blood
glucose and insulin in healthy rats, suggesting its insulin-sensitizing activity in vivo, but
the effects under IR conditions are still unknown [78].

Quercetin [80], the most abundant flavonoid in the human diet, is especially high
in red onions, apples, grapes, tomatoes and dark berries. Quercetin has been shown to
stimulate AMPK, increase GLUT4 translocation and protein content in skeletal muscle [81]
and decrease the stiffness of plasma membranes in vitro [82].

Epigallocatechin gallate (EGCG) [83] is the most abundant catechin in green tea. EGCG
decreases IR as it activates the PI3K/Akt pathway, increases GLUT4 translocation through
the enhanced phosphorylation of AMPK [84] and decreases oxidative stress in vivo [85].
EGCG has showed a U-shaped dose dependence in human hepatocytes; sub-micromolar
levels decreased glucose production and 5 µM of EGCG significantly increased glucose
uptake, while 10 µM EGCG was toxic [86].

Luteolin [87] was reported to intercalate and disrupt bacterial cytosolic membranes [88]
and significantly increase the expression of adiponectin, leptin and PPARγ in murine
adipocytes in vitro [89]. Luteolin reduced obesity-associated IR in mice by activating
AMPKα1 signaling in adipose tissue macrophages [90], and was suggested to modulate IR
in humans [91].

Resveratrol [92] apparently targets the entire cell plasma membrane in vitro [93]. In
animal and human studies, resveratrol improved markers of IR by normalizing blood
glucose, reducing insulin secretion and improving insulin sensitivity. Resveratrol was also
effective in managing IR-related dyslipidemia and obesity [94].

Curcumin [95] was shown to fluidize plasma membranes and decrease membrane
rigidity, but also stiffened model membranes with a high cholesterol content [96,97]. Cur-
cumin modulated the function and expression of unrelated membrane proteins in vitro [98].
In a randomized double-blind, placebo-controlled trial, daily doses of 1500 mg curcumin
significantly reduced fasting blood glucose and body weight in patients with T2D [99].

Myricetin [100] present in fruits and vegetables increased membrane fluidity and re-
duced mitochondria dysfunction by raising mitochondrial membrane potential
in vitro [101]. Myricetin also improved insulin sensitivity by restoring insulin receptors,
GLUT4 expression and translocation in the muscle of rats fed a high-fructose diet [102].

Isoflavonoid fisetin [103] activated AMPK in vitro [104] and mitigated IR in vivo by
blocking the inflammatory response to a high-fat diet [105].

Genistein [106] (Figure 1B), the isoflavone present at high levels in soybeans, has been
recognized for its estrogenic activity. Genistein potentiated hepatic insulin signaling in
rodents [107] and showed opposite effects in normal and IR mice, decreasing insulin sensi-
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tivity in the former but improving the insulin sensitivity and elevated GLUT4 translocation
in the group of IR mice [108].

Human studies have yielded somewhat conflicting data on genistein. A meta-analysis
of 10 randomized clinical trials involving 794 non-Asian perimenopausal or postmenopausal
women showed that daily supplementation with 40 mg to 120 mg of soy isoflavones was
ineffective, but comparable doses of genistein alone lowered fasting blood glucose by
increasing glucose uptake in skeletal muscle [109]. Another meta-analysis of 24 clinical
trials conducted in 1518 men and women who were overweight, obese or diagnosed with
T2D found no significant effect of soy intake on fasting glucose and insulin levels [110].

Kaempferol [111] increased lipid organization in model membranes and facilitated the
penetration of water molecules, an effect inhibited by cholesterol [112]. In vivo, kaempferol
improved blood lipids and insulin levels in a dose-dependent manner, inhibited the phos-
phorylation of insulin receptor substrate-1 (IRS-1) and reduced the nucleic and cytosolic
levels of NF-κB, tumor necrosis factor-α (TNF-α) and IL-6 levels in diabetic rats [113].

Overall, preclinical and clinical data suggest that dietary flavonoids may be beneficial
for the management of IR, as they induce glucose uptake in skeletal muscle. They were
also shown to decrease the production of hepatic glucose through the activation of the
PI3K/Akt pathway, leading to GLUT4 translocation, the suppression of gluconeogenesis
and the stimulation of glycogen production [78]. These examples underscore the MAIM
effects of flavonoids.

3.3. Terpenes

Terpenes are a large class of over 30,000 natural compounds containing variable
numbers of the isoprene unit (C5H8)n. Terpenes are mostly produced by plants, especially
conifers and citrus trees. A distilled pine resin product, commonly used as a solvent
under the name of terpentine/turpentine oil, containing a mixture of terpenes, has been
recognized for its medicinal benefits for over two millennia [114].

The monoterpenes 1,8-cineole, also known as eucalyptol [115] and L-menthol [116]
(Figure 1C) reportedly increased the fluidity of the outermost skin layer [117,118], acted
as structural spacers in model membranes and promoted reorganization in cell mem-
branes [119]. The chronic administration of menthol (50 and 100 mg/kg/day for 12 weeks)
to mice on a high-fat diet prevented weight gain, IR, the hypertrophy of adipose tissue and
the deposition of triacylglycerol in the liver. The metabolic effects of menthol in the liver
and adipose tissue mirrored those of glucagon [120].

Terpenes, including limonene [121], a-terpineol [122] and 1,8-cineole, were shown to
rapidly incorporate into the plasma membrane of a protozoan parasite Leishmania amazo-
nensis [123]. The antidiabetic potential of multiple monoterpenes was linked to an increase
in insulin sensitivity and the lowering of blood glucose and insulin levels [124].

Some triterpenes, including ursolic acid [125] and pachymic acid [126] exhibited
antidiabetic and antihyperglycemic activities in preclinical studies [127]. Pachymic acid
inducted the gene expression and translocation of GLUT4, the stimulation of glucose uptake
and the accumulation of triglycerides in vitro [128].

A triterpene glycoside saponin [129] increased GLUT4 translocation, insulin secretion
and glucose uptake in murine and human cell lines [130]. In vivo, various triterpenes
increased insulin biosynthesis, secretion and signaling, decreased the levels of total choles-
terol and triglycerides and lowered the body weight [127]. Terpenes from a marine algae
upregulated the PPARγ gene and protein expression in the livers of diabetic rats with
improved insulin sensitivity and carbohydrate metabolism [131].

D-limonene reportedly decreased blood glucose levels [132] and displayed antiathero-
genic and hypolipidemic activities in rats [133]. A sesquiterpene α-cedrene [134] from
cedarwood oil significantly increased the translocation of GLUT4 and increased glucose
uptake in human hepatocytes in vitro, and improved glucose intolerance induced by a
high-fat diet in vivo through the activation of the murine olfactory receptor Olfr16 [135].
A similar effect of α-cedrene in mice with IR was ascribed to the interaction of α-cedrene
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with the murine olfactory receptor 23 (Mor23) [136]. These reports suggest the possible
involvement of odorant receptors in the control of IR.

Tetraterpene carotenoids exemplified by α-and β-carotene [137] are ubiquitous pig-
ments present in photosynthetic bacteria, fungi, plants and animals. Carotenoids could
modify membrane fluidity and membrane order in bacterial cells, in which carotenoid
biosynthesis is integral to adaptation to cold [138]. Dietary carotenoids apparently reduce
the risk of several chronic diseases, including IR, but do not prevent cardiovascular disease
or cancer [139]. However, obesity and IR were shown to be inversely associated with the
levels of carotenoids in serum and adipose tissue in adults, suggesting possible health
benefits of dietary carotenoids [140].

3.4. Antibiotics

Antibiotics are broadly defined as compounds that can treat and prevent bacterial
infections [141]. The classification of two major groups of antibiotics, polyketides and non-
ribosomal peptides, was based on their mechanism of action related to bacterial functions
or growth processes.

Some broad-spectrum polyketide antibiotics, such as streptomycin [142],
ampicillin [143] and vancomycin [144] were shown to worsen IR and alter gut micro-
biota, increasing susceptibility to metabolic syndrome and T2D [145,146]. Likewise, a
monotherapy with rapamycin (also known as sirolimus) [147] exacerbated hyperglycemia,
hypertriglyceridemia and the degranulation of pancreatic islets in a mouse model of T2D.
Surprisingly, rapamycin combined with metformin (further discussed in Section 3.5) re-
versed the negative effects of rapamycin on systemic insulin sensitivity [148].

Polyketide tetracyclines from Streptomyces bacteria [149] can cross the plasma mem-
brane, and their activity has been shown to be related to the transmembrane flux in human
cells [150]. Tetracycline doxycycline [151] showed an unusual dose response activity in
mice on a high-fat diet. Doxycycline increased their body weight at 200 µg/mL, decreased
the fasting blood glucose at 20 µg/mL and increased the neogenesis of pancreatic β-cells at
2 µg/mL [152]. In a clinical case study, doxycycline induced hypoglycemia with implica-
tions for the management of IR [153].

A nonribosomal peptide actinomycin D [154] has been recognized for its antibacterial
and anticancer activities ascribed to its drug–DNA interactions [155], but its interactions
with cell membranes and the consequences thereof are less known. The uptake of 3H-
actinomycin D by human cell lines in vitro was shown to vary with cell types, reflecting
permeability differences in cell membranes [156]. In fungal cells, antibiotics damage the
plasma membrane and induce membrane folding, cell swelling and the leakage of cellular
contents [157]. In a rat feeding study, actinomycin D given before refeeding blocked the
return of normal glucose-stimulated insulin secretion, despite an adequate food intake [158].

More importantly, actinomycin D (Figure 1D) has been shown to stimulate GLUT4
translocation and glucose uptake in murine adipocytes without the involvement of conven-
tional signaling proteins and with no effect on GLUT4 endocytosis, suggesting that this
antibiotic may increase the exocytosis of insulin-responsive vesicles in a process linked to
the biosynthesis of RNA and protein [22].

3.5. Alkaloids

Alkaloids, broadly defined as natural products that contain at least one nitrogen atom,
are produced by bacteria, fungi, plants and animals. The benefits of some alkaloids in
the control of IR and diabetes have been attributed to the modulation of insulin signaling
pathways, an improvement in the function of pancreatic β-cells and a reduction in oxidative
stress and inflammation. Although most data came from preclinical studies, alkaloids are
being pursued in the clinic as potential new drugs [159,160].

Emetine [161], an alkaloid present in the ipecac root, is commonly used as an expec-
torant, emetic and an antiparasitic treatment. Emetine inhibits ribosomal and mitochon-
drial protein synthesis and interferes with viral entry through host membranes [162,163].
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Like actinomycin D, emetine stimulates GLUT4 translocation and glucose uptake in
adipocytes [22]. The alkaloid catharanthine [164] and related alkaloids from Madagascar
periwinkle (Catharanthus roseus) are used not only for cancer but also T2D treatments
because of their antihyperlipidemic and antidiabetic effects in vivo [160].

Berberine [165] (Figure 1E), a quinoline alkaloid present in the root and bark of the
berberis plant Berberis vulgaris, is one of the most promising alkaloids for the control of
IR [166]. Berberine was shown to increase plasma membrane fluidity in rabbit erythrocytes
in a dose-dependent manner. The effects of berberine on membrane proteins may explain
its cardiovascular benefits [167,168].

Preclinical and clinical reports suggest the favorable activity of berberine in the treat-
ment of T2D, obesity, hyperlipidemia, nonalcoholic fatty liver disease and gout. Berberine
was shown to inhibit lipogenesis and improve insulin secretion, IR and gut microbiota
disorders [169]. An insight on berberine’s mechanism of action came from the identification
of a key role of the voltage-dependent K+ channel KCNH6 in the control of insulin secre-
tion [170]. The blockade of KCNH6 channels with berberine increased insulin secretion, but
only under hyperglycemic conditions, suggesting that berberine is a glucose-dependent
insulin secretagogue that does not cause hypoglycemia or affects basal insulin secretion [25].

Plant-derived biguanide alkaloids are represented by galegine [171] (Figure 1F), first
isolated from French lilac (Galega officinalis) in the 1920s following centuries of use of
lilac products in folk medicine. Galegine induced weight loss and lowered blood sugar
in vivo [172], but further development was overshadowed by its synthetic derivative, met-
formin [173] (Figure 1G). Metformin is the first-line medication for treating T2D (especially
in overweight individuals), polycystic ovary syndrome, gestational diabetes and other
conditions including cancer and is on the World Health Organization’s List of Essential
Medicines [174–179].

Metformin’s diverse mechanisms of action are rather puzzling [180,181]. Metformin
was shown to reduce hepatic glucose production, but also to play an unspecified role in
the gut, exerting different effects when administered in acute versus chronic treatments,
working in an AMP-dependent or AMP-independent manner and affecting mitochondrial
function [180–183].

Metformin increased the membrane fluidity of human erythrocytes taken from subjects
with T1D treated with the drug. When the erythrocytes isolated from these subjects were
later incubated with metformin in vitro, the metformin had no further membrane-fluidizing
effect, suggesting that the optimum fluidity was already attained in the body [184]. Met-
formin mitigated IR in rat adipocytes in vivo by enhancing the insulin-induced translo-
cation of glucose transporters to the plasma membrane [185]. Membrane physiology has
been proposed to play an unspecified role in the effects of metformin in IR and T2D [186].
Despite structural differences, metformin and berberine share similarities in the control of
metabolic syndrome and T2D that may be related to common targets in the mitochondrial
respiratory chain [174].

3.6. Gut Microbiome Metabolites: The Second Lives of Some Natural Products

The human gut hosts the largest number and species of bacteria compared to other
human organs [187]. The Human Microbiome project revealed astronomical numbers
(over 1013) of resident gut bacteria [188], which may not be commensal, but are otherwise
engaged in mutually beneficial relationships. The gut microbiome and its interactions with
the human body constitute a feedback loop with an impact on obesity, metabolic diseases,
IR and a multitude of other conditions [189,190].
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The bacterial fermentation of dietary fiber consisting of complex polysaccharides
generates short-chain fatty acids (SCFAs), including acetate [191], propionate [192] and
butyrate [193], which are absorbed by the host [194]. As small amphiphilic molecules,
SCFAs can interact with cell plasma membranes through simple diffusion [195,196] or
through active transport [197,198] due to the proton-linked monocarboxylate transporters
present in the human intestinal epithelium [199].

Gut SCFAs are more than substrates for energy production, as they promote the
proliferation and differentiation of the intestinal epithelium and improve the pancreatic
secretion of insulin and glucagon [200]. A prospective study of 2166 participants revealed
that a higher microbiome diversity was associated with fewer cases of IR, and the subjects
with T2D had a lower microbiome diversity than the healthy controls, suggesting the link
between the diversity and composition of the gut microbiome and the pathogenesis of
T2D [201].

Secondary bile acids, including taurocholic [202], glycocholic [203], taurochenodeoxy-
cholic [204] and glycochenodeoxycholic [205] acids, are derived from the bacterial
metabolism of primary bile acids in the colon, and are viewed as potentially detrimental
products [206].

4. Discussion

The above examples of natural products (Table 1) support the hypothesis that certain
natural MAIMs can modulate IR and related pathologies. A few lipids, phenols, terpenes,
antibiotics and alkaloids whose chemical structures were shown in this paper are either
already used as drugs or are candidates for further development as drugs or medicinal
foods/nutraceuticals for the control of IR. However, the conventional SAR analysis would
likely not be capable of identifying a common denominator for such dissimilar compounds
without accounting for their MAIM properties.

Table 1. Examples of natural membrane-active immunomodulators (MAIMs) implicated in the
mitigation of insulin resistance (IR).

Class Example Effects Relevant to
IR Mitigation Comments Reference

Lipids

azelaic acid
diethyl azelate

sebacic acid
phosphatidylcholine

phosphatidylethanolamine
a-linolenic acid

linoleic acid
cholesterol
lovastatin

regulation of genes in insulin
signal transduction

plasma membrane fluidizer,
immunomodulator

GLUT4 upregulation
mitochondrial energy

metabolism
mitochondrial energy

metabolism
mitochondrial energy

metabolism
mitochondrial energy

metabolism
unknown direct association

reduction in systemic
cholesterol level

metabolite of diethyl azelate
canonical MAIM, membrane

fluidizer
in vitro effect

canonical MAIM
canonical MAIM

tissue-dependent effects
promotion of IR in human

adipocytes
canonical MAIM, membrane

rigidifier
statin; secondary metabolite

[12,13,28,30–32]
[12,13,29–36]

[37,38]
[47,49–51]
[47–49,51]

[50–52]
[53,54,56–58]

[59,67]
[68–70]
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Table 1. Cont.

Class Example Effects Relevant to
IR Mitigation Comments Reference

Phenols

salicylic acid
caffeic acid

trans-chalcone
quercetin

epigallocatechin gallate
luteolin

resveratrol
curcumin
myricetin

fisetin
genistein

kaempferol

mitochondrial uncoupling
AMPK stimulation

indirect via lowering blood
glucose and insulin
AMPK stimulation
AMPK stimulation
AMPK stimulation

indirect via lowering blood
glucose and insulin

improvement in b-cell
function

insulin receptor and GLUT4
expression control
AMPK stimulation

elevated GLUT4
translocation

regulation of insulin
signaling

aspirin-like membrane effect
antiobesogenic effect via gut

effective in healthy rats
unclear antidiabetic potential
U-shaped dose effect in vitro

potentially effective in humans
potentially effective in humans
potentially effective in humans

in vivo data
anti-inflammatory in vivo

human data
in vivo data

[13,20,72–74]
[75,76]
[78,79]
[80–82]
[83–86]
[87–91]
[92–94]
[95–99]

[100–102]
[103–105]
[106–110]
[111–113]

Terpenes

1,8-cineole
L-menthol

D-limonene
α-terpineol
ursolic acid

pachymic acid
saponin
α-cedrene
β-carotene

unknown direct association
glucagon-like effects in liver

protection against DNA
damage glycation

inhibition of a-amylase
GLUT4 translocation
GLUT4 translocation
GLUT4 translocation
GLUT4 translocation

regulation of lipogenesis

preclinical data
preclinical data
preclinical data

in vitro data
preclinical data
preclinical data

in vitro data
preclinical data

preclinical and human data

[115,119,123]
[116,119,120]
[121,132,133]

[122,123]
[125,127]
[126,128]
[129,130]
[134,136]
[137–140]

Antibiotics

streptomycin
ampicillin

vancomycin
rapamycin

doxycycline
actinomycin D

alteration of gut microbiota
alteration of gut microbiota
alteration of gut microbiota

increased hyperglycemia
induced hypoglycemia
GLUT4 translocation

worsened IR
worsened IR
worsened IR

improved IR with metformin
in vivo

dose-dependent in vivo
in vitro data

[142,145,146]
[143,145,146]

[144–146]
[147,148]
[151–153]
[154–158]

Alkaloids

emetine
catharanthine

berberine
galegine

metformin

GLUT4 translocation in type
1 diabetes model

suppression of
hyperlipidemia

glucose-dependent insulin
secretagogue

increased weight loss,
decreased blood glucose

suppressed hepatic glucose
production

preclinical data
in vivo data

preclinical and human data
less potent than metformin
synthetic analog of galegine

[160–163]
[160,164]
[165–170]
[171,172]
[173–186]

Gut
microbiome
metabolites

acetic acid
propionic acid

butyric acid
taurocholic acid
glycocholic acid

taurochenodeoxycholic
acid

glycochenodeoxycholic
acid

better pancreatic secretion of
insulin, glucagon

better pancreatic secretion of
insulin, glucagon

better pancreatic secretion of
insulin, glucagon

cholesterol catabolite
cholesterol catabolite
cholesterol catabolite
cholesterol catabolite

marker of microbiome diversity
marker of microbiome diversity
marker of microbiome diversity

potentially detrimental
potentially detrimental
potentially detrimental
potentially detrimental

[191,194–199]
[192,194–199]

[193–199]
[202,206]
[203,206]
[204,206]
[205,206]
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Taken together, historical data on the effects of natural MAIMs from in vitro and
in vivo studies, anecdotal reports on human efficacy and actual clinical findings are often
provocative and introduce the possibility of developing some natural MAIMs as novel
modalities for the control of IR. Nevertheless, these efforts may face challenges common in
the development of natural products for therapeutic applications. For example, the levels
of active principles (e.g., phenols) may vary depending on the geographical location of
the plant, time of harvest, processing and even time of the day [207]. Crude extracts may
contain other bioactive compounds that could affect the measured endpoints because of
interactions with the intended test article. So called “impurities” may be pharmacologically
active or have antagonistic effects in experiments, leading to false-positive or negative
results.

Even if purified and better characterized natural MAIMs and normalized quantities
were to be used in assay systems, head-to-head comparisons may be difficult because of
nonlinear dose responses [208] or schedule-dependent effects [178].

Another problem arises from the assay systems used to generate the data on health
benefits of natural MAIMs. For in vitro assays, primary cells are difficult to standardize,
while cell lines can behave differently in various testing laboratories, especially if used past
the optimum number of passages [209]. In consequence encouraging preclinical efficacy of
some products could not be replicated in controlled human studies [79,210].

Limited SAR preclinical–clinical correlations can be illustrated using examples of
monoterpenes and flavonoids. Antidiabetic effects of monoterpenes have been ascribed to
multiple pharmacological and molecular mechanisms of action, but their SARs are largely
unknown [124]. In cell-free tests of flavonoids for AMPK activation, genistein was >70%
less active than fisetin [104]. However, unlike fisetin [211], genistein had shown promising
activity in the clinic [109]. In general, flavonoids often demonstrate impressive preclinical
activities, but their clinical efficacy is limited by poor bioavailability [212].

Last, but not least, the effects of natural MAIMs may differ in healthy subjects and
those with IR. For example, berberine did not alter insulin secretion under low or normal
glucose conditions, but was effective in subjects with hyperglycemia [24]. Metformin
reduced the incidence of T2D with the greatest benefit in the subset of subjects with higher
baseline fasting glucose or A1c [213]. DEA significantly reduced fasting glucose and insulin
in subjects with IR and/or A1c ≥5.6%, suggesting the correlation in DEA efficacy with the
degree of IR [36].

Many natural products are MAIMs, and most are “good MAIMs” that provide health
benefits, as evidenced by human use for many centuries. Natural “good MAIMs” are
consumed across the world in the form of traditional Chinese medicine, Mediterranean
diet and fermented foods. In contrast, relatively fewer cases of natural “bad MAIMs” are
represented by oils produced by microbes, plants, animals [214] and certain gut metabo-
lites [206].

Most “bad MAIMs” are synthetic chemicals. Notorious halogenated compounds, such
as perfluoroalkyl compounds (PFASs), can readily incorporate into membranes but cannot
be rapidly eliminated by the body [12,30]. Another “bad MAIM”, the endocrine disruptor
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) [215], alters plasma membrane function [216]
and contributes to IR [217]. The induction of azelates through TCCD in humans [31]
can be viewed as a chemoprotective response of the body taking advantage of the im-
munomodulatory role of azelates. Bisphenols are another family of “ bad MAIMs” that
are of toxicological concern [218], underscored by a link between exposure to bisphenol
A [219] and the elevated risk of gestational diabetes [220].

5. Conclusions

Certain natural MAIMs share similar characteristics in improving IR. The membrane-
fluidizing potential of a natural product may be a useful criterion to consider in the
development of novel functional foods or drugs for the mitigation of IR.
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6. Patents

Some of the data on DEA pertaining to the control of IR and T2D presented in this
manuscript are covered by US and worldwide patents. Representative examples of 46
patents granted to date include:

• Robert T Streeper and Elzbieta Izbicka “Azelaic acid esters in the control of insulin
resistance”. US Patent No. 10251857. Application granted 4 September 2019.

• Robert T Streeper and Elzbieta Izbicka “Azelaic acid esters in the control of insulin
resistance”. US Patent No. 11026912. Application granted 6 August 2021.
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