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Abstract: Vascular endothelial growth factor receptor 2 (VEGFR2) mediates VEGFA signaling mainly
through the PI3K/AKT/mTOR and PLCγ/ERK1/2 pathways. Here we unveil a peptidomimetic
(VGB3) based on the interaction between VEGFB and VEGFR1 that unexpectedly binds and neutral-
izes VEGFR2. Investigation of the cyclic and linear structures of VGB3 (named C-VGB3 and L-VGB3,
respectively) using receptor binding and cell proliferation assays, molecular docking, and evaluation
of antiangiogenic and antitumor activities in the 4T1 mouse mammary carcinoma tumor (MCT) model
showed that loop formation is essential for peptide functionality. C-VGB3 inhibited proliferation and
tubulogenesis of human umbilical vein endothelial cells (HUVECs), accounting for the abrogation
of VEGFR2, p-VEGFR2 and, subsequently, PI3K/AKT/mTOR and PLCγ/ERK1/2 pathways. In
4T1 MCT cells, C-VGB3 inhibited cell proliferation, VEGFR2 expression and phosphorylation, the
PI3K/AKT/mTOR pathway, FAK/Paxillin, and the epithelial-to-mesenchymal transition cascade.
The apoptotic effects of C-VGB3 on HUVE and 4T1 MCT cells were inferred from annexin-PI and
TUNEL staining and activation of P53, caspase-3, caspase-7, and PARP1, which mechanistically
occurred through the intrinsic pathway mediated by Bcl2 family members, cytochrome c, Apaf-1
and caspase-9, and extrinsic pathway via death receptors and caspase-8. These data indicate that
binding regions shared by VEGF family members may be important in developing novel pan-VEGFR
inhibitors that are highly relevant in the pathogenesis of angiogenesis-related diseases.

Keywords: peptidomimetic; VEGFR2; angiogenesis; tumor suppression; PI3K/Akt/mTOR signaling
pathway; PLCγ/ERK signaling pathway

1. Introduction

Vascular endothelial growth factors (VEGFs) are the primary regulators of endothelial
cell (EC) functions, including angiogenesis and vascular permeability, in physiology and
pathology [1,2]. The VEGF family is composed of VEGFA, VEGFB, VEGFC, VEGFD,
VEGFE, VEGFF, and the placenta growth factor (PlGF). Although the development and
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regulation of normal blood vessels are influenced by different partners, VEGFA, often
referred to as VEGF, is crucial for pathological angiogenesis.

The downstream signals of VEGFs are mediated by receptors, denoted VEGFR1,
VEGFR2, and VEGFR3. VEGFA and VEGFB bind to VEGFR1; VEGFA binds to VEGFR2, and
VEGFC and VEGFD bind to VEGFR3. In spite of high structural similarity, VEGFRs display
different modes of activation, downstream signaling, and biological effects. Meanwhile,
VEGFR2 mediates most of the VEGF-induced angiogenic signals. Notably, the function
of the VEGF/VEGFR2 system is not limited to the EC function. It has become apparent
that some tumor cells express VEGFR2 [3]. VEGF ligation to VEGFR2 promotes various
intracellular signaling pathways, including PLCγ/ERK1/2, PI3K/AKT/mTOR, SRC, and
small GTPases [4]. Moreover, VEGFR2 activates stress kinases and G protein-coupled
receptors, which mediate the function of both endothelial and tumor cells [4].

Given the pivotal role of the VEGF/VEGFR2 signaling in tumor angiogenesis and
development, suppression of VEGFR2-driven signaling pathways can inhibit angiogenesis
and tumor metastasis. Several tyrosine kinase inhibitors, antibodies, and protein drugs
are employed clinically to block VEGFR2-mediated signaling. Previous studies indicated
that the blockade of both VEGFR1 and VEGFR2 could inhibit angiogenesis more effectively
than the abrogation of VEGFR2 alone [5–8]. In recent years, peptides emerged as attractive
drug discovery and development candidates. Their target specificity and potency, ease of
synthesis, low toxicity, bioavailability, and the possibility of various chemical modifications
render the peptides a new generation of therapeutics.

We have previously reported a peptide mimicking the loop2 region of VEGFB and its
adjacent region in the 3D structure (named VGB3) that binds and suppresses VEGFR1 [9].
Here, we indicate that VGB3 can surprisingly bind and neutralizes VEGFR2 as well, and its
antiangiogenic and antitumor properties depend on a disulfide loop formation. We also
provide evidence that the cyclic structure of VGB3 potently suppresses PI3K/AKT/mTOR
and PLCγ/ERK1/2 pathways in human umbilical vein endothelial cells (HUVECs) and
4T1 mammary carcinoma tumor (MCT) cells and induces apoptosis through both intrinsic
and extrinsic pathways.

2. Results
2.1. Peptidomimetic Design

The regions of VEGFA involved in the binding to VEGFR2 are composed of helix
α1 and loops 1–3. Similar epitopes are responsible for the binding of VEGFB to VEGFR1
in addition to the C-terminal segment of β6. Analysis of VEGFA binding to VEGFR2
using alanine scanning identified five side chains of VEGFA (Trp17, Gln46, Asp64, Gln79,
and Ile83) accounting for most of the binding energy [10]. Notably, four out of five of
these critical residues are either conserved in VEGFB (Gln79 and Ile83) or mutated to
a highly similar residue (Phe17Trp and Glu64Asp). This high similarity proposes that
peptidomimetics based on the interaction between VEGFB and VEGFR1 might also be the
ligands of VEGFR2. Our recent study confirms this idea, where a cyclic peptidomimetic
based on the helix α1 of VEGFB and a motif situated in its proximity bound to both VEGFR1
and VEGFR2 and inhibited angiogenesis and breast tumor growth [7]. Here, based on the
same rationale, we designed a peptide based on the loop2 region of VEGFB and evaluated
its VEGFR2 binding, functional properties, and mechanism of action. The loop2 region
of VEGFB (61CPDDGLEC68) is very similar to that of VEGFA (61CNDEGLEC68). Spatially
close to loop2, the C-terminal segment of β6, including residues 102ECRP105, is implicated
in the binding of VEGFB to VEGFR1 [11]. Accordingly, VEGFB segments 62PDDGLEC68

and 102ECRP105 were covalently linked into a single peptide as 2HN-ECRPPDDGLC-
COOH (Glu67 was removed) (Figures S1, S2 and S4). To mimic the U-shaped structure
of the 61–68 region, a disulfide bond was incorporated between the cysteine residues
(Figures 1, S3 and S4). It has already been shown that this peptide, referred to as VGB3,
can bind to VEGFR1 [9]. Here, we evaluated the binding of VGB3 to VEGFR2, the role of
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loop formation in its binding and antitumor properties, and its effect on the function and
signaling pathways of the endothelial and tumor cell lines.
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Figure 1. Graphical representation of VEGFB and two constructed VEGFB mimics. The ribbon
presentation of VEGFB (PDB code: 2C7W) and five ligand binding segments identified in the
VEGFB/VEGFR1 complex are represented on the left. The schematic representation and model
structure of C-VGB3 and L-VGB3 constructed using MODELLER version 9.18 is shown on the right.

2.2. Loop Formation Is Essential for the Antitumor Activity of VGB3

As mentioned earlier, VGB3 contains a disulfide bond. To determine if loop structure
is important for the activity of VGB3, two cyclic and linear peptide structures (C-VGB3
and L-VGB3, respectively) were synthesized (Figures S1–S5) and compared for antitumor
activity using the murine 4T1 MCT model. Based on the previous study [9], peptides were
administered once every two days intravenously (i.v.) at a dosage of 0.2 mg·kg−1. C-VGB3
inhibited 4T1 MCT by 76% (p < 0.0001), whereas L-VGB3 peptide had no effect (Figure 2A).
Animals gained weight during three weeks of the peptides treatment (Figure 2B), sug-
gesting that cyclic and linear peptides are not toxic at this dosage. We assessed tumor
angiogenesis and cell proliferation to determine the antitumor mechanism of C-VGB3.
Tumor angiogenesis was evaluated by staining of tumors (day 33 after implantation) for
measurement of CD31-stained microvessels. Figure 2C shows a considerable decrease in
vessel density after C-VGB3 treatment (84% reduction, p = 0.02), while L-VGB3 was similar
to the phosphate-buffered saline (PBS)-treated control. The tumor cell proliferation was
analyzed using Ki67 immunohistochemical staining as an index of tumor cell proliferation.
C-VGB3 decreased Ki67-positive cells compared to the control (60%, p = 0.04), whereas
L-VGB3 was ineffective (Figure 2D). These data suggest that VGB3 relies on loop structure
for the antitumor and antiangiogenic activities.

2.3. Cyclic but Not Linear VGB3 Binds VEGFR2

The significance of loop formation in VGB3 activity was further elucidated by the
examination of the binding of linear and cyclic structures to the extracellular domain
of VEGFR2. Competition binding assay showed that C-VGB3 inhibits the binding of
biotinylated VEGF (bt-VEGF) to KDR dose-dependently (Figure 3A). In contrast, L-VGB3
exhibited no measurable binding even at a high concentration (3 mM) (Figure S6).
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Figure 2. Loop formation is important for the antitumor activity of VGB3. (A) To investigate the
efficacy of VGB3 peptides in vivo 13 days after transplantation of a 4T1 murine MCT into female
BALB/c mice (the tumor volume ~150 mm3), the treatment groups received 0.2 mg·kg−1 (once every
2 days, i.v.) of either the C-VGB3 or L-VGB3 and the control group received PBS for 20 days. Error
bars denote ± SEM. n = 6; **** p < 0.0001, ns = not significant; two-way ANOVA. (B) Investigation of
C-VGB3 and L-VGB3 effects on mice weight. There were no significant differences between either C-
VGB3 or L-VGB3 and control groups; two-way ANOVA. (C,D) Immunohistochemical (IHC) analyses
of CD31 and Ki67 for the C-VGB3-, L-VGB3- and PBS-treated tumors. For IHC staining, the sections
of tumor tissues were incubated with the primary mouse monoclonal antibodies for CD31 (1:2000
(v/v)) and Ki67 (5 µg·mL−1). CD31 (as an indicator of microvessel density) and Ki67 (a cellular
marker of cell proliferation) significantly decreased in the C-VGB3-treated tumors compared with
PBS-treated tumors. Photographs were taken at 40×magnification. Error bars denote ± SEM. n = 3;
* 0.02 ≤ p ≤ 0.04, ns = not significant; one-way ANOVA.

The capabilities of cyclic and linear peptides to bind the extracellular domain of
VEGFR2 were also compared by docking analyses using PatchDock and HADDOCK web
servers. Results indicated that the disulfide bond contributes to a strong interaction of the
peptide with the receptor. A comparison of the atomic contact energies of the top solutions
obtained by PatchDock suggested a much more stable complex with VEGFR2 for C-VGB3
than for L-VGB3 (Table 1). Likewise, analyses using the HADDOCK server suggested a no-
ticeably increased total interaction in the C-VGB3/VEGFR2 complex (Figure 3B) compared
to L-VGB3/VEGFR2 complex (Tables 1 and S1). According to HADDOCK results, the elec-
trostatic interactions play an important role in the binding of C-VGB3 to VEGFR2 (Table 1),
as this is predicted by the presence of residues with polar side chains in the C-VGB3,
including Glu1, Arg3, Asp6, and Asp7. In addition, the hydrophobic interactions play a
considerable role in C-VGB3 binding to VEGFR2. As shown in Figure 3B and Table S1, 80%
of C-VGB3 residues participate in the hydrophobic interactions. Moreover, several H-bonds
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were predicted between C-VGB3 and VEGFR2 (Figure 3B and Table S1). The electrostatic
(−33.2 ± 14.6 kcal·mol−1) and hydrophobic (−32.3 ± 1.2 kcal·mol−1) interactions have
an approximately equal contribution to the production of the L-VGB3/VEGFR2 complex
(Table 1). The role of electrostatic interactions in the C-VGB3/VEGFR2 complex (−143.5 ±
21.7 kcal·mol−1) is considerably more than in the L-VGB3/VEGFR2 complex (−33.2 ± 14.6
kcal·mol−1). In addition, the C-VGB3/VEGFR2 complex exhibited a higher docking score
and total interaction energy (−67.7 ± 4.9 and −184 ± 26.9 kcal·mol−1, respectively) com-
pared to those of the L-VGB3/VEGFR2 complex (−47.8 ± 4.7 and −65.5 ± 15.8 kcal·mol−1,
respectively). According to the docking analyses, L-VGB3 cannot form a stable complex
with VEGFR2, but the cyclic structure results in a strong affinity toward the ectodomain of
the receptor.
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Figure 3. The binding affinity of C-VGB3 to VEGFR2. (A) ELISA-based displacement assay. The
gradient concentrations of C-VGB3 (0, 0.316, 1, 3.16, 10, 31.6, 100, and 316 µM) were used in the assay.
The results showed that C-VGB3 inhibits the binding of VEGF to the VEGFR2 extracellular domain in
a dose-dependent manner. Error bars denote ± SEM. n = 3; ** p = 0.001, *** p = 0.0001, **** p < 0.0001,
ns = not significant; one-way ANOVA. (B) A three-dimensional (produced by UCSF chimera software
version 1.12) and a two-dimensional representation (produced by LigPlot software) of interactions in
the C-VGB3/VEGFR2 complex is shown on the left and the right, respectively.

Table 1. Peptide-receptor docking results obtained by PatchDock and HADDOCK.

PatchDock

Complex Score Atomic Contact
Energy (kcal·mol−1)

C-VGB3/VEGFR2 6572 −209.19

L-VGB3/VEGFR2 6280 −40.61

HADDOCK

Complex Total interaction
(kcal·mol−1)

Van der Waals
(kcal·mol−1)

Electrostatic
(kcal·mol−1)

Desolvation
(kcal·mol−1)

Buried surface
area (◦A2)

C-VGB3/VEGFR2 −184 ± 26.9 −40.5 ± 5.2 −143.5 ± 21.7 0.9 ± 6.1 961.7 ± 33.0

L-VGB3/VEGFR2 −65.5 ± 15.8 −32.3 ± 1.2 −33.2 ± 14.6 −9.4 ± 6.4 800.9 ± 67.5

2.4. C-VGB3 Inhibited EC Proliferation and Tube Formation through Abrogation of
VEGFR2-Mediated Signaling Pathways

Since the blockade of VEGFR2 inhibits different aspects of angiogenesis, we investi-
gated the peptide effect on EC proliferation and tube formation after VEGF (20 ng·mL−1)
stimulation. Treatment of HUVECs with increasing concentrations of C-VGB3 (0–0.91 µM)
for 24 and 48 h dose-dependently decreased the cell viability (Figure 4A) with a half-
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inhibitory concentration (IC50) of 0.51 and 0.38 µM, respectively. Next, the antiangiogenic
activity of C-VGB3 was evaluated using a tube formation assay. As shown in Figure 4B,
C-VGB3 (0.40 µM) could inhibit VEGF-induced tubulogenesis of ECs as a statistically signif-
icant decreased tube numbers, tube length, and tube branching points by 58.64, 44.37, and
81.46%, respectively, compared to the control (p < 0.001). These data indicate that C-VGB3
potently inhibits VEGF-induced tubulogenesis of ECs.
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Figure 4. Inhibition of EC proliferation and tubulogenesis by C-VGB3 through abrogation of VEGFR2-
mediated signaling pathways. (A) MTT assay was performed to investigate C-VGB3 effect on the
proliferation of ECs. C-VGB3 (0–0.91 µM) was used with (20 ng·mL−1) or without VEGF. The control
cells were treated with no peptide. After 24 and 48 h, the absorbance was measured at 570 nm utilizing
an ELISA plate reader (Space Fax 2100, Awareness, Westport, CT, USA). Error bars indicate ± SEM.
n = 3; * p = 0.02, ** p = 0.001, *** and ### p = 0.0001, **** and #### p < 0.0001, ns = not significant; one-
way ANOVA. (B) The anti-tubulogenesis effect of C-VGB3 in VEGF (20 ng·mL−1)-induced HUVECs.
Image analysis performed by Wimasis image analysis software is illustrated in the bottom panel.
Error bars indicate ±SEM. n = 3; *** 0.0004 ≤ p ≤ 0.0001; unpaired Student’s t-test. To evaluate the
mechanism by which C-VGB3 diminished cell proliferation and tube formation, Western blot analysis
was performed for HUVECs. (C) The results showed that C-VGB3 could significantly decline VEGFR2
expression and phosphorylation, thereby significantly decreasing the VEGF (20 ng·mL−1)-induced
expression or phosphorylation of signaling proteins RAS, RAF, ERK 1/2, Cyclin D1, and Cdk4. The
peptide also increased the expression of GSK3, an antiproliferative protein. Error bars indicate ± SEM.
n = 3; * p = 0.02, ** p = 0.001, *** p = 0.0001, **** p < 0.0001; one-way ANOVA. (D) The results showed
that C-VGB3 could significantly decrease PI3K, AKT, p-AKT, mTOR, p-mTOR, and NF-κB. Error bars
indicate ± SEM. n = 3; * p = 0.02, ** p = 0.001, **** p < 0.0001; one-way ANOVA.
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Next, to explore the mechanisms of the antiangiogenic property of C-VGB3, canonical
signaling pathways mediated by VEGFR2 were assessed in HUVECs after 24 h incubation with
C-VGB3 (0.40 µM). The binding of VEGF to VEGFR2 causes autophosphorylation of its tyrosine
kinase domain and increases the receptor′s expression level on the cell surface [12,13]. Therefore,
we evaluated the ability of C-VGB3 to suppress the levels of constitutive and phosphorylated
VEGFR2 in HUVECs. As indicated in Figure 4C, treatment of HUVECs with C-VGB3 markedly
inhibited the constitutive level of VEGFR2 (p = 0.001) as well as the formation of p-VEGFR2
(p < 0.0001) compared to untreated (0 µM C-VGB3) controls.

Since canonical activation of VEGFR2 turns on PLCγ/ERK1/2 and PI3K/AKT/mTOR
signaling pathways, we examined the effects of C-VGB3 treatment on these pathways.
The Ras/RAF/MEK/ERK1/2 signaling cascade regulates cellular proliferation, migration,
differentiation, and survival [4,14,15]. Subsequently, CyclinD1 and cyclin-dependent kinase
(CDK)-2/-4 are transcribed and activated through ERK, leading to the progression of the
cell cycle through the G1 phase [16]. Hence, the molecular mechanism by which C-VGB3
inhibits cell proliferation was investigated by measuring the expression level of RAS, RAF,
CyclinD1, GSK3, CDK4, ERK1/2, and p-ERK1/2. As indicated in Figure 4C, C-VGB3
decreased RAS (p < 0.0001), RAF (p = 0.001), ERK1/2 (p = 0.02), p-ERK1/2 (p = 0.0001),
CyclinD1 (p = 0.0001), and CDK4 (p < 0.0001) compared to untreated controls, indicative of
the downregulation of PLCγ/ERK1/2 pathway. Additionally, the antiproliferative effect of
C-VGB3 was confirmed by an increased expression of GSK3, as an antiproliferative protein,
compared to the control (p = 0.001) (Figure 4C).

VEGFR2-driven PI3K/AKT/mTOR signaling pathway is involved in various EC func-
tions, including proliferation, adhesion, survival, migration, invasion, metabolism, and
angiogenesis [17]. Accordingly, we analyzed PI3K, AKT, p-AKT, mTOR, and p-mTOR
in HUVECs after C-VEGB3 treatment. The PI3K expression level decreased after treat-
ment with C-VGB3 compared to the control (p = 0.001) (Figure 4D). Consequently, AKT
and p-AKT levels in EC were markedly reduced (p < 0.0001) (Figure 4D). AKT regulates
physiological and pathological angiogenesis, and vascular metabolism via the mTOR com-
plex [17]. We observed that C-VGB3 treatment strongly suppressed the total expression
of mTOR (p < 0.0001) and the phosphorylation of mTOR (p = 0.001) compared with the
controls (Figure 4D). NF-κB has been implicated in various aspects of angiogenic signaling
by regulating hypoxia, survival, oxidative stress, and the production of pro-angiogenic
and pro-inflammatory cytokines, and MMPs [18,19]. Analysis of HUVECs indicated that
the expression of NF-κB decreased after treatment of C-VGB3 compared to the controls
(p = 0.02). In addition, C-VGB3 resulted in suppressed NF-κB phosphorylation compared
with the untreated ECs (p = 0.001) (Figure 4D).

2.5. C-VGB3 Inhibited Proliferation and VEGFR2 Signaling Pathways in 4T1 MCT Cells

We have previously indicated that the 4T1 MCT cell expresses VEGFR2 and is an
appropriate model for the investigation of VEGFR2-blocking peptides [5–8,11]. It raises the
possibility that the antitumor property of C-VGB3 (Figure 2) is also related to a direct effect
on tumor cells. Therefore, we examined the effect of peptides on this cell line. After 24 and
48 h treatment, C-VGB3 inhibited the proliferation of 4T1 MCT cells with IC50 values of
0.56 and 0.37 µM, respectively (Figure 5A). The antiproliferative activity of C-VGB3 on 4T1
cells suggests that the tumor growth regression (Figure 2A) is a combination effect arising
from the antiangiogenic property as well as direct inhibition of tumor cells.

Next, VEGFR2 signaling was investigated in 4T1 MCTs. Western blotting showed
that treatment of 4T1 cells with C-VGB3 (0.40 µM) suppressed VEGFR2 (p < 0.0001) and
p-VEGFR2 (p = 0.0001) compared with untreated cells (Figure 5B). Considering the implica-
tion of the PI3K/AKT/mTOR signaling pathway in most human cancers [17], the effect of
C-VGB3 on this pathway was evaluated in 4T1 MCT cells. As shown in Figure 5B, C-VGB3
(0.40 µM) significantly decreased the levels of PI3K (p = 0.02), p-AKT (p = 0.001), mTOR
(p = 0.02), p-mTOR (p = 0.001), compared to untreated controls. The NF-κB pathway is
an important target of AKT, which contributes to abnormal cell proliferation and differ-
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entiation, the inhibition of apoptosis, enhanced metastasis, and treatment resistance [20].
Therefore, the inhibition of upstream AKT signaling would be expected to downregulate
NF-κB and/or p-NF-κB. Total protein extract lysates from C-VGB3-treated and untreated
4T1 cells showed decreased levels of NF-κB and p-NF-κB in the peptide-treated group
compared with untreated controls (p = 0.02) (Figure 5B).
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Figure 5. Suppression of 4T1 cell proliferation and metastasis by C-VGB3 through blockade of
VEGFR2 signaling pathways. (A) MTT assay was performed to investigate C-VGB3 effect on the
proliferation of 4T1 tumor cells in vitro. C-VGB3 was used at concentrations 0–1.81 µM in the presence
(20 ng·mL−1) or the absence of VEGF. The control cells were treated with no peptide. After 24 and 48 h,
the absorbance was measured at 570 nm utilizing an ELISA plate reader (Space Fax 2100, Awareness,
Westport, CT, USA). Error bars represent ± SEM. n = 3; * p = 0.0 2, ** p = 0.001, *** and ### p = 0.0001,
**** and #### p < 0.0001, ns = not significant; one-way ANOVA. (B) To evaluate the mechanism by
which C-VGB3 diminished cell proliferation and metastasis, Western blot analysis was performed
for 4T1 cells. The results showed that C-VGB3 could significantly decline VEGFR2 expression and
phosphorylation, thereby significantly decreasing the VEGF (20 ng·mL−1) induced expression or
phosphorylation of signaling proteins implicated in cell proliferation and metastasis, including PI3K,
p-Akt, p-mTOR, mTOR, NF-κB, Vimentin, N-cadherin, FAK, and paxillin. Furthermore, treatment
with the peptide significantly increased E-cadherin protein expression. Error bars represent ± SEM.
n = 3; * p = 0.02, ** p = 0.001, *** p = 0.0001, **** p < 0.0001, ns = not significant; one-way ANOVA.
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VEGFR2 signaling is involved in the promotion of metastasis in a variety of tumor
cells [21,22]. Therefore, we examined the effects of C-VGB3 on the levels of metastatic
factors, including N-cadherin, E-cadherin, vimentin, FAK, p-FAK, paxillin, and p-paxillin.
Upregulated NF-κB induces metastatic-related factors [23] and the epithelial–mesenchymal
transition (EMT) process. EMT is associated with the progression to more aggressive
cancer phenotypes through increased tumor cell mobility, invasiveness, and resistance to
apoptotic stimuli [24]. The hallmark of EMT is the upregulation of vimentin and N-cadherin
and concomitantly the downregulation of E-cadherin. Compared to controls, C-VGB3
potently increased the E-cadherin expression (p = 0.001) and reduced the level of N-cadherin
(p = 0.001) and vimentin (p = 0.02). The FAK/paxillin signaling cascade is implicated in
cell adhesion, migration, proliferation, and survival. Therefore, the downregulation of this
axis is a marker of metastasis inhibition [25]. Analysis of 4T1 cell lysates indicated that
C-VGB3 substantially inhibited FAK (p = 0.001), p-FAK (p = 0.001), paxillin (p < 0.0001), and
p-paxillin (p = 0.0001) compared to controls.

2.6. C-VGB3 Induces Endothelial and Tumor Cell Apoptosis

An important consequence of VEGF signals is cell survival dominantly via PI3K/AKT/
mTOR pathway. Thus, inhibition of VEGF signals leads to the induction of apoptosis.
Accordingly, the ability of C-VGB3 to induce apoptosis was investigated. First, apoptotic
endothelial and tumor cells were analyzed by flow cytometry after staining with annexin
V-FITC and PI. (Figure 6A). Treatment with C-VGB3 (0.40 µM) induced significant apoptosis
in both cell lines compared to the controls. The level of apoptotic cells was significantly
higher than in the control group (HUVECs: 56.62 vs. 9.61, p < 0.0001; and 4T1: 22.60
vs. 1.80, p < 0.0001) after 24 h of treatment. Apoptosis induction by C-VGB3 was further
characterized by the TUNEL assay, as an indicator of late apoptosis, with a confocal
microscope (Figure 6B). The results showed that C-VGB3-treated cells are fluorescent-
labeled more than control cells (HUVECs, p < 0.0001; and 4T1 cells, p = 0.0002).

To elucidate the apoptotic mechanism of C-VGB3, we assessed the intrinsic and
extrinsic signaling pathways of apoptosis. P53 is known as a pro-apoptotic protein.
AKT negatively controls P53 levels by inducing MDM2-mediated targeting of P53 for
degradation [26]. Therefore, the downregulation of AKT dissociates the P53 and MDM2
complex. We observed that P53 levels were enormously increased in C-VGB3-treated ECs
(p = 0.0001) and tumor cells (p < 0.0001) compared with controls. Concurrently, MDM2
levels were markedly decreased in HUVECs (p = 0.001) and 4T1 cells (p < 0.0001). Many
studies have shown that VEGF-mediated activation of the PI3K/AKT/mTOR pathway
contributes to cell survival through the Bcl2 family of proteins such as Bcl2, Bax, and Bid.
On the other hand, P53 directly interacts with members of the Bcl2 family and influences
apoptosis [27,28]. Bax is a pro-apoptotic member in the Bcl2 family that mediates mitochon-
drial permeabilization and, therefore, the intrinsic cell death pathway. It has been shown
that Bcl2 binds to Bax and neutralizes its apoptotic effect. Thus, the Bax/Bcl2 ratio is crucial
for determining whether cells will undergo apoptosis or survive. As indicated in Figure 6C,
C-VGB3 induced a decrease in Bcl2 expression in HUVE and 4T1 cells (p = 0.0001 and
p = 0.001, respectively), and concomitantly increased Bax level (p = 0.0001 and p < 0.0001,
respectively). These effects resulted in an approximately 3.35- and 5.25-fold increase in
Bax/Bcl2 ratio in HUVE and 4T1 cells, respectively, which favors apoptosis via cytochrome
c followed by caspase activation through oligomerization of Apaf1. In HUVECs, C-VGB3
treatment led to an increase in cytochrome c (p = 0.02) and Apaf1 (p = 0.0001) compared
to controls (Figure 6C). Similarly, C-VGB3 promoted cytochrome c release (p = 0.02) and
Apaf-1 (p = 0.001) in 4T1 cells (Figure 6C). Bid is a pro-apoptotic protein that migrates to
mitochondria and acts as a sentinel for protease-mediated death signals [29]. Bid expression
level increased after C-VGB3 treatment in HUVECs (p < 0.0001) and 4T1 cells compared to
controls (p = 0.001) (Figure 6C). Bim is known as a pro-apoptotic factor that is attenuated in
response to VEGFR2 signaling [30]. As indicated in Figure 6C, Bim levels increased in both
ECs and tumor cells after C-VGB3 treatment (p = 0.001 and p = 0.02, respectively).
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Figure 6. Inducing apoptosis in endothelial and tumor cells treated with VEGF by C-VGB3 peptide
in vitro. Three different procedures were performed to investigate the effects of C-VGB3 on apoptosis
induction. (A) Investigating the effects of C-VGB3 on HUVE and 4T1 cell survival using staining
with annexin V and PI, followed by flow cytometry analysis. Quantitative analysis of apoptosis is
shown in the bottom panel. C-VGB3 (0.40 µM) significantly inhibited anti-apoptotic effects induced
by VEGF (20 ng·mL−1). Error bars signify ± SEM. n = 3; **** p < 0.0001; unpaired Student’s
t-test. (B) The TUNEL assay was performed on the HUVE and 4T1 cells using TUNEL Assay Kit.
Analyses acquired by ImageJ are illustrated in the bottom panel. Error bars denote ± SEM. n = 3;
*** p = 0.0002, **** p < 0.0001; unpaired Student’s t-test. (C) To evaluate the pro-apoptotic effects of C-
VGB3, Western blot analysis was performed for HUVE and 4T1 cells. The results showed that C-VGB3
could significantly increase the expression and/or phosphorylation of pro-apoptotic proteins and
decrease the VEGF (20 ng·mL−1) induced expression or phosphorylation of anti-apoptotic proteins
in both cell lines. Error bars denote ± SEM. n = 3; * p = 0.02, ** p = 0.001, *** p = 0.0001, **** p < 0.0001,
ns = not significant; One-way ANOVA.

To evaluate the participation of different caspases in the apoptotic effect of C-VGB3, we
assessed the levels of pro-caspases and cleaved caspases in C-VGB3-treated HUVE and 4T1
cells. Results of Figure 6C show increased levels of cleaved caspase-3 (3.8- and 4.0-times),
cleaved caspase-9 (1.4- and 3.5-times), and cleaved caspase-7 (3.3- and 4.1-times) in C-VGB3-
treated HUVE and 4T1 cells, respectively. Hence, C-VGB3 could induce apoptosis in the
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endothelial and tumor cells via the induction of caspases. Altogether, the involvement of
P53, Bcl2 family members (including Bcl2, Bax, Bid), the release of cytochrome c, activation
of Apaf1 and caspases-9, caspase-3, and caspase-7 suggest that the mitochondrial pathway
is engaged in the induction of apoptosis.

During apoptosis induction, DNA fragmentation results in PARP1 activation; therefore,
its cleavage is an important biomarker of apoptosis. Western blot analysis indicated a 3.50-
and 4.05-fold increase in the level of cleaved PARP1 in C-VGB3-treated cells compared to
controls, respectively (p < 0.0001) (Figure 6C).

Importantly, we also observed that C-VGB3 led to the activation of caspase-8. In
both cell lines, lower amounts of the cleaved caspase-8 were detected after treatment with
C-VGB3 compared to controls (p = 0.001) (Figure 6C). Given that caspase-8 is involved in
the death receptor-mediated extrinsic apoptotic signaling pathway, we sought to determine
whether C-VGB3 sensitizes cells in a receptor-specific manner. The cell surface death
receptor 4 (DR4 or CD261) and death receptor 5 (DR5 or CD262) induce apoptosis after
ligation to TRAIL. Another death receptor is Fas (CD95), which can mediate apoptosis
induction when bound to its natural ligand. We investigated whether DR4, DR5, and
Fas are involved in the C-VGB3-driven apoptosis in HUVE and 4T1 cell lines. In both
endothelial and tumor cell lines, C-VGB3 led to an increase in the level of DR4 (p = 0.001
and p < 0.0001) and DR5 (p = 0.02 and p = 0.001) compared to the untreated cells. Fas
expression, however, was slightly increased in HUVECs (p = 0.02) but not affected in 4T1
cells after C-VGB3 treatment. These results suggest that, as a result of C-VGB3 treatment,
death receptors, especially DR4, and DR5 recruited caspase-8 to form the death-inducing
signaling complex.

Figure 7 shows the wide range of VEGFR2 downstream signaling mediators targeted
by C-VGB3 in HUVEC and/or 4T1 MCT cells. As indicated in this figure, three metabolic
alterations caused by VEGFR2 suppression: abrogation of PI3K/AKT/mTOR pathway,
leading to angiogenesis inhibition and apoptosis promotion in endothelial and tumor
cells; suppression of PLCγ/ERK1/2 pathway, resulting in antiproliferative effects; and
suppression of metastasis-related mediators in 4T1 MCT cells.
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3. Discussion

VEGF/VEGFR2 system is detected in diverse cancers and correlates to tumor develop-
ment and metastasis. The activation of VEGFR2 turns on canonical PI3K/AKT/mTOR and
PLCγ/ERK1/2 signaling pathways [17,31]. Importantly, downstream signaling of VEGFR2
has been implicated not only in tumor ECs but also in the other players of the tumor
microenvironment. Therefore, it has been an attractive target for developing antiangiogenic
and anticancer drugs. Peptides bind to target proteins with high specificity. In addition,
tumor-targeting peptides are recognized for their unique tumor-penetrating properties,
suggesting that they have the potential to be inhibitors of extracellular proteins such as
VEGFRs in tumors.

Our previous study has shown that a peptide reproducing helix α1 of VEGFB can
unexpectedly interfere with VEGF binding to VEGFR2 and, consequently, inhibit VEGF-
stimulated angiogenesis and tumor growth [7]. In the present study, we extend this
observation using another peptide (C-VGB3) that mimics loop2 and its adjacent region
of VEGFB. C-VGB3 has been shown to bind and neutralize VEGFR1 [9]. According to
the results of the current study, C-VGB3 also shows a strong binding affinity toward the
extracellular domain of VEGFR2. For instance, competitive binding of C-VGB3 (100 µM)
with biotinylated VEGFA to the ectodomain of VEGFR1 [9] and VEGFR2 (current study)
resulted in 63 and 58% displacement of btVEGF165, respectively. It is interesting to note
that a peptidomimetic based on VEGFB not only recognizes VEGFR1 but also binds to
VEGFR2. This dual specificity is likely due to high sequence similarity between VEGFA
and VEGFB in the loop2 region (61CNDEGLEC68 in VEGFA vs. 61CPDDGLEC68 in VEGFB).
Comparative analyses of L- and C-VGB3 indicated that its receptor binding, antiprolifer-
ative, antiangiogenic, and antitumor properties rely on the formation of a loop structure
because these properties are abolished in the linear peptide. Considering that the loop2
region in VEGFB adopts a U-shaped structure [32], these data suggest that the antagonistic
property of C-VGB3 is due to preserving the loop structure. Several investigations have also
shown that the loop structure is important for the activity of antitumor peptides [33–35].

Detailed cell signaling studies demonstrate that C-VGB3 potently inhibited the ex-
pression and activation (phosphorylation) of VEGFR2 on the surface of ECs, thereby
downregulating PLCγ/ERK1/2 and PI3K/AKT/mTOR signaling pathways. Thus, inhibi-
tion of EC proliferation and tubulogenesis in vitro and angiogenesis in vivo is attributed
to the suppression of these canonical downstream signaling pathways. These results
follow previous investigations, which indicate that suppression of VEGFR2 significantly
inhibits angiogenesis through downregulation of the PLCγ-ERK1/2 pathway [36–40] and
PI3K/AKT/mTOR pathway [5–7,17,36,41]. Notably, targeting VEGFR1, which acts pri-
marily via the PI3K/AKT signaling pathway, can improve angiogenesis therapy. Thus,
owing to cross-activation and pathway convergence, co-targeting of VEGFR1 and VEGFR2
inhibits angiogenesis more effectively than blocking VEGFR2 alone [5–8,11,42,43]. Because
C-VGB3 can bind and suppress VEGFR1 [9], the inhibition of EC function by C-VGB3
could be enhanced by its effect on VEGFR1. In addition to ECs, VEGF/VEGFR2 signaling
occurs in tumor cells and the other stromal cells, which contributes to tumorigenesis [3].
VEGFR1 mainly acts through PI3K/AKT/mTOR [44]. Thus, the observed effects of C-VGB3
on the PLCγ-ERK1/2 signaling pathway are related to its VEGFR2-neutralizing property.
An important aspect of our study is related to the direct effect of C-VGB3 on tumor cell
signaling through the VEGF/VEGFR2 system. Several studies showed that a correlation
exists between the expression of VEGF/VEGFR2 and metastasis in different cancers [3,45].
We showed that VEGFR2-mediated signaling contributes to metastasis-related factors and
cell survival in 4T1 MCT cells. Previous studies indicated that VEGF could stimulate EMT
in carcinoma cells [46,47]. Results of the current study confirm that VEGF promotes EMT
in VEGFR2-expressing tumor cells, and suppression of the VEGF/VEGFR2 system may
attenuate this process in favor of metastasis inhibition. On the other hand, FAK/Paxillin
signaling axis is involved in VEGF-driven metastasis-related responses [25]. We indicated
that C-VGB3 could efficiently suppress cell detachment by the marked inhibition of the
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FAK/paxillin signaling axis, which is an initial step in the metastatic transformation. We
also provide evidence that the blockade of pro-survival signals of the VEGF/VEGFR2
system by C-VGB3 results in apoptosis induction through both intrinsic and extrinsic
pathways. Induction of apoptosis as a function of disturbed VEGFR2 signaling has been
reported in ECs [48,49] and tumor cells [8,41,50].

4. Materials and Methods
4.1. Cell Culture

Tumor and endothelial cell lines (the National Cell Bank, Pasteur Institute of Iran)
were cultured in DMEM and RPMI-1640 media (Thermo Fisher Scientific, San Jose, CA,
USA), respectively, containing penicillin and streptomycin and supplemented with 10%
FBS (Gibco, Brazil, USA) at 37 ◦C a humidified atmosphere of 5% CO2 until 90% confluent.
Cell line tests for mycoplasma, bacteria, and fungi contamination were negative.

4.2. Evaluation of Antitumor Activity

The antitumor efficacy of the peptides was investigated as described previously [11].
Thirteen days after implanting, tumor (~150 mm3)-bearing mice were grouped randomly
into control and treated animals (6/group). From day 13 to day 33, the treatment group
received cyclic or linear VGB3 (0.2 mg·kg−1), whereas the control group received an equal
volume of PBS (i.v., once every two days). The volume of tumors was calculated as
0.52 × length × width2. In addition, changes in the weight of animals were recorded every
2 days.

4.3. Immunohistochemistry Analysis

For immunohistochemistry staining, deparaffinized tumor sections were incubated
overnight at 4 ◦C with mouse monoclonal primary anti-Ki67 (5 µg·mL−1) or anti-CD31
(1:2000 (v/v)). The antigens were detected using 3,3-diaminobenzidine. All images were
captured and analyzed with an Olympus BX51 microscope (Olympus America, New York,
NY, USA).

4.4. VEGFR2 Binding Assay

A displacement assay was conducted as reported previously [51] with some mod-
ifications, including using 20 ng of the VEGFR2 extracellular domains (R&D Systems,
Minneapolis, MN, USA). Peptide compounds were assayed three times per experiment.

4.5. Molecular Docking

PatchDock [52,53] and HADDOCK [54,55] were utilized for molecular docking study.
The structure of ligands was generated using the MODELLER program, version 9.18, and
refined using MD by the GROMACS, version 5.1.4; the VEGFR2 structure was extracted
from the VEGFA/VEGFR2 complex structure (PDB code: 3V2A). To perform docking
experiments, the PatchDock algorithm was used. The PatchDock performs molecular
docking based on structure geometry and discovers docking transformations generating
good molecular shape complementarity. Briefly, the PatchDock carries out three main
steps, including (1) matching of surface patches, (2) representation of molecular shapes,
and (3) filtering and scoring. Then, we further analyzed the top solutions by FireDock
procedure and selected the best solutions. To evaluate the accuracy of the docked attitudes
by PatchDock, we conducted a docking analysis employing the HADDOCK server. The
solutions with the highest score and with the most negative atomic contact energy (ACE)
value, which was also suggested by FireDock, were used for further assessment by the
HADDOCK. The selected complexes were used for defining active and passive residues in
the HADDOCK procedure. Next, two criteria, including the HADDOCK and Z score, were
applied to discard redundant clusters and select the candidate cluster.
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4.6. MTT Assay

The effects of C-VGB3 and L-VGB3 on the cell survival of HUVE and 4T1 cell lines were
investigated using the MTT assay, as previously described [7], with some modifications.
Cells were incubated with (0–1.81 µM) or without the peptide in the presence (20 ng·mL−1)
or in the absence of VEGF (Sigma-Aldrich, St. Louis, MO, USA). After 24 and 48 h of
incubation at 37 ◦C, the absorbance at 570 nm was recorded using an ELISA plate reader
(Space Fax 2100, Awareness, Palm City, FL, USA). The tests were repeated three times.

4.7. Tubulogenesis Assay

Tube formation of HUVECs was assayed on the Matrigel [56]. After pre-labeling with
PKH26 cell tracker (Sigma-Aldrich, St. Louis, MO, USA) HUVECs were plated into 24-well
plates pre-coated with Matrigel Basement Membrane Matrix (BD Biosciences, San Jose, CA,
USA). C-VGB3 (0.40 µM) was added to the medium, and images were manually captured
after 12 h using an Olympus BX-51 fluorescence microscope. Quantitative analyses were
performed by Wimasis online software.

4.8. Annexin V/PI Flow Cytometry

Annexin V/Propidium Iodide flow cytometry was performed to investigate the C-
VGB3 effect on apoptosis induction, as previously described [33], with some modifications.
The cultured HUVE and 4T1 cells were treated with PBS or C-VGB3 (0.40 µM) in the
presence of 20 ng·mL−1 VEGF for 48 h, and then were analyzed using flow cytometry.

4.9. Western Blot Analysis

The levels of signaling proteins were investigated by the Western blot assay. 4T1
and HUVE cells stimulated by VEGF (20 ng·mL−1) were treated with (0.40 µM) or with-
out C-VGB3 (treatment and control groups, respectively) after starvation in a serum-free
medium for 24 h. After washing with PBS buffer twice, the cells were treated with RIPA
lysis buffer containing (Sigma, St. Louis, MO, USA). Bradford′s test was performed to
estimate the protein concentration. Equal amounts of total protein were electrophoresed
on a 10% SDS-polyacrylamide gel, separated, and then transferred to a nitrocellulose mem-
brane. Nitrocellulose was soaked in a blocking buffer containing 5% dry milk, Tris-buffered
saline, and Tween 20 (TBST) for 1 h at ambient temperature. The nitrocellulose membrane
was then washed with wash buffer and treated with antibodies against VEGFR2 p-VEGFR2,
AKT, p-AKT, PI3K, mTOR, p-mTOR, NF-κB, p-NFκB, P53, MDM2, Bax, Bcl2, Bid, Bim,
Apaf-1, cytochrome c, caspase-9, Fas (CD95), DR4 (CD261), DR5 (CD262), caspase3, cas-
pase7, caspase8, PARP1, ERK 1/2, p-ERK1/2, Ras, Raf, Cdk4, GSK-3β, cyclin D1, vimentin,
N-cadherin, E-cadherin, FAK, p-FAK, paxillin, p-paxillin, and β-actin overnight at 4 ◦C.
The next steps were performed as described previously [25]. Because molecular weight
ranges of target signaling proteins are very close, individual gels were run for separate
signaling proteins (Figure S7).

4.10. Statistical Analysis

Data analysis production of graphs and statistical analysis were performed using the
GraphPad Prism software (GraphPad Version8). Data were presented as mean ± SEM. For
multiple comparisons, one-way ANOVA followed by Tukey’s post hoc test for statistical
significance was used. A two-way ANOVA followed by Tukey’s post hoc test was used for
in vivo efficacy experiments. p-values < 0.05 were considered statistically significant.

5. Conclusions

In conclusion, we showed that C-VGB3, which reproduces a binding region of VEGFB,
could interfere with the interaction between VEGFA and VEGFR2 and inhibit angiogenesis
and tumor growth via suppression of PI3K/AKT/mTOR and PLCγ/ERK1/2 pathways
in both endothelial and tumor cells. In a broader context, our study suggests that the
VEGFs share the binding regions that regulate their interaction with the ectodomain of their
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receptors. Identification of these common critical regions may be used to design molecules
targeting more than one member of VEGFRs that are highly relevant in the pathogenesis of
diverse cancers and blinding eye diseases.
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www.mdpi.com/article/10.3390/ph16060906/s1. Figure S1. The Synthetic pathway for the synthesis
of C-VGB3 sequence. The general method for the synthesis of C-VGB3 using SPPS. Figure S2. HPLC
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Figure S5. LC-MS of C-VGB3. Figure S6. Evaluating the binding capability of L-VGB3 to VEGFR2.
Figure S7. Raw data for western blot analysis. Table S1. Interaction of C-VGB3 and L-VGB3 with
VEGFR2. The nature of interaction and participating residues are listed. Table S2. Peptide purification.
Table S3. Analytical RP-HPLC separation [57–62].
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