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Abstract: Serious vision loss occurs in patients affected by chronically raised intraocular pressure
(IOP), a characteristic of many forms of glaucoma where damage to the optic nerve components
causes progressive degeneration of retinal and brain neurons involved in visual perception. While
many risk factors abound and have been validated for this glaucomatous optic neuropathy (GON),
the major one is ocular hypertension (OHT), which results from the accumulation of excess aqueous
humor (AQH) fluid in the anterior chamber of the eye. Millions around the world suffer from this
asymptomatic and progressive degenerative eye disease. Since clinical evidence has revealed a strong
correlation between the reduction in elevated IOP/OHT and GON progression, many drugs, devices,
and surgical techniques have been developed to lower and control IOP. The constant quest for new
pharmaceuticals and other modalities with superior therapeutic indices has recently yielded health
authority-approved novel drugs with unique pharmacological signatures and mechanism(s) of action
and AQH drainage microdevices for effectively and durably treating OHT. A unique nitric oxide-
donating conjugate of latanoprost, an FP-receptor prostaglandin (PG; latanoprostene bunod), new rho
kinase inhibitors (ripasudil; netarsudil), a novel non-PG EP2-receptor-selective agonist (omidenepag
isopropyl), and a form of FP-receptor PG in a slow-release intracameral implant (Durysta) represent
the additions to the pharmaceutical toolchest to mitigate the ravages of OHT. Despite these advances,
early diagnosis of OHT and glaucoma still lags behind and would benefit from further concerted
effort and attention.

Keywords: eye pressure; eyesight; glaucoma; intraocular pressure; ocular hypertension; therapeutic
modalities; IOP-lowering; drugs; microshunt

1. Introduction

The aim of this review is to present the pharmacological characteristics, in vivo efficacy,
and side-effect profiles of drugs that were approved by global health authorities within the
last six years to treat ocular hypertension and open-angle glaucoma. Pre-clinical and clinical
data will be appraised, and a brief discourse on future prospects will also be presented.

Blindness is undoubtedly the worst human sense-related ailment that a person has
to deal with and endure during their lifetime. Even less severe and dire outcomes due to
visual impairment can inflict psychological pain due to feelings of helplessness, loneliness,
and alienation that cause social disengagement and isolation with a profound loss in
quality of life [1–4]. Indeed, much has been written about the debilitating eye disease
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called “glaucoma” and how this silent thief of sight robs millions of people worldwide of
their eyesight, even though it is largely preventable [5–8]. Glaucoma is a constellation of
degenerative eye conditions in which the major risk factors include advancing age, elevated
intraocular pressure (IOP), African–American ancestry, low intracranial fluid pressure, and
reduced retinal blood flow [5–8]. These features, coupled with other insidious endogenous
toxic factors, damage the optic nerve and retinal ganglion cells (RGCs) to cause vision loss
that can, over several years, render the afflicted patient blind unless a diagnosis of elevated
IOP (ocular hypertension, OHT) and glaucomatous optic neuropathy (GON) occurs via an
in-depth eye examination and suitable treatment is initiated.

Essentially, there are five forms of glaucoma classified according to certain
criteria [1–4,8]. These are: open-angle (chronic) glaucoma (OAG), angle-closure (acute/
chronic) glaucoma (ACG), congenital glaucoma, secondary glaucoma, and normal tension
glaucoma (NTG) [9–20]. For brevity and focus, only OAG will be discussed since much
of the research and approved drug, device, and surgical treatments have been directed
towards this disease, although the latter modalities are also utilized for other types of glau-
coma. Since several clinical trials have demonstrated a strong association between OAG
and elevated IOP/ chronic OHT (cOHT) [9–22], the focus of much research has been to find
means to lower and control this modifiable biomarker, thereby slowing the progression of
the disease [5–7,23–25].

2. Open-Angle Glaucoma

OAG is the most prevalent of the glaucomas worldwide, having already afflicted
>53 million people thus far, with further increases predicted to reach >80 million by
2040 [4–7]. OAG, sometimes referred to as primary open angle glaucoma (POAG), accounts
for >70% of all glaucoma cases. The pathology of OAG impacts numerous parts of the eye,
optic nerve, brain relay centers, and visual cortex, but often begins with structural and
functional dysfunctions within various tissue components of the anterior chamber (AC)
of the eye (Figure 1). Summarily, the aqueous humor fluid (AQH) produced by the ciliary
epithelial cells of the ciliary body [26] flows through the pupil into the AC, from where it
flows towards the trabecular meshwork (TM) [27–31], and Schlemm’s canal (SC) [32–35]
to exit the AC and empty into the blood circulation via distal micro-vessels [27–35]. This
conventional TM/SC drainage of AQH represents 70–90% of the total egress from the
AC [27–31]. Even though unconventional outflow of the AQH via spaces between ciliary
muscle bundles and scleral tissue (uveoscleral (UVS) pathway) can occur, this route ordi-
narily only accounts for about 10–30% of the total AQH drained from the AC [27,36]. The
TM/SC pathway provides the major route for AQH egress and creates resistance that regu-
lates IOP and endeavors to prevent IOP spikes [37,38] while maintaining the shape of the
eyeball. Due to the heterogeneity of the TM cells (smooth muscle-like, endothelial-like, and
fibroblast-like) [30,31], this tissue has numerous functions, including the production and
secretion of local neurotrophic factors and proteolytic enzymes, and contributes to many
constituents of the extracellular matrix (ECM) such as collagen, fibronectin, proteoglycans,
and of course several types of cytokines [26–29]. With increasing age and pathologically
altered homeostasis, the capacity and capability, number, and phagocytic activity of the
TM cells decline [39–41] and proteins and lipids, cellular organelles, and other debris,
which is normally digested and cleared, begin to accumulate in and around the TM, the
juxtacanicular area by the SC, and within the ciliary muscle [42–44]. The TM cells also
become less flexible and have difficulty changing shape to potentially create vacuoles to
transport water across their cell membranes and/or generate spaces between the cells to
permit AQH to flow through to the SC [45–48]. There is also the issue of the uncoupling
of the transient receptor potential vanilloid cation channels (e.g., TRPV-4) [49–52] from
the nitric oxide (NO)-generating system in TM cells, which express endothelial and/or
inducible NO synthase(s) that results in less cGMP being produced [53–55] and thus a
reduced ability of TM cells to relax in the glaucomatous disease environment. Moreover,
under eye disease conditions as in OAG, the ECM elements are abnormally overproduced
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due to the release of transforming growth factor-β1/2 (TGF-β1/2) which up-regulates con-
nective tissue growth factor (CTGF) [43,44,46,48], with resultant excess deposition of ECM
components and mutant myocilin [42]. These congest the TM and SC and restrict AQH
outflow, and by killing some of the TM cells [56–69], they increase the overall resistance for
AQH to flow out of the anterior chamber. The chronic accumulation of AQH in the AC in
the front of the eye steadily raises the IOP, which physically distends all parts of the eye and
induces inflammatory reactions along the retina-optic nerve-brain axis [61–66], to which the
patient remains oblivious. While low levels of inflammation endeavor to provide protection
and homeostasis, chronically released pro-inflammatory substances damage many parts of
the eye, particularly the optic nerve [61–68]. As can be surmised from the pictograms in
Figures 2 and 3, chronic ocular hypertension (cOHT) imperceptibly bulges out the eyeball
and transmits compressive pressure at the retinal optic nerve head (ONH) [5–7,69,70]. This
induces inflammation by transforming local astrocytes into activated microglia at the ONH
and at the delicate lamina cribosa (LC) tissue [71–76], a meshwork of collagen fibers within
the ONH. The LC provides structural and nutritional support to RGC axons, which pass
through the pores within this meshwork enroute to the brain. Essentially, the LC is the
initial unmyelinated portion of the optic nerve, and the resulting degradation of it by
proteases released by the inflammatory events weakens the latter. Consequently, the RGC
axons bend and slow down the axonal transport of mitochondria and trophic factors from
the brain to the RGC somas and vice versa [77–89] thereby reducing the communication
between the eye and the brain. Soon the retinal blood vessels also exhibit increased tortu-
osity, and periods of ischemia occur that cause hypoxia and oxidative stress, resulting in
mitochondrial dysfunction in the vulnerable RGCs, LC cells, and RGC axons [67,90–96].
Malfunctions and reduced activity of the transport systems in the compromised RGCs
result in the extrusion of excess glutamate, endothelin, ATP, and other cytosolic constituents
such as tumor necrosis factor-α [68,86,92,95,97,98]. Extracellular ATP activates purinergic
receptors and floods the cells with Ca2+, which results in inflammasome-induced cytokine
production and release, thereby creating a feed-forward vicious cycle of inflammation,
complement activation, induction of autoimmune reactions, and cell death [68,85,86,89,97].
Excess glutamate and endothelin also cause excitotoxicity of the retinal neurons and the
optic nerve [99,100], and more damage is inflicted to the retina-optic nerve-thalamic brain
neuronal axis. Slowly, the RGC axons retract from the brain neurons, and an atrophic
condition prevails, leading to the death of many RGCs. During all these deleterious and
stressful events, the patient remains oblivious to the insidious damage being caused by
elevated IOP. When the patients have lost over half of the original number of RGCs, they
begin to notice diminished peripheral vision, and blind spots appear in their vision. With
advancing disease, contrast sensitivity is also reduced [96,100–102], and this is the critical
time for diagnosis in order to preserve the remaining eyesight. As soon as the ophthalmic
examination reveals a decrease in the optic disc area and a corresponding increase in the
optic cup and a thinning of the retinal nerve fiber layer (RNFL) [103–105] that reflects loss
of RGC axons, the clinician has diagnosed glaucomatous optic neuropathy (GON), most
likely caused by elevated IOP and/or due to abnormal retinal sensitivity to the prevailing
IOP or to the toxins being released due to the local inflammation [63–65,68,89,97,106]. Brain
defects emerge that increase visual impairment, loss of contrast, blind spots, etc. [107–114].
If the presence of GON is confirmed, the clinician would prescribe eyedrop medication to
lower the IOP, perform regular follow-up monitoring of the IOP, and adjust the treatment
paradigm as necessary. If the IOP cannot be controlled by one drug and the IOP is reduced
to normal levels (14–21 mmHg), adjunctive therapy may be necessary either using sin-
gle drugs [5–7,11,12,14,15,17,20,23–25,115,116] or using fixed-dose combination products
containing multiple health agency-approved ocular hypotensive drugs [117,118]. If the
patient’s IOP is unresponsive to pharmaceutical treatments, then surgery or implantation
of tubes or AQH microshunts into the AC of the eye may be necessary to drain the excess
AQH [119–122]. Since this review is focused on pharmaceuticals, only this topic will be
pursued further.
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Figure 1. High-level anatomical features of the human eye. The major relevant tissue structures of
the eye are shown in A. The inset area outlined in (A) is shown in more detail in (B) to highlight
key elements of the anterior chamber and the routes of AQH flow. Moreover, the tissues and other
components involved in the synthesis and drainage of the AQH from the anterior chamber are
depicted in (B).
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Figure 2. The figure shows the many areas and tissues in the front and back of the eye, the optic
nerve and brain relay stations, and visual cortex impacted by diverse sets of events and chemical
factors during development of glaucomatous optic neuropathy that can be induced by elevated IOP
(ocular hypertension). AQH, aqueous humor; CSF, cerebrospinal fluid; INC, intracranial; LGN, lateral
geniculate nucleus; ONH, optic nerve head; SC, Schlemm’s canal.
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Figure 3. This figure highlights how the raised IOP in the anterior chamber of the eye exerts
mechanical compressive pressure on the optic nerve head (ONH) and lamina cribosa (LC) regions
at the retinal and optic nerve levels (A,B). The many aspects of damage to the LC result in retinal
ganglion cell axon loss, causing reduction in the optic disc tissue and an increase in the cupping (C).
This culminates in a reduction in RGC axonal connections to the brain and, hence, visual impairment.
All these detrimental changes occur imperceptibly, and while the degenerative process occurs over
decades, untreated ocular hypertension continues to rob the patient of their peripheral vision (see
insets of the two people under normal and glaucomatous conditions). At this point, perhaps over
half of the original RGCs and their axons have been destroyed, and the patient is on the dangerous
path to becoming blind in the affected eye.

3. Major Methods to Lower and Control IOP/OHT

Three major types of drugs and procedures are utilized today to lower and con-
trol IOP. These constitute pharmaceuticals, implantable AQH shunting devices, and
surgeries [5–7,24,115,119–122]. Over the years, several classes of compounds have been
discovered, tested, pharmacologically characterized, developed into suitable dosage forms,
and approved by various world health authorities to impart efficacious ocular hypotensive
activity in animal models and glaucoma patients [5–7,23–25,115,116]. Such pharmaceuticals
include miotics (pilocarpine and carbachol; dosed topically ocularly (t.o.) up to four-times
daily), beta-adrenergic receptor antagonists (timolol and betaxolol; dosed t.o. twice daily),
carbonic anhydrase inhibitors (dorzolamide and brinzolamide; dosed t.o. twice daily),
alpha-2 adrenergic receptor agonists (brimonidine and apraclonidine; dosed t.o. once/twice
daily), FP-prostaglandin- receptor agonists (latanoprost, travoprost, tafluprost, bimatoprost;
dosed t.o. once daily at night), and fixed-dose combination products (dosed t.o. once/twice
daily) (Figure 4). Much clinical evidence supports the relatively different magnitudes of
IOP-lowering achieved by different classes of these drugs, with FP-receptor agonists hav-
ing the greatest efficacy and duration of action (25–33% IOP reduced over 24 h), followed
by other drugs such as beta-blockers (18–26% IOP reduced), alpha-2-adrenergic agonists
(20–25% IOP reduced), muscarinic agonists (20–25% IOP reduced), and carbonic anhydrase
inhibitors (15–25% IOP reduced) (Figure 4). These drugs induce a variety of ocular and sys-
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temic side effects and, in some cases, have low efficacy or are relatively short-acting. These
inadequacies and troublesome off-target activities often lead to patient non-compliance
and, in some cases, complete withdrawal from the medications. Due to space limitations
and in order to stay focused on the new generation of drugs, the side-effect profiles of
the afore-mentioned compounds will not be discussed here but have been reviewed and
discussed elsewhere [123–127].
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Figure 4. The schematics illustrate the processes of AQH production and its removal from the
anterior chamber of the eye via the conventional IOP-dependent outflow pathway (TM/SC) and the
uveoscleral pathway. Furthermore, the mechanism of action of key approved medications to lower
IOP by influencing the latter process and pathways is depicted in both (A) and (B). The red minus
symbol denotes inhibition and the green plus symbol indicates stimulation or activation.

During the last several years, new drug classes of compounds with different mecha-
nisms of action from the former drugs have emerged with suitable IOP-lowering and dura-
tion of action efficacies in animal models with elevated IOPs see in [7,23,24,80,106,115,127].
Some are undergoing clinical investigations in OHT/OAG patients [115,127]. The other
means to lower and control IOP have involved the implantation of miniature devices into
the AC using minimally invasive surgeries (MIGS) [120,121]. These AQH microshunts and
tubes are manufactured from different biocompatible materials, have different designs and
sizes, and have varied locations of AQH drainage from the AC [115,120,121]. Similarly,
IOP-lowering has been accomplished using either laser-induced or incisional surgical tech-
niques [115,119,122]. Since all of the latter aspects have been discussed in detail in recent
papers and reviews [115,119,121], I shall focus only on the recently approved medications
for treating OHT/OAG.

4. Recently Approved Drug-Based Therapeutics for OAG/OHT Treatment
4.1. Rho Kinase Inhibitors (Ripasudil and Netarsudil)

Until quite recently, the only approved drugs that specifically targeted the conventional
outflow pathway of AQH egress from the AC were muscarinic receptor agonists such as
pilocarpine and α2-adrenoceptor agonists such as brimonidine, the latter having a relatively
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small effect (Figure 4; [5–7,115–118,126]). Unfortunately, while these compounds lower
IOP reasonably well, their significant side effects severely limit their deployment since the
advent and clinical utility of FP-receptor agonist drugs to treat OHT/OAG with less or
more tolerable ocular side effects [7,115,116]. Therefore, new TM/SC outflow-promoting
therapeutics have been sought as potential replacements for pilocarpine and brimonidine,
especially since the use of AQH production inhibitors deprives the tissues lining the AC of
nutrients, oxygen, and antimicrobial agents that freshly synthesized AQH brings to the AC.

Rho kinases 1 and 2 are ubiquitous enzymes found in most mammalian cells. These rho
kinases (ROCKs) have a diverse set of roles, amongst which are cell mobility, proliferation,
and cell contraction [128,129]. Mammalian ROCK consists of a catalytic enzymic kinase
domain at the N-terminus, a coiled-coil region, and a pleckstrin homology domain, which
decreases the enzymic activity of ROCKs via an autoinhibitory intramolecular fold if RhoA-
GTP is absent. ROCKs promote increases in intracellular Ca2+ and induce the formation of
stress fibers and focal adhesions by phosphorylating myosin light chain (MLC), which in
turn causes actin binding of myosin II, resulting in smooth muscle contraction [128–133]
(Figure 5). Furthermore, ROCKs are partially responsible for neurite retraction through
phosphorylation of collapsin response mediator protein-2 (CRMP2) and inhibiting its role
in stimulating axonal outgrowth [128,129] (Figure 5). In the current context of OHT and
retinal degeneration, the ROCK enzyme is upregulated in the ONH of glaucomatous
eyes [134]. On the positive side, inhibitors of ROCKs promote relaxation of the smooth
muscle-like cells within the TM and SC and thereby help AQH exit from the latter tis-
sues, thus lowering IOP. Additional benefits of ROCK inhibitors involve up-regulation
and activation of phosphoinositide 3-kinase, Ser and Thr kinase AKT (protein kinase
B), and endothelial nitric oxide synthase within the endothelial-like cells of the TM and
SC [128–131]. Such activity results in the liberation of nitric oxide (NO), which relaxes
neighboring TM/SC cells to enhance outflow AQH. Much has been written about the
beneficial effects of this crosstalk in the context of treating OHT and OAG using either
ROCK inhibitors and/or guanylate cyclase activators [53,54] and NO-donors [55,115,116]
that generate intracellular cGMP to relax TM/SC tissues [53,54,115,128,129]. Some exam-
ples of the first-generation ROCK inhibitors include fasudil, Y-27632 and HA-135 (see, for
example, [128,129]; Figure 5, both insets). These compounds exhibited relatively low bind-
ing affinity for recombinant human ROCK-I and ROCK-II using a radiotracer assay with
inhibitory constants (IC50s) in the 1.6–6.7 µM range, which was reflected in their relatively
low IOP-lowering efficacies in rabbit and monkey eyes [129,132,133]. Even though the
absolute inhibitory constants of many ROCK inhibitors obtained using recombinant human
enzymes and a fluorescence polarization assay and the latter assay differ [129], including
those values obtained using human TM cells [129], the rank order of potency of the ROCK
inhibitors is fairly well reproduced [127,129].

With the afore-mentioned research knowledge, many researchers have successfully
created new chemical ROCK inhibitor structures and shown them to impart effective ocular
hypotensive activity in animals [128–133] and, in some cases, human subjects [135–144].
A fairly unique property of most, if not all, ROCK inhibitors is that they reduce IOP in
both normotensive and OHT eyes [128–133]. Ripasudil (Glanatec; IC50 = 9 nM) was the
first of the ROCK inhibitors to be approved by the health agency in Japan in 2014 for
lowering and controlling IOP [135,136]. More recently, the Food and Drug Administration
(FDA) granted marketing approval for netarsudil (Rhopressa; IC50 = 1 nM) [129,137] in
the US for the same indication based on extensive clinical data [138–143] (Figure 6). These
ROCK inhibitors generally reduce IOP in OHT/OAG patients by 16–20% and 20–25%,
respectively, following a single t.o. instilled eyedrop of the medications. As discussed
above, ROCK inhibitors stimulate AQH outflow through the conventional TM/SC path-
way (Figures 4 and 5). However, due to their vasorelaxant activities, they cause intense
hyperemia, conjunctival congestion, corneal verticillata, blurred vision, ocular pain, and
general eye irritation (Table 1; Figure 6). A recent report of netarsudil causing punctal
stenosis and potentially leading to complete punctal closure also requires attention [140]. In
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order to enhance the overall ocular hypotensive activity in OAG patients, fixed-dose combi-
nations of netarsudil and latanoprost (e.g., Roclatan; 0.02% netarsudil +0.005% latanoprost)
have been achieved, resulting in an overall 31–37% lowering of IOP [118,142]. Such high
efficacy has been ascribed to not only stimulation of TM/SC and uveoscleral outflow of
AQH, but netarsudil apparently also lowers episcleral venous pressure, and its inhibitory
activity at the norepinephrine transporter system probably also contributes to the final IOP
reduction observed [137,143]. Even though clinical evidence is currently lacking, in vitro
and animal studies have provided data in support of the neuroprotective effects of many
different structurally diverse ROCK inhibitors [128,129,144–150]. If these observations can
be replicated in human subjects, ROCK inhibitors have the potential to help directly protect
RGCs and perhaps promote neurite extension. Moreover, they may support RGC-axonal
elongation and enhance retinal blood flow, potentially offering optic nerve regeneration
capabilities in the future [146,147,151]. Such studies are eagerly awaited.
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ditions, and the changes in F-actin, phosphorylated myosin light chain (ppMLC), and vinculin in-
duced by these compounds. 

With the afore-mentioned research knowledge, many researchers have successfully 
created new chemical ROCK inhibitor structures and shown them to impart effective oc-
ular hypotensive activity in animals [128–133] and, in some cases, human subjects [135–
144]. A fairly unique property of most, if not all, ROCK inhibitors is that they reduce IOP 
in both normotensive and OHT eyes [128–133]. Ripasudil (Glanatec; IC50 = 9 nM) was the 
first of the ROCK inhibitors to be approved by the health agency in Japan in 2014 for low-
ering and controlling IOP [135,136]. More recently, the Food and Drug Administration 
(FDA) granted marketing approval for netarsudil (Rhopressa; IC50 = 1 nM) [129,137] in the 
US for the same indication based on extensive clinical data [138–143] (Figure 6). These 
ROCK inhibitors generally reduce IOP in OHT/OAG patients by 16–20% and 20–25%, re-
spectively, following a single t.o. instilled eyedrop of the medications. As discussed above, 
ROCK inhibitors stimulate AQH outflow through the conventional TM/SC pathway (Fig-
ures 4 and 5). However, due to their vasorelaxant activities, they cause intense hyperemia, 
conjunctival congestion, corneal verticillata, blurred vision, ocular pain, and general eye 
irritation (Table 1; Figure 6). A recent report of netarsudil causing punctal stenosis and 
potentially leading to complete punctal closure also requires attention [140]. In order to 
enhance the overall ocular hypotensive activity in OAG patients, fixed-dose combinations 
of netarsudil and latanoprost (e.g., Roclatan; 0.02% netarsudil +0.005% latanoprost) have 
been achieved, resulting in an overall 31–37% lowering of IOP [118,142]. Such high efficacy 
has been ascribed to not only stimulation of TM/SC and uveoscleral outflow of AQH, but 
netarsudil apparently also lowers episcleral venous pressure, and its inhibitory activity at 

Figure 5. The role of rho kinases in actin fiber contraction, actin depolymerization, and filament
stabilization within a TM/SC or CM cell is shown here in a schematic format. The blockage of such
processes and events by rho kinase (ROCK) inhibitors such as ripasudil and netarsudil causes the
eventual relaxation of the cells. The inset with one yellow star demonstrates the enhancement of fluid
outflow from the TM induced by the ROCK inhibitor fasudil in perfused anterior segments of porcine
eyes ex vivo. The inset with two yellow stars illustrates the effect of ROCK inhibitor Y-27632 alone or
on endothelin-1 (ET-1)-induced contraction of bovine TM cells under in vitro culture conditions, and
the changes in F-actin, phosphorylated myosin light chain (ppMLC), and vinculin induced by these
compounds.
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Figure 6. Clinical trial design (A), IOP-lowering efficacy data (B), and adverse effects (C) induced by
netarsudil (0.02%, once daily) or timolol (0.05%, twice daily), topically ocularly applied in patients
with OAG/OHT are shown.

4.2. Conjugate of Latanoprost and NO-Donor (Latanoprostene Bunod)

Nitric oxide (NO) is a well-known gaseous transmitter that is produced by NO syn-
thases acting on L-arginine and is released from many different cell types [152–157]. NO
serves many roles, including relaxation of smooth muscle or smooth muscle-like cells.
There are at least three types of NO synthase present in various mammalian cells. These
include the calcium-calmodulin controlled isoenzymes eNOS (endothelial NOS) and nNOS
(neuronal NOS) [152–157]. The inducible isoform, iNOS, also interacts with calmodulin and
produces NO for immune defense purposes to eliminate pathogens. Importantly, eNOS has
been localized to human TM, SC, and collecting channels, as well as in the ciliary muscle
(CM), especially its anterior longitudinal portion [153]. This part of the CM is connected
to the TM via tendinous insertions and modulates TM relaxation/contraction to regulate
the outflow resistance. Direct t.o. or intracameral application of NO donor agents has
been reported to stimulate TM outflow of AQH, and some animal-based and early clinical
investigations have indicated that systemic administration of nitro-vasodilators can lower
IOP at doses that do not compromise the cardiovascular system [152,154]. A corollary obser-
vation to the former situation is that OAG patients responded better to the NO-donor drugs
than those with other major types of glaucoma [154,157]. This may be due to the reduced
number of eNOS- and iNOS-containing TM and SC cells in OAG patients, and perhaps
also due to genetic defects (single nucleotide polymorphisms in eNOS) in the signaling
mechanisms associated with the NO-guanylate cyclase coupling system noted in OAG
patients [152–157]. Thus, it makes sense that exogenously delivered NO-donating com-
pounds would be useful in patients with OHT and/or OAG. Other evidence supports the
important role of NO endogenously in affecting TM and SC cellular activities. Thus, human
TM cell volume was decreased by NO-independent soluble guanylate cyclase activators
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YC-1 and BAY-58-2667, which involved the BKCa ion channel [53], and this is responsible
for some of the IOP reduction observed with these types of compounds [116,127,155,156].
Additionally, endogenous regulation of human SC volume was linked to NO signaling
in vitro, which directly influences IOP in vivo [54,115,116,127,155,156].

Table 1. Recently approved Eyedrop Medications for Treating OHT and OAG.

Eyedrop Medication and Year of
Health Agency Approval

Common Name and
Pharmacological Type
of the Drug.
(IOP Reduction
Achieved in OHT/OAG
Patients)

Topical Ocular Dosage
Concentration and
Form
(%, w/v)

Topical Ocular Dosing
Frequency

Mode(s) of Action
to Reduce IOP

Common Adverse
Effects

Glanatec (2014 Japan)
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Due to the existence and success of various fixed-dose combination products used
to manage OHT/OAG [117,118,127], and based on the information mentioned above, re-
searchers devised several types of drug conjugates that are held together through hydrolyz-
able chemical bonds [158]. One such dual-activity conjugate that demonstrated ocular hy-
potensive activity in animals and human subjects is latanoprostene bunod (LBN; [155,157];
Figures 7 and 8A). As shown below, this combined the FP-receptor agonist functionality
with an NO-donating molecule, which, when dosed t.o., penetrates the cornea and is broken
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down to release latanoprost free acid and NO into the AQH, from where they diffuse to
reach several different tissues.
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from the anterior chamber of the eye to lower IOP. Here, the phospholipase C activated upon bind-
ing of the FP-agonist hydrolyzes cell membrane phospholipids to generate intracellular inositol 
phosphates and diacyl glycerol, which in turn elicit intracellular Ca2+ release and activation of pro-
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the extracellular space. These bind to their cognate receptors, and the signal transduction is further 
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cellular events that culminate in promoting AQH efflux from the TM/SC and uveoscleral 
pathways in order to lower IOP. A major constituent of the TM tissue are smooth muscle-

Figure 8. (A) illustrates how nitric oxide (NO), either produced by neighboring endothelial-like TM
cells or by NO-donor drugs, elicits signaling in the smooth muscle-like TM cells. Binding of NO
to soluble guanylate cyclase generates intracellular cGMP, which activates protein kinase G that
uncouples actin-myosin to relax the TM cells, which results in enhanced outflow of AQH from the
anterior chamber and thus a reduction in IOP. The activated PKG also reduces the availability of
intracellular Ca2+ by inhibiting the endoplasmic reticular calcium transporter and by inhibiting a
range of ion channels that hyperpolarize and relax the TM and /or SC cells to lower IOP. Direct
inhibition of rho kinase by PKG is also possible. In the case of non-pigmented ciliary epithelial (NPCE)
cells, there is evidence that the NO-cGMP-activated PKG can inhibit Na-K-ATPase to reduce AQH
production and help reduce IOP (see the light blue outlined and unfilled arrow). (B) shows the various
cellular and intracellular components involved in mediating the effects of FP-receptor agonists within
smooth muscle cells of the ciliary muscle, TM, and SC to promote efflux of AQH from the anterior
chamber of the eye to lower IOP. Here, the phospholipase C activated upon binding of the FP-agonist
hydrolyzes cell membrane phospholipids to generate intracellular inositol phosphates and diacyl
glycerol, which in turn elicit intracellular Ca2+ release and activation of protein kinase C, respectively,
leading to enhanced myosin-activated protein kinase (MAPK) activity. Migration and interactions
of MAPK with nuclear materials cause the generation and release of pro-matrix metalloproteinases
(MMPs) into the cytoplasm of target cells. The latter are cleaved to liberate and activate MMPs that
digest ECM to create or enlarge spaces between CM fibers and around TM to allow AQH outflow
via both UVS and TM/SC pathways, thereby lowering IOP. Since cyclooxygenase-2 (COX-2) is also
increased, additional prostanoids are generated and released into the extracellular space. These bind
to their cognate receptors, and the signal transduction is further amplified (e.g. (B,C)). (C). Numerous
other events occur, and endogenous hormones/peptides (e.g., Stanniocalcin-1; vasoactive intestinal
peptide (VIP)) are released that also help AQH outflow and stimulate additional IOP-lowering.

Mechanistically, these individual agents then activate the FP-receptor and guanylate
cyclase in their target cells, respectively, to induce the many downstream molecular and
cellular events that culminate in promoting AQH efflux from the TM/SC and uveoscleral
pathways in order to lower IOP. A major constituent of the TM tissue are smooth muscle-like
cells, which rapidly relax and decrease their cellular volume via K+-channels in response
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to the NO-guanylate cyclase-cGMP signaling cascade (Figure 8A; [45,46]). These changes
account for the improvement in TM morphology and health, leading to an increase in AQH
outflow. Since NO-donor nitro-vasodilator molecules inhibit Na+-K+-ATPase in the ciliary
epithelium [159], additional IOP-lowering by reducing AQH formation may be the outcome.
The other major contributor to the IOP-lowering actions of LBN [160] is the FP-receptor
agonist, latanoprost free acid (LFA), which is generated after LBN is metabolized down to
its constituents (Figure 7). LFA engages phospholipase C upon binding to the FP-receptor
and triggers the production of the second messengers, inositol trisphosphates (IP3) and
diacyl glycerol (DAG), which trigger the release of intracellular Ca2+ and activation of
protein kinase C, respectively, resulting in cellular contraction [7,20,115,116] (Figure 8B,C).
Further amplification of this signaling cascade (Figure 8B,C) occurs via enhancement of
gene expression of COX-2 to generate and release endogenous PGs, which can activate
EP2 and EP4 receptors to generate cAMP, which causes cellular relaxation. Thus, a series
of contraction/relaxation cycles will probably ensue. Additional stimulation of nuclear
activity results in the production and release of peptides and hormones such as vasoactive
intestinal peptide (VIP) [161] and stanniocalcin-1 [162], respectively. These agents activate
their receptors, and other beneficial cellular activities are induced that all culminate in
enhancement of AQH outflow via both TM/SC and UVS pathways to lower IOP.

Early animal-based studies demonstrated the good ocular hypotensive efficacy of
LBN in normotensive and OHT eyes of rodents (44% drop in IOP 1.5–2 h post t.o. dosing),
rabbits and dogs (23–27% drop in IOP 0.5–2 h post t.o. dosing), and Cynomolgus monkeys
(31–35% decrease in IOP at 3–4 h post t.o. dosing) [127,155]. In a dose-finding clinical
study using varying concentrations of LBN (0.006% to 0.040%) and latanoprost 0.005%,
0.024% LBN was found to be the optimal concentration of LBN, which was then used
in phase-III studies [163–167]. OHT/OAG patients tolerated 0.024% LBN well, and IOP
was reduced to a greater extent than that induced by 0.05% timolol at all time points,
including in the morning. LBN 0.024% lowered IOP by 22% within the first month of t.o.
dosing and achieved a 26% reduction by 1 year from baseline, indicating that durable
and sustained IOP control was possible with this medication (Figure 9; [163–167]). The
side-effect profile of 0.024% LBN was also acceptable (Figure 10 [163–167]). According to
all of these characteristics, LBN received marketing authorization from the FDA in 2017
and represents a novel class of conjugated drugs that offer AQH drainage from the AC
through both conventional and unconventional pathways. Based on the potential for NO to
inhibit Na+-K+-ATPase, there may be a small contribution to the lowered IOP via inhibition
of AQH formation [159].

4.3. Sustained Delivery Bimatoprost Implant

Bimatoprost is the amide prodrug of a potent FP-receptor agonist, 17-phenyl PGF2α, a
free acid. Bimatoprost is metabolized by corneal amidases upon t.o. dosing, and the free
acid is considered the active moiety that activates the FP-receptor in the CM and TM to
induce IOP-lowering in animals and human subjects [168–172]. As described above for
other FP-receptor agonist pro-drugs such as latanoprost and travoprost, bimatoprost free
acid binds to the FP-receptor to primarily induce UVS outflow and also increases TM/SC
outflow of AQH to reduce IOP (see section under LBN; Figure 8A–C). Whether the recent
observation of reduced episcleral venous pressure by bimatoprost in dogs [173] can be
reproduced in human OHT/OAG patients remains to be determined. However, given the
patient compliance issues described above with t.o. medications for OHT/OAG treatment
and to provide sustained delivery of the ocular hypotensive drug over several months,
an intracameral injection of a bimatoprost implant was approved by the FDA in 2018 to
provide protracted IOP reduction with its attendant side effects [174–177].
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on IOP changes in OAG / OHT patients covering treatments from 1 week to 12 months are shown.

Pooled clinical trial data using 10 or 15 µg of bimatoprost implant revealed at least
20%, 25%, 30%, 35%, and 40% IOP decreases at weeks 2, 6, and 12, which, as expected,
were greater than those induced by the comparator timolol [177]; Figure 11. The implant
appeared to be well tolerated despite inducing a high level of hyperemia, foreign body
sensation, eye pain, photophobia, and overall eye irritation during the first two weeks after
implantation. These side effects appeared to subside after this time, but the incidence of
corneal endothelial cell loss, blepharitis, corneal edema, iritis, dry eye, and iris pigmentation
greatly increased after 2 weeks and appeared to continue increasing over time (Figure 11).
Whether physician and patient acceptance of such features of the implant will endure
remains to be determined.

4.4. Novel Non-Prostaglandin EP2-Prostanoid Receptor Agonist (Omidenepag Isopropyl)

Over two decades have elapsed since the first prostaglandin (PG) FP-receptor agonist,
latanoprost pro-drug, was approved for treating OHT/OAG [116]. During this time, several
other PG receptor agonists that stimulated IOP-lowering through other prostanoid receptors
reached varying levels of pre-clinical discovery / characterization and clinical develop-
ment. Some examples include the DP and EP2 receptor agonists (AL-6598); [178,179], EP2-
receptor agonists (PF-04217329; ONO-AE1-259-0; Butaprost) [180–182], the EP4-receptor
agonist [183], the thromboxane receptor agonist [184], and the dual FP/EP3 receptor ago-
nist (ONO-9054; Sepetaprost; [185]) with ocular hypotensive activities. The most advanced
and recently approved EP2-receptor agonist, which is a unique non-prostanoid drug, is
omidenepag isopropyl ester (OMDI; 0.002%), which was approved and marketed in Japan
in 2018 as Eybelis and approved by the FDA in 2022 and marketed as Omlonti for lowering
and controlling IOP [115,116,186–188]. Omidenepag is the free acid active moiety released
into the AQH following hydrolysis of OMDI by corneal esterases after t.o. dosing of
OMDI [187]. OMD exhibits a high affinity and selectivity for the EP2-receptor and behaves
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as a full agonist to induce cAMP production within the target cells of tissues of the outflow
(TM/SC; CM/sclera) and inflow (ciliary epithelium) pathways [187,188]; Figure 12A,D.
Amongst many drugs and drug candidates, 0.002% and 0.01% OMDI exhibited one of the
fastest onsets of action in terms of reducing IOP in many mammalian species, including con-
scious and sedated Cynomolgus monkey eyes, inducing 44–56% IOP reduction in the latter
between 1–4 hrs post t.o. dosing [127,187,188] (Figure 13A–D). The mechanism of action in
the mildly sedated monkey eyes was shown to be activation of mainly the UVS outflow of
AQH, with an additional contribution from the stimulation of the TM/SC outflow path-
way [188], Figure 14. A possible influence of OMD on the AQH inflow mechanism cannot
be fully ruled out since functional EP2 receptors are also present on non-pigmented ciliary
epithelial cells [189,190] in addition to those found on the CM, TM, and SC [191]. Due to
the involvement and ability of cAMP produced by EP2 receptor activation by OMD and the
potential up-regulation of inducible cyclooxygenase-2 [192] to stimulate production of en-
dogenous PGs [193–195], it is likely that a combination of smooth muscle relaxation (ciliary
muscle, TM, and perhaps Schlemm’s Canal (SC) cells) [196–199] (Figures 4 and 8C) and
MMPs-induced reduction in ECM in and around TM/ ciliary muscle fibers/sclera [191,200]
is responsible for the high IOP-lowering efficacy of OMDI (Figure 13). OMD also directly
suppressed mRNAs and proteins associated with tissue growth factor β2 (TGFβ2)-induced
ECM deposition [201], and downregulated mRNAs for fibronectin1, collagen-12A1 and
collagen-13A1 in 2D-cultures of human TM cells, thereby reducing the ECM components
that pathologically cause outflow resistance [202]. Relaxation of the smooth muscle cells
associated with ciliary muscle, TM, and SC cells by EP2 agonists (Figure 12C) [196–199]
also results in enhanced AQH drainage and ocular hypotension [180,181,188,202]. Taken
together, the active forms of EP2-receptor agonists, including OMD, appear to powerfully
reduce and control IOP in a sustained manner in multiple species (Figure 13A–D) [115,187].
They accomplish this by recruiting several molecular and cellular components and factors
within the eye’s anterior chamber tissues (Figures 4 and 8C). Moreover, it seems that EP2
receptor agonists can also provide protection against endoplasmic reticulum stress in TM
cells [203] and reduce the potential conversion of smooth muscle TM cells to a fibroblastic
phenotype [204], thereby preserving the integrity and functionality of the AQH drainage
system. The multiplicity of actions of OMD observed in vitro and in vivo in animal models
of OHT bode well for potentially high ocular hypotensive efficacy in human subjects.

Phase-I clinical studies and the respective OMDI pharmacokinetics data indicated
a promising safety and tolerability profile and demonstrated no accumulation following
7 days of t.o. dosing and a short half-life in plasma indicative of low systemic exposure [205].
Taken together, three dose-finding studies and a dose-frequency study demonstrated that,
of the seven doses of OMDI studied, 0.002% and 0.0025% induced the best IOP-reducing
actions, which were similar to those of latanoprost 0.005%. Since OAG and other forms of
glaucoma are chronic diseases requiring long-term t.o. dosing to control IOP, the lowest
effective dose is preferred to obtain the highest therapeutic index. Thus, 0.002% OMDI was
considered the optimal concentration to achieve the desired IOP reduction with a favorable
side-effect profile and ocular hypotensive efficacy comparable to latanoprost 0.005% [206].
In phase-III clinical trials of OMDI ophthalmic solution 0.002% (Figure 15A–C), two studies
used patients with glaucoma or OHT (SPECTRUM 3, NCT03691649; and SPECTRUM 4,
NCT03691662); two investigations enrolled patients with open-angle glaucoma or OHT
(RENGE, NCT02822729; and PEONY, NCT02981446) [207]; one trial comprised a OAG or
OHT patient population (AYAME, NCT02623738) [208]; and two trials used patients with
OAG or OHT who were non-/poor responders to latanoprost 0.005% (FUJI, NCT02822742;
and SPECTRUM 5, NCT03697811) [209]. The clinically beneficial efficacy of OMDI in
treating patients with OAG or OHT was confirmed in phase-III trials that demonstrated
IOP-lowering non-inferiority to those with latanoprost 0.005% (AYAME; PEONY) or those
with timolol 0.5% (SPECTRUM 4; NCT03691662) and sustained IOP reduction alone (SPEC-
TRUM 3; RENGE) or in combination with timolol 0.5% (RENGE) (Figure 15A,B).
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presented for comparison (B) within two days and after two days of treatment.



Pharmaceuticals 2023, 16, 791 17 of 35

Figure 12. The composite in vitro data pertaining to binding of omidenepag isopropyl (OMDI) and
its active free acid (OMD) to various prostanoid receptors and sub-types are shown in (A). Since
OMD exhibited the highest affinity (lowest binding inhibition constant, Ki) for the EP2 receptors
(A) and significantly lower affinities for other receptors, it was deemed to be EP2-receptor-selective
compound (B). The relaxation of cat ciliary muscle by various prostanoids and isoproterenol in vitro
is shown in (C). Note the high potency of the natural prostaglandin (PGE2) that interacts mainly with
EP2 and EP4 receptors. Finally, the ability of OMD to potently (low nanomolar EC50 values) activate
adenylate cyclase, only via the EP2-receptor, to generate intracellular cAMP is depicted in (D).
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rabbits (A), dogs (B), Cynomolgus monkey eyes (C), and in ocular hypertensive Cynomolgus mon-
keys (D) compared with latanoprost (xalatan; 0.005%) and/or timolol (0.05%) is shown. Note that
xalatan did not lower IOP to any appreciable extent in ocular normotensive animals, unlike OMDI.
In the ocular normotensive (C) and hypertensive monkeys, OMDI (0.001–0.03%) demonstrated either
equivalent or greater effectiveness in lowering IOP than latanoprost (xalatan 0.005%). A second
dose of OMDI lowered IOP further after the first dose (C) without inducing tachyphylaxis of the
IOP-reducing effects of OMDI. The statistical significance changes verses controls (baselines) are
represented by the asterisks and crosses (p < 0.05–0.0001). The arrows signify the t.o. dosing of the
compound.
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Figure 14. The mechanism of action of OMDI in terms of its ability to influence ocular AQH dynamics
was studied in lightly anesthetized ocular hypertensive monkeys following ocular dosing with a
single drop of 0.002% OMDI. The figure shows that OMDI promoted AQH outflow via both the
conventional TM/SC and the uveoscleral outflow pathways (B–D) without altering the production
of AQH (A), unlike FP-receptor agonists such as latanoprost that uniquely and primarily activate the
uveoscleral pathway (D). Asterisk denotes statistically significant verses the vehicle control.

OMDI as a treatment option for non-/low responders to latanoprost was established in
an open-label phase-III investigation (FUJI; NCT02822742) that demonstrated an additional
~3 mmHg IOP-lowering in patients after switching to OMDI for 4 weeks from latanoprost
0.005% (Figure 15C). This additional IOP-reducing action observed with OMDI has also
been demonstrated in US patients in the phase-III SPECTRUM 5 trial, with reductions in
IOP of the same order as those in Japanese patients in the FUJI study [210].
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 Figure 15. (A). Clinical study data comparing the IOP-lowering efficacy of topical ocularly adminis-
tered OMDI (0.002%; once daily) and latanoprost (0.005%; once daily) in patients with OHT/OAG
is shown for treatment spanning 1–4 weeks (A). A closely similar time-course of efficacy is evident
between the two different classes of drugs (A). In the inset are shown the chemical structures of
OMDI and its free acid (OMD), which have a non-prostanoid structure and bind to EP2 receptors,
as compared to latanoprost, which has typical prostaglandin structural features and whose free
acid interacts with the FP-receptor. (B) displays the clinical efficacy of OMDI (0.002%, once daily)
in lowering and controlling IOP over 1 year when tested alone in OHT/OAG patients with low
baseline IOPs (Group 1; ocular normotensives) or in patients with high baseline IOPs (Group 2;
ocular hypertensives), and when tested in the latter group of patients in conjunction with timolol
(0.05%, twice daily dosing) (Group 3; ocular hypertensives). (C) depicts the change in IOP reduction
when OHT/OAG patients who were low responders to latanoprost (0.005%, once daily dosing) were
switched over to topical ocular treatment with OMDI (0.002%, once daily dosing) over a 4- week
period of study.
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The SPECTRUM 5 clinical study was an open-label, multicenter study in patients with
OAG or OHT who were latanoprost low-/non-responders, i.e., those that did not achieve a
≥15% reduction in IOP from the end of the washout period to the end of the latanoprost
run-in period. A total of 107 patients were enrolled and were t.o. treated with OMDI 0.002%
once daily in the evening for 3 months, and their IOPs were measured at three timepoints
(08:00, 12:00, and 16:00) on their scheduled visits at Week 2, Week 6, and Month 3. The
primary efficacy endpoint of this trial was met (i.e., significant change from baseline in
mean diurnal IOP at Month 3). OMDI 0.002% t.o. once daily resulted in an early onset of
IOP reduction at the first post-baseline visit (Week 2) and a continued, stable IOP-reducing
activity throughout the remainder of the trial. OMDI 0.002% was well tolerated; no patients
discontinued due to AEs, and no safety concerns of significance were reported. Of the
nine cases of conjunctival hyperemia, eight were mild in severity, and only one case of an
increase in eyelash pigmentation was noted.

The novel mechanism of action of OMDI (IOP reduction by recruiting both the conven-
tional and uveoscleral outflow pathways) may explain the additional IOP-reducing effect
in both the FUJI study in Japanese patients and the SPECTRUM 5 trial in the US-based
patient population. Of note was that results from the RENGE trial showed IOP reductions
with OMDI of 0.002% achieved in patients with normal IOPs (i.e., baseline IOPs were
≥16 < 22 mmHg), suggesting that OMDI may be effective in patients with normal tension
glaucoma (NTG) (Figure 15B) [211]. Clearly, the higher the baseline IOPs, the greater the
efficacy of OMDI 0.002% (Figure 15B). More recent studies indicated that OMDI may also
be therapeutically useful in Japanese patients with secondary glaucomas and primary
angle-closure glaucoma (Figure 16; [211–213]). This is where a relatively fast onset of action
of OMDI may be beneficial, as identified from the monkey studies [127,187,188]. However,
these results require confirmation via additional clinical investigations in Japanese patients
and in patients of different ethnicities in order to support these initial observations. Never-
theless, OMDI can be combined with other ocular hypotensive drugs approved for treating
OHT/OAG. Data from monkey and human studies provide support for such adjunctive
therapies [187,207,214] (Figures 13 and 15B).

Of the ocular side effects with OMDI (in the AYAME and FUJI trials), conjunctival hy-
peremia was the most common, although this was rather mild in the majority of the subjects.
Corneal thickening was also noted (Figure 17). Mild or moderate macular edema/cystoid
macular edema was noted in 14 subjects, but all of these happened in pseudophakic pa-
tients in the RENGE trial (Figure 17). These results support the contraindication of OMDI
use in pseudophakic patients as noted in the OMDI 0.002% approved drug label in Japan.
Prostaglandin-associated periorbitopathy (PAP) eyelid pigmentation, eyelash growth, and
DUES have been reported for all t.o. used FP-receptor agonist drugs [116,124–126,215,216]
(Figure 18). However, in comparison with the latter class of drugs, including bimato-
prost and travoprost, OMDI 0.002% induced a much lower frequency (0–2%) of PAP
symptoms [217–219] (Figures 18 and 19). These data suggest that OHT/OAG patients
may benefit from switching to treatment with OMDI 0.002% rather than continuing with
FP-receptor agonists and being susceptible to the associated appearance-altering AEs. How-
ever, the t.o. treatment paradigm for OHT/OAG patients is in the domain of the treating
clinician. The RENGE trial data indicated no appearance-altering side effects throughout
the year-long trial. Other researchers have also reported similar results when studying the
appearance-altering side effects of t.o. OMDI 0.002% or tafluprost in patients with newly
diagnosed OAG or OHT (Figure 18). Thus, in comparison with tafluprost-treated eyes,
those that received t.o. OMDI 0.002% exhibited significantly fewer cases of eyelash growth
(0% vs. 32%), a lower rate of eyelid pigmentation (0% vs. 4%), and a lower incidence
of DUES (2% vs. 12%). Additional results from the deployment of OMDI 0.002% in a
post-marketing real-world study of >1800 Japanese patients reported IOP reductions in
patients with normal IOP (≤16 mmHg), consistent with the findings of the RENGE trial in
patients with NTG [212]. Furthermore, this new study described no cases of PAP symp-
toms, cystoid macular edema, or uveitis, further strengthening the safety profile of OMDI
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0.002%. Therefore, the clinical evidence gathered thus far suggests that OMDI 0.002% is
non-inferior to first-line FP-receptor agonists such as latanoprost 0.005% and is a suitable
alternative to the latter class of t.o. medications, thereby avoiding the undesirable facial
appearance-altering side effects linked to the use of FP-receptor agonists. Various animal-
based and clinical studies have also demonstrated that OMDI can be combined with other
IOP-lowering drugs to obtain additional efficacy [187,207,208,214] (Figures 13 and 15B).
Such adjunctive therapy will prove useful for patients with many types of glaucoma [212].
Furthermore, recent clinical studies involving OMDI 0.002% demonstrated its beneficial
ocular hypotensive properties in patients suffering from not only OHT and OAG, but it
also lowered IOP significantly in NTG and ACG patients as well over a 4- week trial period
(Figure 16) [127,212,213].
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Figure 16. Results from clinical evaluation of OMDI (0.002%; once daily topical ocular dosing)
in a variety of patients afflicted with different types of glaucomas are displayed. The data show
that OMDI exhibited different levels of ocular hypotensive activity in these varied populations of
glaucoma patients. Apparently, OMDI lowered the highest magnitude of IOP in patients with OHT
and secondary forms of glaucoma and exerted slightly lower efficacy in a group of OAG/NTG and
ACG patients. Nevertheless, OMDI is an effective ocular hypotensive medication that is well tolerated
and is effective in all four types of glaucoma/OHT patients after 4 and 12 weeks of treatment. Asterisk
denotes statistically significant verses the baseline values.



Pharmaceuticals 2023, 16, 791 22 of 35

Pharmaceuticals 2023, 16, x FOR PEER REVIEW 27 of 41 
 

 

AEs. However, the t.o. treatment paradigm for OHT/OAG patients is in the domain of the 
treating clinician. The RENGE trial data indicated no appearance-altering side effects 
throughout the year-long trial. Other researchers have also reported similar results when 
studying the appearance-altering side effects of t.o. OMDI 0.002% or tafluprost in patients 
with newly diagnosed OAG or OHT (Figure 18). Thus, in comparison with tafluprost-
treated eyes, those that received t.o. OMDI 0.002% exhibited significantly fewer cases of 
eyelash growth (0% vs. 32%), a lower rate of eyelid pigmentation (0% vs. 4%), and a lower 
incidence of DUES (2% vs. 12%). Additional results from the deployment of OMDI 0.002% 
in a post-marketing real-world study of >1800 Japanese patients reported IOP reductions 
in patients with normal IOP (≤16 mmHg), consistent with the findings of the RENGE trial 
in patients with NTG [212]. Furthermore, this new study described no cases of PAP symp-
toms, cystoid macular edema, or uveitis, further strengthening the safety profile of OMDI 
0.002%. Therefore, the clinical evidence gathered thus far suggests that OMDI 0.002% is 
non-inferior to first-line FP-receptor agonists such as latanoprost 0.005% and is a suitable 
alternative to the latter class of t.o. medications, thereby avoiding the undesirable facial 
appearance-altering side effects linked to the use of FP-receptor agonists. Various animal-
based and clinical studies have also demonstrated that OMDI can be combined with other 
IOP-lowering drugs to obtain additional efficacy [187,207,208,214] (Figures 13 and 15B). 
Such adjunctive therapy will prove useful for patients with many types of glaucoma [212]. 
Furthermore, recent clinical studies involving OMDI 0.002% demonstrated its beneficial 
ocular hypotensive properties in patients suffering from not only OHT and OAG, but it 
also lowered IOP significantly in NTG and ACG patients as well over a 4- week trial period 
(Figure 16) [127,212,213]. 

 
Figure 17. Adverse events observed with topical ocular instillation of omidenepag isopropyl (OMDI; 
0.002%, dosed once daily) or latanoprost (0.005%, once daily dosing) in OHT/OAG patients in a 
phase-III study are shown for comparison. 

Figure 17. Adverse events observed with topical ocular instillation of omidenepag isopropyl (OMDI;
0.002%, dosed once daily) or latanoprost (0.005%, once daily dosing) in OHT/OAG patients in a
phase-III study are shown for comparison.

Pharmaceuticals 2023, 16, x FOR PEER REVIEW 28 of 41 
 

 

 
Figure 18. The objective symptom evaluations of periocular adverse reactions in patients receiving 
topical ocular OMDI (0.002%, once daily) or tafluprost (an FP-receptor agonist; once daily dosing) 
are shown. Comparative data pertaining to measures of eyelid pigmentation, eyelash growth, and 
deepening of the upper eyelid sulcus (DUES) are illustrated. 

Figure 18. The objective symptom evaluations of periocular adverse reactions in patients receiving
topical ocular OMDI (0.002%, once daily) or tafluprost (an FP-receptor agonist; once daily dosing)
are shown. Comparative data pertaining to measures of eyelid pigmentation, eyelash growth, and
deepening of the upper eyelid sulcus (DUES) are illustrated.
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Figure 19. The relative propensity to induce prostanoid-associated periorbitopathy (PAP) symptoms
or other ocular and adjacent tissue cosmetic alterations by four different FP-receptor agonists and an
EP2-receptor agonist, OMDI, following topical ocular treatment in ocular hypertensive or glaucoma
patients is displayed. The overall severity of the changes induced is shown on a relative scale or
graded format ranging from Grade 0 to Grade 3.

5. Conclusions

The available care and long-term management of glaucoma vary, but the visual
disability is mainly preventable when detected and treated in time. Early diagnosis
remains a huge challenge. Nevertheless, significant progress has been made in better
understanding the pathological aspects of and combating OHT and OAG over the last
2–3 decades [5–10,220,221]. The major contributor to this has been the advent and accep-
tance of a key modifiable biomarker that triggers appropriate treatment initiation, namely el-
evated IOP [11–22,70–76,104,105]. With this came the creation, validation, and deployment
of numerous types of animal models of OHT (natural and induced) [7,126,127,222–226] to
permit screening of potential ocular hypotensive drug candidates. While translation of
many such agents has lagged behind, a number of new clinically viable drugs with high
enough therapeutic indices have emerged to which patients have responded with acceptable
tolerability and efficacy. Three major classes of recently approved and marketed pharma-
ceuticals have thus been discussed in this review, viz., rho kinase inhibitors (ripasudil
(Glanatac®) [135,136]; netarsudil (Rhopressa®)) [137–140], a conjugate of an FP-receptor ag-
onist and an NO-donor (latanoprostene bunod (Vyzulta®)) [155–167], and non-prostanoid
EP2-receptor agonist (omidenepag isopropyl (Eybelis®, Omlonti®)) [186–188,201–219]. In
order to overcome compliance issues, a sustained delivery platform was used to create an
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intracameral injectable polymer-based rod containing an old pro-drug FP-receptor agonist,
bimatoprost (Durysta®) [174–176].

On the horizon are a number of pharmaceutical agents in clinical trials that are embed-
ded in sustained-release vehicles, including a silicone ring containing bimatoprost, punctal
plugs, and contact lenses that release travoprost or latanoprost, and a microshunt that
would release travoprost [220]. A novel dual-activity compound expressing FP- and EP3-
receptor agonist properties that lowers IOP in animals and human subjects, sepetaprost,
has advanced to late-stage clinical evaluation [185]. New classes of compounds with ad-
equate IOP-lowering activity and side-effect profiles in animals are also emerging but
require investigative new drug-enabling studies or further phases of drug development
to permit their evaluation for durable clinical acceptability as new ocular hypotensive
drugs [7,115,116,127–129,227,228]. A few examples include an anticonvulsant, analgesic,
and anxiolytic medication used to treat epilepsy, neuropathic pain, fibromyalgia, restless leg
syndrome, opioid withdrawal, and generalized anxiety disorder that has been repurposed
as an IOP-reducing agent (pregabalin [228]), a prostaglandin EP2-receptor agonist [227], an
autotaxin/lysophosphatidic acid receptor antagonist [229] and a TRPV-4 antagonist [50,51]
(see [127] for more information on these and additional investigative drug candidates).

In addition to the traditional small-molecule drugs to treat OHT/OAG discussed
above, new techniques and technologies are emerging that could potentially provide
durable IOP reduction without needing medication eyedrops. These include gene-directed
therapies involving the use of small interfering ribonucleic acids (siRNAs) that target
relevant receptors (e.g., beta-adrenergic [230]), blocking actions of cytokines [231,232],
gene-therapy that introduces RNAs for MMPs to clear ECM around the TM cells [233], and
the use of gene-editing technology (CRISPR-Cas9) to affect myocilin [234] or aquaporin-
channels to modulate AQH dynamics [235].

In view of the fact that many patients with NTG and/or OAG/OHT on maximally ac-
cepted therapy still continue to progress towards more severe visual disability. It indicates
that IOP is not the only factor that needs to be modified to claim success in managing the
degenerative ocular diseases [5–7,10–12]. Consequently, direct protection of RGCs, the RGC
axons, the optic nerve, and brain thalamic and visual cortical neurons is necessary in addi-
tion to decreasing and controlling IOP [236–240]. Consequently, many approaches in this
realm are at various stages of maturity in terms of demonstrating neuroprotective and/or
regenerative activities. Moreover, potentially disruptive long-term treatment paradigms for
OHT/OAG and other forms of glaucoma encompass cell-replacement therapies for both the
anterior chamber tissues such as the TM [241–243] and also for RGCs in the retina [241,244].
Different types of electrical, electromagnetic, ultrasonic, and optogenetic technologies are
also emerging that would be of benefit to patients suffering from OHT/OAG and other
glaucomatous diseases [245–247]. Many aspects of these novel therapeutic modalities
have been recently reviewed and discussed and cover the potential therapeutic effects of
AQH-derived and/or retinal organoid-derived extracellular vesicles and their cargos, such
as miRNAs and trophic factors, and even the use of nutraceutical approaches to curb vision
loss [236–250]. Likewise, to aid in the early detection and diagnosis of OHT, OAG, and
other degenerative retinal and brain diseases, several novel tools are being evaluated and
have advanced to different degrees of predictability, reliability, and acceptability by the
scientific community [251–256]. We hope that many of the latter diagnostic technologies
and therapeutic modalities will enter clinical trials and proceed towards health authority
approvals in the near future. Such progress should offer more hope for patients suffering
from the afore-mentioned ocular degenerative disorders. Researchers in academia and the
biopharmaceutical industry need to keep these patient- and people-centric issues in mind
as they forge the pathways for discovering and bringing forward new treatments to help
these patients with ocular afflictions such as OHT, OAG, and other glaucomas.
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