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Abstract: One of the main bioactive compounds of interest from the Ulva species is the sulfated
polysaccharide ulvan, which has recently attracted attention for its anticancer properties. This
study investigated the cytotoxic activity of ulvan polysaccharides obtained from Ulva rigida in the
following scenarios: (i) in vitro against healthy and carcinogenic cell lines (1064sk (human fibroblasts),
HACAT (immortalized human keratinocytes), U-937 (a human leukemia cell line), G-361 (a human
malignant melanoma), and HCT-116 (a colon cancer cell line)) and (ii) in vivo against zebrafish
embryos. Ulvan exhibited cytotoxic effects on the three human cancer cell lines tested. However,
only HCT-116 demonstrated sufficient sensitivity to this ulvan to make it relevant as a potential
anticancer treatment, presenting an LC50 of 0.1 mg mL−1. The in vivo assay on the zebrafish embryos
showed a linear relationship between the polysaccharide concentration and growth retardation at
7.8 hpf mL mg−1, with an LC50 of about 5.2 mg mL−1 at 48 hpf. At concentrations near the LC50,
toxic effects, such as pericardial edema or chorion lysis, could be found in the experimental larvae.
Our in vitro study supports the potential use of polysaccharides extracted from U. rigida as candidates for
treating human colon cancer. However, the in vivo assay on zebrafish indicated that the potential use of
ulvan as a promising, safe compound should be limited to specific concentrations below 0.001 mg mL−1

since it revealed side effects on the embryonic growth rate and osmolar balance.

Keywords: cytotoxic activity; human cancer cell lines; polysaccharides; Ulva rigida; ulvan; zebrafish
embryo toxicity test

1. Introduction

According to the World Health Organization, cancer was the second leading cause of
death globally in 2020 [1]. Breast cancer is the most prevalent cancer worldwide, whereas
colorectal cancer, leukemia, and skin melanoma rank third, thirteenth, and seventeenth
amongst the main forms of cancer, according to the Global Cancer Observatory (GCO)
of the International Agency for Research on Cancer (IARC) (gco.iarc.fr). The frequency
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of this disease is expected to rise to more than 30 million people by 2040, a 56% increase
from 2020 (gco.iarc.fr). Effective therapy strategies remain limited even though significant
breakthroughs have been made in understanding the different pathways that drive the
emergence of cancer. These strategies entail a combination of therapies, such as chemother-
apies, which use various chemicals to target malignant and healthy cells [2,3]. Despite
promising improvements in targeted therapeutics [4,5], their efficiency is restricted in some
situations due to drug resistance [6,7].

Natural product research has emerged as a serious alternative for finding new bioac-
tive compounds, with seaweed being one of the most promising sources of therapeutic
candidates due to the vast richness of the marine environment [8]. Seaweeds, which live in
harsh environmental and ecological circumstances, have been used for various purposes,
including feed, food, and biotechnological applications [9]. This is due to their bioactive
and nutritious compounds, which make them a valuable resource [10,11]. Green macroal-
gae species of Ulva are distributed around the world and are capable of occupying diverse
habitats because of their tolerance to determinant factors, such as light, temperature, and
salinity [12]. They present high growth rates and productivity under very variable condi-
tions, having highly exploitable biochemical profiles [13], including bioactive metabolites
that are of interest with regard to many economic applications, such as food, feed, fertilizers,
and biomedicine [14].

One of the main bioactive compounds present in Ulva species is the sulfated polysac-
charide ulvan. The ulvan complex structure varies according to the algae species, the
growing location and conditions, and the extraction procedures [15]. Ulvans constitute
between 8 and 29 % of the dry weight depending on the Ulva species and growing condi-
tions [16]. These complex sulfated polysaccharides are interesting in terms of biomedical
applications due to their antioxidant, antitumor, anticoagulant, antiviral, anti-inflammatory,
and immune-modulator properties [17–20]. Recent attention has been given to the anti-
cancer properties that ulvans possess because ulvans obtained from different Ulva species
have demonstrated significant cytotoxic activity against hepatocellular carcinoma (HepG2),
human breast cancer (MCF7), human colon carcinoma (HCT-116), and cervical cancer
(HeLa) cells [21–24]. Their anticancer activity seems to operate via different pathways,
including promoting cancer cell apoptosis, reducing cancer cell proliferation, and stimulat-
ing the innate immune response [14]. Furthermore, the pathways affected depend on the
source and/or structure of the ulvans [15]. Therefore, specific research should be conducted
on each Ulva species and cancer cell line.

Polysaccharide extracts have also been tested on living organisms, for example, on
zebrafish embryos, in the so-called zebrafish embryo toxicity test (ZFET) [25]. Zebrafish
have become an alternative model to rodent toxicity in in vivo assays [26–28]. This model
provides important features, namely, rapid external embryonic development, a small size,
optical transparency, a large number of offspring, and genetic similarities to humans [29,30].
Furthermore, zebrafish have been reported to have functional homologs for more than 90
of the 450 human genetic dysplasias [31].

Several interesting tests that use these embryos have also been proposed, such as rapid,
high-throughput, cost-effective drug and chemical screening tests [29,32–35]. Zebrafish em-
bryos have already been used to test for beneficial fungicidal [36], antioxidant [37–41], anti-
inflammatory [40,42–46], immunomodulatory [47–50], genoprotective [51], hepatoprotective [52],
disease-resistant [49], and antitumor activities [53]. Conversely, these tests have been employed
to show the detrimental toxic effects of drugs and chemicals [25,54–57] leading to limitations
in their potential clinical or veterinary use. Among these studies, several works specifically
analyzed the effects of algal polysaccharides on zebrafish embryos [39,43,44,58].

In this study, we obtained ulvan polysaccharides from the green macroalga Ulva rigida.
The in vitro antitumor activity of the ulvans was evaluated with MTT assays using healthy
cell lines (1064sk (human fibroblasts) and HACAT (immortalized human keratinocytes))
and carcinogenic cell lines (U-937 (a human leukemia cell line), G-361 (a human malignant
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melanoma), and HCT-116 (a colon cancer cell line)). In addition, the cytotoxic activity of
the ulvans was evaluated using a zebrafish embryo toxicity test (ZFET) [25].

2. Results
2.1. Ulvan Composition and Structure
2.1.1. Fourier-Transform Infrared Spectroscopy (FTIR)

FTIR spectroscopy of the ulvans from U. rigida showed the presence of several func-
tional groups (Figure 1). The strong broad absorption band centered at about 3402 cm−1

corresponds to the hydroxyl group (OH) stretching vibration. The weak absorption at
2938 cm−1 was due to the stretching vibration of C–H. Two other bands were observed
between 1650 and 1430 cm−1, characteristic of the carboxylate groups of uronic acids in
the ulvan. The strong absorption at 1640 cm−1 was ascribed to the asymmetric stretching
mode of the COO– group, and weaker absorption around 1438 cm−1 arose from the sym-
metric COO– stretching mode. The most important absorptions were those revealed at
approximately 1260 cm−1 and 1056 cm−1, considered the fingerprint region for ulvan [59].
A moderate absorption at the 1200 cm−1 wavelength is characteristic of the stretching
vibration of the polysaccharide’s sulfate ester (S=O), referring to the C–O stretching of the
two principal sugars, namely, rhamnose and uronic acid. The absorption peaks at about
850 cm−1 correspond to the C–O–S bending vibration of sulfate in the axial position.
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Figure 1. FTIR spectroscopy of ulvans from U. rigida.

2.1.2. Gas Chromatography–Mass Spectrometry (GC–MS)

In the GC–MS spectrum of the ulvans from U. rigida, the highest peak corresponds to
rhamnose, followed by glucuronic acid and xylose (Figure 2). The rhamnose, glucuronic acid,
and xylose percentages were 80.60%, 9.14%, and 4.01%, respectively (Table 1). Other monosac-
charides, namely, glucose and galactose, were also detected (3.78% and 2.48%, respectively).
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Figure 2. Gas chromatography–mass spectrometry (GC–MS) of ulvans from U. rigida.

Table 1. Percentage of monosaccharides for ulvans extracted from U. rigida.

Monosaccharide %

Rhamnose 80.60
Glucuronic acid 9.14

Xylose 4.01
Glucose 3.78

Galactose 2.48

2.2. Cytotoxic Activity of Ulvan Polysaccharides

The cytotoxic activities of the ulvans at different concentrations (ranging from 0.009 to
5 mg mL−1) against the healthy and carcinogenic cell lines are presented in Figure 3. With
regard to the cytotoxicity against the healthy cells, a lower cytotoxic effect was observed in
the keratinocyte (HACAT) cells, presenting an IC50 value of 4.2 ± 0.5 mg mL−1, than in the
fibroblast (1064sK) cells, which exhibited an IC50 of 1.2 ± 0.1 mg mL−1 (Figure 3a,b). For
the carcinogenic cells, the IC50 values were estimated for the colon (HCT-116), leukemia
(U-937), and melanoma (G-361) cells as being 0.1 ± 0.02, 2.4 ± 0.4, and 4.3 ± 1.2 mg mL−1,
respectively (Figure 3c–e).
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Figure 3. Cytotoxic activity of ulvan polysaccharides, expressed as survival (%) of each cell line
depending on the ulvan polysaccharide concentration (mg mL−1). Each figure represents a cell
line: (a) immortalized human keratinocytes (HACAT), (b) human fibroblasts (1064SK), (c) human
colorectal carcinoma cell line (HCT-116), (d) human myeloid leukemia (U-937), and (e) human
malignant melanoma (G-361).

After obtaining the IC50 values, the selectivity index (SI) was also calculated (Table 2).
The SI is the ratio obtained by dividing the IC50 value of the healthy cells by that of the
cancer cells. The higher the SI, the more effective and safer a drug would theoretically
be during in vivo treatment. The selectivity between the healthy and cancer cell lines
varied for our compound. The highest selectivity indexes were estimated as 40.9 and 11.5,
respectively, for the ulvans used against the HCT-116 cells compared to the HACAT and
1064sk cells.
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Table 2. Selectivity index (SI) of U. rigida polysaccharides.

Selectivity Index

HACAT/HCT-116 40.9
1064sk/HCT-116 11.5
HACAT/U-937 1.8
1064sk/U-937 0.5

HACAT/G-361 0.9
1064sk/G-361 0.3

2.3. Zebrafish Exposure to Increasing Concentrations of Ulvan Polysaccharides

Several anatomical characteristics were studied to understand how ulvans affect
zebrafish embryogenesis. The frequencies of viability, pericardial edema, and hatching
were measured daily in zebrafish embryos exposed to increasing ulvan concentrations.
As described in the Section 4, other variables, such as the standard length or head–trunk
angle (Figure 4), were calculated after digital images were obtained at 72 hpf. Other less
frequent anatomical characteristics, such as body abnormalities or short size, body mobility,
abnormal head or yolk, curved body or tail, or depigmentation, were eventually annotated
when observed.
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Figure 4. Standard length and head–trunk angle of zebrafish embryos. (A) Control untreated ze-
brafish embryos. The double discontinuous arrow shows the standard length (SL). (B) Polysaccharide-
treated 72 hpf embryo. α indicates the head–trunk angle as suggested by Kimmel et al. [60]. Bars
represent 500 µm.

The increasing ulvan concentrations gradually affected embryo viability. At 48 hpf, the
polysaccharides steadily reduced viability (from 100 to 70%) up to about 2.5 mg mL−1, at
which point a sharp decline in this index was observed (Figure 5). Following the log-linear
regression approach [61], we measured an LC50 of 5.127 mg mL−1.

A detailed anatomical description of the 72 hpf embryos exposed to dispersions below
the LC50 suggests a reduction in the growth rate. To quantify this effect, we measured the
standard length and the head–trunk angle, which are two anatomical variables that increase
throughout development. The increase in the first variable is gradual over time, whereas
the second ranges from 60–70◦ to 180◦. This 180◦ angle is reached at 72 hpf, and it remains
stable through the rest of development [60]. As described in the Section 4, we reproduced
data from Kimmel et al. [60] (Figure 6) to obtain four quadratic minimum adjustments that
allowed for a linear transformation of these two variables into hours of development (hpf).
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white circle is the log (LC50) estimation. Linear adjustment is y = −7.2237x + 5.6279 (R2 = 0.8357).
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post-fertilization development. Graphs show the linear adjustments recovered from approximations
to standard length (A) and head–trunk angle (B) data in Kimmel et al. [60] (Figures 16 and 33, re-
spectively, of Kimmel et al. [60]). Data were obtained using ImageJ 1.50i (nih.gov, accessed on
13 January 2023). The variable transformation functions are (A) y = 0.0207x + 2.0153 (R2 = 0.8716;
p ≈ 0.0000) (greater sizes); y = 0.1124x − 0.9848 (R2 = 0.931; p ≈ 0.0000) (lesser sizes); and
(B) y = 0.8216x + 97.927 (R2 = 0.6126; p < 0.00059) (greater angles); y = 3.2744x − 12.452 (R2 = 0.9081;
p < 0.000835) (lesser angles). Discontinuous lines represent the variable transformation limits.

Using this variable transformation method, the stages were estimated from both mor-
phometric variables. The estimated hours post-fertilization showed linear reductions in the
concentration of the ulvan polysaccharide dispersions (Figure 7A,B), whereas the embryos
exposed to between 0.25 and 1 mg mL−1 presented a developmental stage resembling that
of the control specimen; the embryos exposed to the highest concentration (5 mg mL−1)
showed a significant reduction. The linear reduction slopes obtained for both variables
were almost identical (7.3 and 7.4 hpf mL mg−1) (Figures 7A and 7B, respectively), support-
ing the initial observation of growth delay. Using this method, the dispersion of the data
was high (low R2 values) (Figure 7) when compared with the non-transformed variables
(see Figure 6A).

nih.gov
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Figure 7. Embryo stage estimation after anatomical variable transformation using data from Kimmel
et al. [60] (see Figure 4). (A–C) Linear regressions of standard length (A), head–trunk α angle (B),
and anatomical-based estimations (C) with respect to the ulvan concentration. (D) Linear reduction
in the compound stage estimation (A+ B + C) with respect to the ulvan concentration. The linear
adjustments are (A) y = −7.2x + 66.234 (R2 = 0.7232; p ≈ 0.0000), (B) y = −7.3294x + 76.026 (R2 = 0.8003;
p < 0.00015), (C) y = −8.8x + 70.857 (R2 = 0.8738; p ≈ 0.0000), and (D) y = −7.88x + 71.036 (R2 = 0.7479;
p < 0.000085).

Furthermore, a detailed anatomical description of the digital images from each
72 hpf embryo compared to the descriptions provided by Kimmel et al. [60] supported
this hypothesis. Several anatomical characteristics (see above) were compared to the data
from Kimmel et al. [60] to provide a tentative developmental stage for each embryo. When
possible, the vascular pattern was also observed using the Tg(fli1a:EGFP)y1 transgene to
confirm the proposed stage [62]. Almost all the variables supported the occurrence of
a growth rate reduction with respect to the ulvan concentration. This anatomy-based
estimation also showed a linear decline with regard to the ulvan concentration, having a
slightly higher slope of 8.8 hpf mL mg−1 (Figure 7C).

To perform a global stage estimation, we calculated the linear variation based on the
summary of our three estimations for each embryo (Figure 7D). This global estimation
also showed a linear reduction in ulvan concentration with a slope of 7.8 hpf mL mg−1

(Figure 7D).
The mean value and standard deviation of each stage estimation are also shown in

Table 3. All the experimental conditions differ from those of the control, showing an
increasing statistical significance with regard to the ulvan concentration (from p < 0.05 * to
p < 0.001 ***) and proportionally higher standard deviations. All these data support the
sub-lethal effects of ulvans at concentrations lower than the LC50.

In this study, we further dechorionated the embryos and replicated the experiment at
a concentration of 2.5 mg mL−1 to rule out the potential involvement of hypoxia caused by
chorion pore obliteration resulting from ulvan precipitation. In these replicated experiments,
no significant modification was found in the mean delay observed (data not shown).
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Table 3. Embryo stage estimation following the anatomical features.

Ulvan (mg mL−1) Head–Trunk Angle (hpf) Standard Length (hpf) Developmental Stage (hpf) Mean Estimation (hpf)

5 40.25 ± 3.55 *** 31.56 ± 2.15 *** 29.90 ± 4.23 *** 33.91 ± 5.56 (13) ***
2.5 49.73 ± 8.94 *** 47.03 ± 8.50 *** 41.64 ± 8.46 *** 46.13 ± 4.12 (16) ***
1 70.10 ± 5.34 *** 59.98 ± 5.56 *** 63.14 ± 3.61 *** 64.41 ± 5.18 (19) ***

0.5 70.62 ± 7.78 ** 61.24 ± 6.92 *** 66.80 ± 5.49 ** 66.22 ± 4.72 (15) **
0.25 73.06 ± 3.86 ** 61.70 ± 8.91 ** 69.88 ± 4.21 * 68.21 ± 5.86 (16) **

0 77.61 ± 5.28 69.60 ± 5.02 72.00 ± 0.00 73.07 ± 4.11 (18)

The results are expressed as the mean and standard deviation. p < 0.05 (*); p < 0.01 (**); p < 0.001 (***). Underlined
symbols represent non-parametric analysis. N = 97, 99, and 107 for the head–trunk angle, SL, and developmental
stage estimations, respectively. The total number of embryos used to calculate the mean estimation are placed in
parentheses (total: 97).

Two other toxic effects were frequently observed at sub-lethal concentrations: peri-
cardial edema and chorion lysis (Figure 8). This pericardial edema also augmented in
size (Figure 8A,B) along with the increasing ulvan concentration. This effect presented an
exponential rather than a linear trend as the ulvan concentration increased (Figure 8C).
Larvae with pericardial edemas may also present an apparent increase in yolk sac size.
This may be because the yolk is physically displaced by the augmentation of interstitial
liquid in the edemas. In our experiments, at concentrations over 2 mg mL−1, a slight
amount of precipitate could be found over the plastic well and the yolk sac. At these
concentrations, a second effect was also observed. As in cell plasmolysis, extra-chorionic
hypertonic ulvan solutions generate chorion shrinkage (Figure 8D). This was not observed
at lower concentrations.

Figure 8. Pericardial edema and chorion lysis increase with the ulvan polysaccharide concentra-
tion. Slight (A) and significant (B) pericardial edemas are seen in zebrafish embryos treated with
a 0.25 mg mL−1 ulvan concentration. (C) Exponential regression of edema frequency versus ul-
van polysaccharide concentrations (y = 0.0386x0.2325, R2 = 0.9351). (D) Chorion lysis observed at
2.5 mg mL−1 ulvan. Bars represent 500 µm.

3. Discussion

Ulvan, the main polysaccharide found on the cell wall of Ulva species, is a bioactive
compound of great biotechnological interest. Different reviews (see [14,63]) have described
the potential of ulvans as an anticancer, immune-modulating, anticoagulant, antiviral,



Pharmaceuticals 2023, 16, 660 10 of 18

antihyperlipidemic, and antioxidant molecule. Among the bioactivities mentioned above,
the anticancer aspect is always highlighted due to the social impact of the disease and,
consequently, the need for therapeutic compounds that act selectively on those cells. In
2018, it was estimated that there were almost 290,000, 1,100,000, and 440,000 new cases of
melanoma, colon cancer, and leukemia, respectively, and about 61,000, 555,000, and 310,000
deaths worldwide [64].

Our study provides further evidence of the anticancer effects of ulvan polysaccha-
rides from U. rigida. The anticancer activity of ulvan from different sources is highly
variable. Ahmed and Ahmed [21] previously showed that the ulvan from Ulva lactuca in-
duced antitumor cytotoxic effects against HepG2 (IC50 55.56 µg mL−1) and HCT-116 (IC50
22.65 µg mL−1) human cell lines. Thanh et al. [22] also reported a high cytotoxic ef-
fect of ulvan polysaccharides on HepG2, MCF7, and HeLa, obtaining IC50 values of
29.67 ± 2.87, 25.09 ± 1.36, and 36.33 ± 3.84 µg mL−1, respectively. In our study, ul-
van exhibited cytotoxic effects against the three human cancer cell lines tested. However,
only the HCT-116 cells exhibited sufficient sensitivity to this ulvan in terms of its potential
as an anticancer treatment, presenting an IC50 of 0.1 mg mL−1; however, this was signif-
icantly lower than that found by Ahmed and Ahmed [21]. In general, the mechanisms
involved in ulvan’s anticancer effect are not fully understood. Some preliminary studies
indicate that apoptosis may stimulate programmed cell death or reduce DNA replication
and cell proliferation [21,22,65,66]. Other scientists have observed that the polysaccha-
ride’s structure (the number of monosaccharides, glycosidic linkages, sulfate, carboxyl,
and hydroxyl groups) might enhance its contact with tumor cells and boost its anticancer
effect [67–69]. This is supported by the FTIR spectra and monosaccharide composition
obtained in our results, in which rhamnose, glucuronic acid, and xylose were the most
represented (80.60%, 9.14%, and 4.01%, respectively). Furthermore, the tested molecules
must present a specific selectivity for cancer cells over healthy cells to be considered a
safe cancer treatment compound. This parameter can be stipulated using the selectivity
index (SI). According to Weerapreeyakul et al. [70], a promising, safe compound should
present an SI > 3. In our study, ulvan exhibited SI values > 3 on the HCT-116 cells compared
to the healthy epithelial cells (40.9 for HACAT and 11.5 for 1064sk). Our work supports
the polysaccharide’s potential as a candidate for use in colon cancer treatment. Unfortu-
nately, this promising effect was not observed in the human myeloid leukemia (U-937)
or human malignant melanoma (G-361) cells. It is also worth noting that other authors
found only extremely low to moderate cytotoxic activity compared to cancer chemotherapy
drugs [71,72]. For example, ulvan from U. intestinalis demonstrated no cytotoxic effects on
sarcoma 180 tumor cells in vitro at 50–800 µg mL−1 but reduced the sarcoma 180 tumor
weight by 61–71% in mice dosed with 100–400 mg kg−1 [73]. Furthermore, immunological
organs (such as the thymus and spleen) were increased in ulvan-treated mice, suggesting
that the polysaccharide’s anticancer activity stems from its immunomodulatory function.
In summary, the anticancer activity of ulvans appears to be mediated through one or more
routes, which include enhancing cancer cell apoptosis, decreasing cancer cell growth, and
activating the innate immune response. In addition, the affected pathways are altered
depending on the ulvan source and/or structure. More research is needed to investigate
the structural and chemical components that influence ulvan’s ability to reduce the number
of cancer cells and to figure out the relationship between them.

To further study the toxicity effects of ulvans in vivo, we conducted a zebrafish embryo
toxicity test (ZFET). In general, our data agree with the idea of using zebrafish embryos
as an effective system to evaluate the effects of glycans in relatively short procedures.
Previous studies [74] suggest a close homology between zebrafish embryogenesis and
human carcinogenesis, thus supporting its use as a screening assay to evaluate potential
anticancer compounds. In this sense, Rusdi et al. [74] and other studies [25,56] have already
evaluated the toxicity of algal and fungal polysaccharides on zebrafish embryos, suggesting
either absent [74] or low [25,56,74] toxicity. Nevertheless, the measurement of the LC50 of
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these polysaccharides has revealed a variable susceptibility of early zebrafish embryos to
their presence in the embryo medium.

Although fucoidan from Fucus vesiculosus showed no LC50, alginate LC50 was mea-
sured at 245 µg mL−1 after 24 h [74]. A decline in zebrafish embryo survival (from about
75% at 48 hpf to 23% at 72 hpf) was also reported when using 5 mg mL−1 of exopolysaccha-
rides from a fungus species, Ganoderma applanatum. In contrast, its endopolysaccharides
showed a viability decline from about 75% at 72 hpf to 32% at 96 hpf [56]. These results
suggest an LC50 higher than that found for F. vesiculosus alginate at 24 h or ulvans in our
study at 48 hpf (5.2 mg mL−1). Moreover, 5 mg mL−1 of natural mycelial biomass from Lig-
nosus rhinoceros showed a survival rate decline between 72 hpf (65%) and 96 hpf (5%), while
5 mg mL−1 of exopolysaccharides showed a 50 % zebrafish mortality rate at 72 hpf [25]. In
these cases, fungal exopolysaccharides presented slightly higher LC50 values than those
found for ulvans, whereas those of endopolysaccharides and mycelial extracts were even
higher. These effects mimic the anticancer activity discussed above and further support
the case for ulvans as a candidate cancer treatment compound. From this comparison, the
ulvans tested in our study seem to be a better option for a potential anticancer product than
others from brown algae [74] or fungi [25,56] species, although they are less effective than
Fucus alginate [74].

A teratogenic effect on zebrafish pigmentation has also been described at lower polysac-
charide concentrations, molecularly related to the interference of several tyrosine kinase down-
stream effectors in carcinogenesis [74,75]. In our study, ulvans between 0.1 and 5 mg mL−1

linearly delayed pigmentation and embryonic development at a rate of 7.6 hpf per mg mL−1.
Partial hypoxia generated by the obliteration of chorionic pores [76] from ulvan precipitates
was initially considered the potential cause of this delay. Our results ruled out this hypothesis
because of the delay observed in our experiment on dechorionated embryos.

Recent studies have proposed alternative assays to the ZFET test, such as the zebrafish
embryo acute toxicity test (ZET) or the General and Behavioral Embryo Toxicity Assay [28].
In both tests, several phenotypes have been proposed to describe toxicity. The most critical
phenotypes in these tests are developmental abnormalities; a short body size; body mobility
and position; a slow heartbeat; pericardial, yolk or head edemas; an abnormally sized or
darkened head, yolk or liver; a curved body or tail; or pigment abnormalities [28]. Our
study associated a short body size, an abnormal head size, and pigment abnormalities
with signs of developmental delay, all of which are phenotypes included in the scoring
panel of the ZET [28] and ZFET [25] tests. Three different estimations of this effect were
evaluated to support our hypothesis: anatomical descriptions, the standard length, and the
head–trunk angle. This association is not explicitly included in the ZET and ZFET assays.
Parallel to our study, we conducted experiments with five other polysaccharides from algal
and fungal species in search of an appropriate positive control [77]. In certain instances,
this developmental delay effect has also been observed, suggesting a new toxic phenotype
produced by increasing algal and fungal polysaccharide concentrations (Abdala-Díaz and
Marí-Beffa, in preparation). Furthermore, the variables used to support the occurrence
of this phenomenon always show high dispersion estimates. This suggests a potential
variable susceptibility of zebrafish embryos to this type of substance in the culture medium.
This new growth delay effect of algal polysaccharides may also be tested over cancer and
zebrafish development in xenograft experiments [78]. These experiments are currently
underway and will be published elsewhere. In our results, no other teratogenic defects
were consistently associated with the ulvan concentration.

Finally, new osmolar and toxicity effects were observed at the highest viable concen-
trations, such as chorion lysis and pericardial edema. In principle, chorion lysis may be
caused by osmolar imbalance and increased water loss. Moreover, in various substances,
pericardial edema is a well-established toxicity symptom seen in zebrafish embryos [79].
In our study, we did not test whether zebrafish toxicity is associated with inflammation
or any other cell stress process. In principle, the food, feed, fertilizing, and biomedical
modulatory effects of ulvan [12,14] could be accompanied by relevant metabolic perturba-
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tions that might induce toxicity and affect osmolar imbalance and embryonic growth as the
concentration increases from 0.25–1 mg mL−1.

The lowest ulvan concentration in our study, 0.25 mg mL−1, is higher than the
0.05 mg mL−1 of Spirulina maxima pectins, a concentration within the range of the above-
mentioned cytotoxic IC50 indexes [21,22], which stimulates larval fin regeneration [58].
Studies on the immunomodulatory effects of U. rigida ulvans in model organisms are also
in progress to support the beneficial effects of these compounds at concentrations within
the colon cancer cytotoxic LC50 range (data not shown).

4. Materials and Methods
4.1. Ulvan Preparation

Ulva rigida was cultivated in 500 L aerated semi-circular fiberglass tanks under natu-
ral outdoor conditions at the facilities of the Andalusian Institute of Blue Biotechnology
and Development (IBYDA) at Malaga University (Málaga, Spain). The algal biomass was
harvested weekly, washed gently with abundant natural seawater, and dried at 60 ◦C for
24 h. Afterwards, the biomass was milled to obtain a fine powder (50 µm) and stored at
−20 ◦C. Ulvan was then extracted from the powdered sample using the ethanol precipita-
tion method according to Béress et al. [80]. The U. rigida powder was submerged in 95%
ethanol (a biomass-to-ethanol ratio of 1:10) until de-pigmentation was apparent. Subse-
quently, the de-pigmented biomass was suspended in distilled water and heated at 90 ◦C
for 2 h. The solution was then centrifuged for 15 min at 6000 rpm at room temperature. The
supernatant was concentrated to 1/5th of the original volume. Following this, five times
the volume of 95% ice-cold ethanol was added to the concentrated solution and stored at
4 ◦C. The precipitate that formed was collected via centrifugation at 12,000 rpm for 10 min
at 4 ◦C, washed twice with absolute ethanol, and freeze-dried.

4.2. Chemical Composition and Structure of Ulvans
4.2.1. Fourier-Transform Infrared Spectroscopy (FTIR)

The FTIR spectra of the U. rigida ulvans were obtained by pressing 13 mm diameter
self-supporting pressed discs comprising a mixture of ulvans and KBr (1% w/w) with
a hydraulic press at a force of 15.0 tcm−2 for 2 min. The FTIR spectra were obtained
in the 400–4000 cm−1 region using a Thermo Nicolet Avatar 360 IR spectrophotometer
(Thermo Electron Inc., Franklin, MA, USA), having a resolution of 4 cm−1, with a deuterated
triglycine sulfate (DTGS) detector and OmnicTM 7.2 software (bandwidth of 50 cm−1 and
an enhancement factor of 2.6). Thermo Nicolet OMNIC software was used for baseline
correction to smooth the baseline of each spectrum. To compare the sample spectra to those
in the spectral collection, the OMNIC correlation algorithm was used.

4.2.2. Gas Chromatography–Mass Spectrometry (GC–MS)

The GC–MS of the ulvans was determined following the methodology described in detail
by Parra-Riofrío et al. [81,82]. In brief, GC–MS analyses were carried out using a Trace GC gas
chromatograph (Thermo Fisher Scientific, Franklin, MA, USA), a Triplus RSH autosampler
(Thermo Fisher Scientific, Franklin, MA, USA), and a DSQ quadrupole mass spectrometer
(Thermo Fisher Scientific, Franklin, MA, USA). The identification of monosaccharides in the
polysaccharide samples was carried out by comparing the retention time and mass spectra of
monosaccharide standards, previously analyzed under identical conditions (glucose, galactose,
mannose, arabinose, xylose, rhamnose, ribose, fucose, galacturonic acid, and glucuronic acid).
The compounds were identified by comparing the mass spectra with those in the National
Institute of Standards and Technology (NIST 2014) library.

4.3. Cytotoxic Effect Assay

Five human cell lines, 1064sk (human fibroblasts; CIC cell bank of CIC of the Universi-
dad de Granada, Spain), HACAT (immortalized human keratinocytes; ATCC, Manassas,
VA, USA), U-937 (human leukemia cell line; ATCC, Manassas, VA, USA), G-361 (human
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malignant melanoma; ATCC, Manassas, VA, USA), and HCT-116 (colon cancer cell line;
ATCC, Manassas, VA, USA), were used for the assays. The cells were cultured in either
Dulbecco’s Modified Eagle’s Medium (DMEM) (Capricorn Scientific, Ebsdorfergrund, Ger-
many, ref. DMEM-HPSTA), for the 1064sk, U-937, and HCT-116 cells, or in RPMI-1640
medium (BioWhittaker, ref. BE12-167F), for the HACAT and G-361 cells, both containing
10% Fetal Bovine Serum (FBS, Biowest, ref. S1810-500), 1% penicillin–streptomycin solution
100× (Capricorn Scientific, ref. PS-B), and 0.5% amphotericin B (Biowest ref. L0009-100).
The cells were maintained sub-confluent at 37 ◦C in humidified air containing 5% CO2.

The cytotoxic effect on the cell lines mentioned above was measured using an MTT assay.
The cells were incubated independently in 96-well plates, containing 1 × 104 cell/well for
1064sk and 6 × 103 cell/well for the other cell lines, with different ulvan concentrations
(ranging from 0.009 to 5 mg mL−1) at 37 ◦C in a humid atmosphere with 5% CO2 for
72 h. As a control, the same cell lines were used without treatment. The trial was carried
out following the method proposed by Abdala-Díaz et al. [83]. The cytotoxicity was
calculated, and it is expressed as the inhibition concentration at 50% (IC50 values). The
analyses were carried out in three independent experiments. In addition, the selectivity
index (SI) was calculated as the ratio of dividing the IC50 value of the healthy cell lines by
that of the cancer cell lines.

4.4. Zebrafish Husbandry and Embryo Collection

The zebrafish (Danio rerio) embryos were the offspring of mating AB wild-type and/or
Tg(fli-1: EGFP) y1 adults. The adults were obtained from the breeding stock at the fish
facilities belonging to the Centre of Experimentation and Animal Behavior at the University
of Málaga, where they were cultured in a 12:12 h light:dark photoperiod following standard
procedures [61,62]. The adults were the offspring of fish obtained from the Zebrafish Inter-
national Resource Centre (ZIRC, Eugene, OR). The eggs were collected after fertilization
and then bleached, washed, and incubated at 28 ± 0.1 ◦C in a Petri dish with an embryo
medium. The fish were handled in accordance with notification A/ES/12/I-22 (activity
A/ES/12/24) of the National Laws. The Universidad de Málaga Bioethics Commission ap-
proved the experiments as part of the grants BIO2014-56092-R and UMA18-FEDERJA-274.

4.5. Zebrafish Embryo Toxicity Assay

The AB wild-type or Tg(fli-1:EGFP)y1 embryos were placed in 96-well plates (1 fish
per well using 300 µL embryo medium) at 4 h post-fertilization (4 hpf) [84]. Each replicate
comprised 8 embryos immersed in the embryo medium with a specific polysaccharide
concentration (from 0.25 to 6.5 mg mL−1), comprising 56 embryos per experiment and
including both negative and positive controls. The embryos were immersed for three days
following the ZFET procedure [25] without further modifications. The concentrations were
obtained by diluting 5 or 10 mg mL−1 stock solutions. The stock solutions were prepared
from polysaccharide lyophilized powder and stored at 4 ◦C after preparation. The embryo
medium served as the negative control [84]. Polysaccharides from the macroalga Sarcopeltis
skottsbergii and the fungus Calvatia (in preparation) were used as positive controls in parallel
experiments. Both polysaccharides presented a relevant LC50 and a significant induction of
growth delay at lower concentrations. LPS was discarded as a positive control due to its
well-known inflammatory effects [77]. Each experiment was run at least three times with a
minimum of 24 embryos for each experimental condition. Basic statistics were obtained
from the data described below. After the experiments, the live embryos were euthanized
using MS-222 (0.2 mg mL−1) over-anesthetization and stored as organic waste following
the University of Málaga procedures.

4.6. Phenotypic Analysis

In the ZFET, several phenotypes were annotated to support the toxic effects of the
reagents tested. The following were used in this test: embryo viability, hatching, and
heart rate [25]; tail malformations; or the absence of fins, the gut, or melanophores [56].
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Other phenotypes, such as the standard length, head–trunk angle [60], or pericardial
edema, were estimated for each living specimen at the end of the experiment. Additional
characteristics were used for an anatomical comparison with a standard embryological
atlas [60]; these were the shape of the eyes, cochlea, and pec and tail fins; the form and size
of the yolk sac, the notochord, and the craniofacial skeleton; and the pigment distribution
(see Table 3 for the number of measured embryos). The analysis was performed under a
magnifying microscope (Nikon SMZ-445 model) or using digital images obtained with
a Nikon Microphot-FX Fluorescence Research Microscope with a Nikon DS-L1 digital
camera. The lethal concentration that kills 50% of the sample (LC50) was estimated from
mortality/viability data following a linear regression test [61]. To estimate the growth delay,
the actual age of the embryos was compared to three different stage estimations made from
embryo anatomy, the standard length, and the head–trunk angle. The last two variables
were transformed into a potential developmental stage using data from Kimmel et al. [60]
(see the Results Section 2.2). The quantitative variables were measured from digital images
using the ImageJ 1.50i settings (National Institutes of Health, Bethesda, MD, USA) and
verified in a single-blind evaluation.

4.7. Statistical Analysis

Statistical differences between the means were calculated using the Student t-test.
Linear regressions were calculated using a least squares analysis. The statistical analyses
were performed using the Statistical Package for the Social Sciences software (IBM, SPSS-
version 25), Statgraphics software (Statgraphics Technologies, Inc., The Plains, VA, USA),
or the Excel program (Microsoft Office, Windows 11, Redmond, WA, USA). Significant
differences were noted when p < 0.05 (*), p < 0.01 (**), and p < 0.001 (***).

5. Conclusions

Our in vitro study supports the potential use of polysaccharides extracted from
U. rigida as candidates for treating human colon cancer. This is further supported by
our zebrafish toxicity and phenotypic assay. These in vivo tests revealed the side effects of
these molecules on zebrafish development, such as developmental abnormalities and delay.
Perturbations of cancer or development-associated signaling pathways may be underlying
these phenocopies as previously suggested by other authors. Ulvans may be a promising,
safe compound at concentrations below 0.1–0.2 mg mL−1.
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