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Abstract: There are at least 20 distinct types of systemic amyloidosis, all of which result in the
organ-compromising accumulation of extracellular amyloid deposits. Amyloidosis is challenging
to diagnose due to the heterogeneity of the clinical presentation, yet early detection is critical for
favorable patient outcomes. The ability to non-invasively and quantitatively detect amyloid through-
out the body, even in at-risk populations, before clinical manifestation would be invaluable. To
this end, a pan-amyloid-reactive peptide, p5+14, has been developed that is capable of binding all
types of amyloid. Herein, we demonstrate the ex vivo pan-amyloid reactivity of p5+14 by using
peptide histochemistry on animal and human tissue sections containing various types of amyloid.
Furthermore, we present clinical evidence of pan-amyloid binding using iodine-124-labeled p5+14
in a cohort of patients with eight (n = 8) different types of systemic amyloidosis. These patients
underwent PET/CT imaging as part of the first-in-human Phase 1/2 clinical trial evaluating this
radiotracer (NCT03678259). The uptake of 124I-p5+14 was observed in abdominothoracic organs in
patients with all types of amyloidosis evaluated and was consistent with the disease distribution
described in the medical record and literature reports. On the other hand, the distribution in healthy
subjects was consistent with radiotracer catabolism and clearance. The early and accurate diagnosis
of amyloidosis remains challenging. These data support the utility of 124I-p5+14 for the diagnosis of
varied types of systemic amyloidosis by PET/CT imaging.

Keywords: amyloidosis; 124I-p5+14; p5+14 peptide; AT-01; systemic amyloidosis; PET/CT imaging

1. Introduction

Systemic amyloidosis is a multi-organ disease wherein misfolded proteins deposit
as fibrils in the extracellular spaces of tissues, resulting in progressive organ dysfunction
and severe morbidity [1]. Amyloid deposits are composed of structurally and function-
ally diverse precursor proteins [2] associated with extracellular matrix components and
serum components, including heparan sulfate proteoglycans (HSPG), the serum amyloid P
component (SAP), and apolipoproteins [3].

The most common types of systemic amyloidosis diagnosed in the USA result from
the deposition of monoclonal immunoglobulin light chains (AL), variant or wild-type
transthyretin (ATTRv or ATTRwt), or leukocyte chemotactic factor-2 (ALECT2). The
rarer types of systemic amyloidosis are invariably hereditary, resulting from germline
mutations that render typically benign proteins amyloidogenic [1]. Patients with systemic
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amyloidosis are generally present with a heterogeneous anatomic distribution of amyloid
and often with combinations of organ involvement. Cardiac and renal amyloid deposits
are common in AL amyloidosis and result in morbidity and mortality in these patients [4].
Deposition of amyloid in other organs and tissues may cause clinical sequelae or remain
clinically silent due to the early stage of deposition (presymptomatic deposits) and the
lack of detectable serum biomarkers. The contribution of these deposits to quality of
life and mortality remains unclear. However, studies have shown that the presence of
amyloid in more than one organ is associated with poorer outcomes [5–8]. The diverse
clinical presentation of amyloidosis, which often shares overlapping symptomology with
more common disorders, makes rapid and accurate diagnosis challenging [9]. The lack of
imaging diagnostics to detect multiple types of amyloidosis and key abdominothoracic
organ involvement is a significant unmet need that contributes to delayed diagnosis and
an often-incomplete appreciation of the amyloid burden. Therefore, a sensitive, facile, and
non-invasive method for detecting the systemic distribution of diverse types of amyloid in
patients is of considerable clinical benefit.

Molecular imaging can provide quantitative, non-invasive methods for the detec-
tion of amyloid throughout the body. At present, patients in the UK and Netherlands
with diverse types of systemic amyloidosis are being assessed clinically using planar
gamma scintigraphic imaging with iodine-123-labeled SAP [10,11]. As a natural compo-
nent of amyloid, 123I-SAP partitions into amyloid deposits and can be readily detected
in abdominothoracic organs with the notable exception of the heart [12]. More recently,
bone-seeking agents such as technetium-99m pyrophosphate (99mTc-PyP) and 99mTc- 3,3-
diphosphono-1,2-propanodicarboxylic acid (DPD) have been employed to detect cardiac
deposits in select patients with ATTR associated amyloidosis who have been confirmed
not to have AL [13,14]. Despite their increasing utility for diagnosing and monitoring
changes in amyloid load, each of these radiotracers has limitations in determining whole-
body amyloid load quantitatively and detecting amyloid in all types of amyloid and key
abdominothoracic organs.

To address the limitations of the current radiotracers used for amyloid imaging, we
have characterized a synthetic peptide that is capable of binding specifically to all types
of amyloid. This broad, but specific, reactivity is mediated by multivalent electrostatic
interactions of the peptide with dense negative charge arrays present on both the hyper-
sulfated HSPG and proteinaceous fibrils in the amyloid mass [15]. The peptide p5+14 is
a synthetic, polybasic, 45 amino acid peptide that forms an alpha helix in the presence
of dense electronegative surfaces, such as those abundantly available in amyloid [15]. In
its proposed helical form, the lysine residues of the peptide are predicted to align on one
face of the peptide, thereby supporting a specific electrostatic interaction with the linear
array of negative charges present along the long axis of the amyloid fibril and charged
glycosaminoglycans. Herein, we demonstrate through peptide histochemistry on both
human and animal-derived tissue sections the ability of biotinylated p5+14 to specifically
bind multiple types of amyloid. This mode of interaction indicates that peptide p5+14 is
capable of binding all amyloid types, regardless of the precursor protein from which the
amyloid deposits are formed.

We have previously demonstrated the peptide’s in vivo amyloid-targeting capability
in a murine model of systemic amyloidosis using small animal SPECT/CT and PET/CT
imaging [15–19]. The promising in vivo data, coupled with its established potential for
pan-amyloid binding, led to the development and evaluation of p5+14 as a radiotracer in
the clinical setting. Our preclinical data supported the use of iodine-124-labeled peptide
as an amyloid-targeting radiotracer due to its relatively long half-life (4.2 days) and the
inherent biological properties of dehalogenation, which allowed for visualization of renal
amyloid once unbound radiotracer had been catabolized and excreted [17].

In this report, a subset of data from a single site, first-in-human evaluation of iodine-
124-labeled-p5+14 (AT-01; INN designation iodine-124-evuzamitide) for the detection
of diverse types of systemic amyloidosis by PET/CT imaging, is discussed. Herein,
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we highlight the pan-amyloid reactivity and multi-organ distribution of 124I-p5+14 in
a subset (n = 8) of the enrolled patients (n = 52) who presented with biochemically dis-
tinct amyloid types, including light chain (ALκ and ALλ), transthyretin (ATTRv and
ATTRwt), leukocyte chemotactic factor-2 (ALECT2), gelsolin (AGel); lysozyme (ALys), and
apolipoprotein-A1 (AApoA1).

2. Results
2.1. Peptide Histochemistry

The pan-amyloid reactivity of biotinylated peptide p5+14 was demonstrated using a
panel of formalin-fixed human or animal tissue sections from various organs containing
distinct amyloid types. The tissue amyloids analyzed included AL kappa, AL lambda,
ATTRv, ALECT2, apolipoprotein-A2c (ApoA2c), serum amyloid A (AA), and islet amyloid
polypeptide (AIAPP), all of which stained positive with biotinyl-p5+14 (Figure 1). In
contrast, normal human cardiac and renal tissue was not immunostained. These data
support our hypothesis that peptide p5+14 binds all types of amyloid derived from various
anatomic sites.
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Figure 1. Peptide histochemistry and Congo red analysis of tissue sections demonstrate the pan-
amyloid reactivity of p5+14. The brown-colored stain of biotinyl-p5+14 can be seen in (A) patient-
derived renal tissues, magnification 10×; (B) patient-derived cardiac tissues, magnification 20×; and
(C) animal-derived tissues, magnification 10×. The peptide colocalized to Congophilic regions within
tissue, as demonstrated with green–gold birefringence in consecutive tissue sections. (D) Normal
heart (left) and kidney (right) tissues were negative with biotinyl-p5+14, magnification 10×.
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2.2. PET/CT Imaging with 124I-p5+14

The Phase 1/2 clinical trial evaluating the safety and efficacy of 124I-p5+14 in patients
and healthy volunteers was conducted at a single site over 3 years, ending in 2021. Initially,
the medical records of the patients were obtained after signed medical releases were
provided. The records were then reviewed to assess the diagnosis of amyloidosis and
collect data describing the known or anticipated organ-based distribution of amyloid based
on biopsies, imaging, biomarkers, and physical examinations reported by the treating
physicians. Following this prescreen, patients traveled to Knoxville, TN, where written
consent was obtained, followed by a physical exam and phlebotomy. Subjects also began
a 7-day course of 130 mg potassium iodide (KI). On day 2, subjects were administered
antihistamine and acetaminophen before receiving 74 MBq (<2 mg peptide) 124I-p5+14
intravenously by slow infusion (3 mL/min for 10 min). PET/CT images were acquired at
5 h post-infusion. The optimal time for imaging was established in the first three patients as
part of assessing dosimetry for safety. It was determined that five to six hours post-infusion
allowed for visualization of renal amyloid and would be appropriate for whole-body
imaging. Safety assessments and follow-ups for patients occurred on days 9 and 28, and
for healthy volunteers, on days 3, 28, and 56 (Figure 2). This report describes the data
collected on a cohort of eight patients with diverse types of systemic amyloidosis to assess
the pan-amyloid reactivity of the radiotracer and five healthy volunteers who were enrolled.
Table 1 displays participant characteristics and radiopharmaceutical details for the dose
each subject received.
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Figure 2. Phase 1/2 study design. Participants were asked to begin a 7-day course of potassium
iodide (KI; iOSAT, ANBEX INC., Livingston, NJ) to reduce thyroid exposure to radioactivity. Prior
to infusion, participants were given acetaminophen (650 mg) and diphenhydramine (or a suitable
alternative; 25 mg). Vital signs were monitored prior to, during, and for 50 min after the infusion of
124I-p5+14.
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Table 1. Patient cohort and healthy subject characteristics with dose information.

Subject Amyloid
Type Sex Age (y)

Time from
Diagnosis

(y)

Injected
Dose

(MBq)

Injected
Peptide

(mg)

P05 ALECT2 F 63 6 38.5 1 1.30
P07 ALκ M 72 3 74.4 1.37
P16 ALλ F 79 5 74.4 1.34
P23 ALys M 45 4 74.9 1.10
P24 AGel F 63 16 72.5 1.52
P26 ATTRwt M 77 2 73.4 1.48
P30 AApoA1 F 49 5 75.9 1.27
P32 ATTRv M 75 2 76.2 1.20
P43 HV M 68 NA 74.5 1.40
P44 HV F 52 NA 74.8 1.40
P45 HV F 47 NA 73.6 1.62
P47 HV F 60 NA 74.0 1.52
P54 HV M 61 NA 73.3 1.63

1 Patient was imaged before the maximum dose was determined based on dosimetry calculations. HV, healthy
volunteer; NA, not applicable.

In healthy subjects, five hours after a single IV infusion of 124I-p5+14, radioactivity
was universally observed in the parotid and salivary glands, thyroid gland, saliva (as a
bolus in the esophagus), stomach lumen, renal pelvis, and ureter, and urinary bladder.
However, there was no significant retention of 124I-p5+14 in the abdominothoracic organs
of healthy subjects, with one singular exception (shown as the fourth healthy subject in
Figure 3), in whom renal and diffuse hepatic radioactivity was deemed to be modestly
higher than background tissues.

In patients with amyloidosis, radioactivity was observed in diverse abdominothoracic
organs, including the heart, liver, spleen, kidneys, pancreas, and lungs (Figure 3).

Myocardial uptake of 124I-p5+14, when present, principally involved the left ventricle,
including the interventricular septum and the posterior wall. However, the right ventricular
and atrial walls were also imaged in some patients with AL and ATTR, as well as the ALys
patient and the AApoA1 patient (Figure 4). In contrast, only trace blood pool radioactivity
was observed in the ventricular lumen of patients with ALECT2, AGel, and healthy subjects.
This suggests the absence of amyloid due to the lack of radiotracer accumulation in the
myocardium (Figure 4).

Extracardiac amyloid deposits, including those in the liver, spleen, kidney, and lung,
can be appreciated with single-slice, fused PET/CT images, as shown in Figure 5. These
images highlight the heterogeneity of amyloid deposition in patients with various types of
systemic amyloidosis.

The comparison of organ-associated amyloid in the patients presented in this report,
based on observations made in the medical record, and the distribution of 124I-p5+14
accumulation as reported after careful review of each organ, revealed excellent concordance
for major abdominothoracic organs (Table 2). In each of the eight patients, imaging not only
confirmed amyloid in the clinically suspected organs but also revealed the accumulation
of radioactivity in organs not appreciated clinically. For the AGel patient, amyloid in the
nerve and skin was the clinical presentation; however, these tissues were not routinely
imaged using this protocol, likely due to the low amyloid load in these tissues.
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Figure 3. Biodistribution of 124I-p5+14 in healthy subjects and patients with diverse types of systemic
amyloidosis. Maximum intensity projection PET images of healthy subjects (healthy) and patients
with amyloidosis (immunoglobulin light chain kappa and lambda (ALκ and ALλ), transthyretin
wild type and variant (ATTRwt and ATTRv), leukocyte chemotactic factor 2 (ALECT2), lysozyme
(ALys), gelsolin (AGel), and apolipoprotein A1 (AApoA1)-associated amyloidoses). All subjects were
administered 74 MBq (+/− 10%) I-124, and images were scaled to a minimum and maximum of
0–15,000 Bq/cc, except for the ALECT2 patient, who received 38.5 MBq, where the image is scaled to
7500 Bq/cc. For clarity, due to its atypical location, the stomach of the AL kappa patient has been
labeled but does not indicate amyloid uptake in this organ. P: parotid gland; sg: salivary gland; th:
thyroid gland; sa: saliva; st: stomach; k/u: kidney/ureter; bl: urinary bladder; h: heart, li: liver; sp:
spleen; k: kidney; pa: pancreas; lu: lung; a: adrenal gland.
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Table 2. Clinical amyloid distribution and 124I-p5+14 sites of accumulation by imaging.

Organ
AL kappa AL lambda ATTRwt ATTRv ALECT2 ALys AGel AApoA1

C 1 I C I C I C I C I C I C I C I

Heart
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changes in amyloid load in practice. Monitoring disease burden with progression, regres-
sion, and/or changes in amyloid load during clinical trials of therapeutics, as they become 
available, would be invaluable. 

Systemic amyloidosis is characterized by heterogeneous anatomic depositions of am-
yloid. Not recognizing the extent of the whole-body amyloid burden can hinder a com-
plete appreciation of the pathology and its sequelae. Whole-body imaging can provide a 
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this distribution may not be obvious in the MIP images (Figure 3), which are not threshold dependent, nor the
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3. Discussion

There are 42 types of pathologic amyloidosis recognized by the International Society of
Amyloidosis, and of these, 20 are defined as systemic disorders. ATTR and AL are the most
common forms of systemic amyloidosis. Treatment for both ATTR and AL currently focuses
on the prevention of further amyloid accumulation. For patients with ATTR, silencers are
approved to lower the production of transthyretin in the liver using oligonucleotides and
small interfering RNA [20,21]. Alternatively, the dissociation of the transthyretin tetramer, a
prerequisite for amyloid formation, can be halted using stabilizers such as tafamidis [22–24].
In patients with AL-associated amyloidosis, light chain production by the plasma cell clone
is inhibited using proteasome inhibitors, chemotherapy, or anti-plasma cell immunotherapy
using daratumumab [25]. In patients with rare types of amyloid, where renal deposi-
tion is generally the most common pathologic feature, treatment options are limited or
not available. Currently, there is no standard way to monitor changes in amyloid load
in practice. Monitoring disease burden with progression, regression, and/or changes
in amyloid load during clinical trials of therapeutics, as they become available, would
be invaluable.

Systemic amyloidosis is characterized by heterogeneous anatomic depositions of
amyloid. Not recognizing the extent of the whole-body amyloid burden can hinder a
complete appreciation of the pathology and its sequelae. Whole-body imaging can provide
a complete picture of amyloid distribution; however, there are currently no FDA-approved
agents available for this purpose. The radioiodinated SAP component (123I-SAP) binds all
types of amyloid and has been used extensively in the UK and the Netherlands to image
extracardiac amyloid. Imaging of cardiac ATTR-associated amyloidosis with bone-seeking
99mTc-PYP or 99mTc-DPD is routinely performed, but these reagents do not bind amyloid di-
rectly but rather accumulate in areas of the heart with microcalcifications [26]. Additionally,
18F-florbetapir detects various amyloid types but has low affinity for TTR, cannot image
hepatic amyloid, and does not accurately detect renal deposits [27]. Other pan-amyloid-
binding biologicals are well described [28–35], many of which use pattern recognition
motifs for binding rather than primary sequence determinants [31–33]. The peptide p5+14
directly binds amyloid-associated fibrils and hypersulfated HSPG via multivalent electro-
static interactions with the negative charges presented by fibrils and amyloid-associated
glycans. Accordingly, we posit that 124I-p5+14 falls within the pattern recognition family of
amyloid-reactive reagents [15].

Early preclinical development of the radiotracer utilized direct radioiodination of
the lone tyrosine residue at position four of the p5+14 peptide. This circumvented the
need for clinical chelators, which would involve chemical modification of one of the
12 lysine side chains that are critically important for amyloid binding or incorporation of
a cysteine residue to enable site-specific bifunctional chelator attachment [36]. Moreover,
the preclinical radioiodination method was readily adaptable for iodine-124 or iodine-123
and therefore represented a facile development path for either PET or SPECT imaging.
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Amyloidosis is a systemic disease in which the organ-specific amyloid load, notably in the
heart and kidney, has prognostic implications [4,37]. However, extra-cardiorenal amyloid
may impact the quality of life and produce clinical manifestations that are not appreciated
due to our inability to detect amyloid in all anatomic sites. Therefore, PET/CT imaging
using iodine-124 was the imaging modality of choice, allowing quantitative, high-resolution
visualization of the distribution of amyloid throughout the body.

Iodine-124 is an exotic isotope, so called because it is not routinely used for clinical
PET/CT imaging but is well suited for immunoPET imaging [38–43], or in this case, peptide
PET imaging [44]. Iodine-124 is a cyclotron-produced radionuclide with a 4.2 day half-
life, which affords advantages in the production and shipping of 124I-p5+14 from a single
site. The radionuclide decays to tellurium-124 by electron capture with a 25.6% positron
emission [45]. Although iodine-124 has a similar positron range (Rmean = 4.4 mm) to
gallium-68 (~4 mm), it is greater than fluorine-18 (0.6 mm) or Zr-89 (1.3 mm) [45], which
can lead to degradation of high-resolution PET images. However, high-resolution PET data
using iodine-124 is possible using prompt gamma correction and point spread function
reconstruction methods and can be further improved with correction for the positron
range [46].

During the early development of p5+14 as a PET radiotracer, other radionuclide
alternatives were considered. At that time, methods for incorporating F-18 into peptides
were limited and inefficient, and thus, fluorination of p5+14 was not considered a viable
alternative. Similarly, zirconium-89 labeled p5+14 was not evaluated because the clinically
used chelator, deferoxamine-pPhe-NCS, would utilize one of the critical lysine side chains
in the amyloid binding domain of the peptide.

In addition to the physical characteristics of I-124 as a suitable radionuclide for PET
imaging of the peptide p5+14, the biological properties are also favorable. In patients
with systemic amyloidosis, accumulation of amyloid in the heart and kidneys is one of the
leading causes of mortality and a reduction in quality of life. Therefore, the detection of
amyloid in both organs in a single imaging procedure was deemed an important feature of
an amyloid imaging agent. Imaging pathology in the organ through which a radiotracer is
catabolized is challenging, if not impossible, in most cases [47]. However, we demonstrated
using amyloid-free mice that the radioactivity in the kidneys rapidly decreased following
the initial appearance after IV injection of radioiodinated p5+14 [17]. Therefore, we find
significant advantages in using the non-residualized radioiodide as compared to a residual-
ized nuclide, e.g., Zr-89, for imaging renal amyloid deposits. We have hypothesized that
radioiodide clearance from the kidney is due to the action of intracellular dehalogenase
enzymes that strip the radioiodide from the peptide. In contrast, when the radiotracer was
bound to extracellular renal amyloid deposits in mice with severe systemic AA amyloidosis,
it was protected from dehalogenation and remained at the amyloid site, detectable even up
to seven days post-injection [17]. Thus, PET imaging of 124I-p5+14 at~ 5 h post-injection
can confidently be used to specifically detect renal amyloid in human subjects.

Herein, we have described the pan-amyloid reactivity of a novel peptide radiotracer
capable of imaging, in patients, diverse types of amyloidosis throughout the body, including
the heart. In healthy subjects, comparatively little retention of 124I-p5+14 was observed in
the abdominothoracic organs. The physiological distribution of radioactivity was limited
to the renal pelvis, ureters, and bladder, as well as the salivary and parotid glands, thyroid,
and stomach lumen (Figure 2). 124I-p5+14 was rapidly cleared from the circulation and
accumulated in amyloid-laden abdominothoracic organs due to its specific binding to two
ubiquitous amyloid components, fibrils and HSPG, and functional dehalogenation.

Despite the small number of patients with rarer types of amyloidosis assessed in this
early-phase study, the images are consistent with the presentation of the disease reported
in the clinical record and with reports in the literature. In addition, organs that were not
appreciated clinically as containing amyloid were imaged using 124I-p5+14. Amyloid in
these anatomic sites may represent subclinical deposits or those with yet unknown clinical
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sequelae. Recent autopsy studies do indicate that amyloid is often widespread throughout
the body, consistent with 124I-p5+14 imaging [48–50].

An accurate and prompt diagnosis of amyloidosis remains a challenge in the clinical
setting. The heterogeneous clinical presentation and related diversity of amyloid-related
disorders are contributors to this. PET/CT imaging with 124I-p5+14 can provide a facile,
non-invasive method for clinical diagnosis and disease staging for patients with any type
of systemic amyloidosis. Further assessment of 124I-p5+14 PET/CT imaging is warranted
to more fully demonstrate its clinical utility for patients with systemic amyloidosis.

4. Materials and Methods
4.1. Peptide Histochemistry and Congo Red Staining

The peptide p5+14 (with a cysteine residue at the N-terminal) was prepared for tissue
staining by biotinylation, according to the manufacturer’s instructions, using a maleimide-
biotin conjugation kit (Pierce, Grand Island, NY, USA). Six µm-thick formalin-fixed, paraffin-
embedded human or animal amyloid-laden tissue sections were deparaffinized, placed on
slides, and incubated in citrate antigen retrieval solution (Citrus Plus; BioGenex, Fremont,
CA, USA) at 90 ◦C for 30 min. The biotinylated peptide p5+14 was added at a concentration
of 5 µg/mL in PBS and incubated overnight at 4 ◦C in a humidified chamber. The slides
were developed using the Vectastain Elite ABC development kit (Vector Labs, Burlingame,
CA, USA) and visualized using diaminobenzidene (Vector Labs).

Detection of amyloid was achieved in consecutive tissue sections by staining with
an alkaline Congo red solution (0.8% w/v Congo red, 0.2% w/v KOH, 80% ethanol) for
1 h at room temperature, followed by a counterstain with Mayer’s hematoxylin for 2 min.
All tissue sections were examined using a Leica DM500 light microscope (Leica, Wetzlar,
Germany) fitted with cross-polarizing filters (for Congo red). Digital microscopic images
were acquired using a cooled CCD camera (SPOT; Diagnostic Instruments, Sterling Heights,
MI, USA).

4.2. Study Participants

A total of 57 participants were administered 124I-p5+14 in this study; however, this
report highlights the biodistribution of radiotracer uptake in a subset of eight patients, each
with a distinct type of systemic amyloidosis (Table 1). The mean age for this subset was
65.4 ± 4.5 y, and the median time from diagnosis was 4.5 y (IQR: 2.3–5.8). Additionally,
5 healthy subjects (2 M/3 F) with a mean age of 57.6 ± 8.2 y (IQR: 50–65) served to assess
the normal physiological distribution of the radioactivity.

4.3. Peptide and Radiolabeling

The peptide p5+14 with the amino acid sequence: GGGYS KAQKA QAKQA KQAQK
AQKAQ AKQAK QAQKA QKAQA KQAKQ was manufactured under GMP conditions
by AmbioPharm Inc. (North Augusta, SC), supplied as a lyophilized powder in 3 mg
aliquots, and stored at −20 ◦C. Iodine-124 was purchased from 3D Imaging (Little Rock,
AR 72205; DMF# 025853). Single patient doses of 124I-p5+14 were prepared on the day
of use with soluble iodogen as the oxidant [51]. Following tests to ensure quality
(>90% radiopurity, >90% peptide purity, bioactivity, and non-pyrogenicity), the subjects
received a single intravenous infusion of the radiotracer (74 ± 0.7 MBq I-124 and no more
than 2 mg of peptide) at 3 mL/min for 10 min [51].

4.4. Study Design

This is a post hoc analysis of the Phase 1/2 clinical trial of 124I-p5+14 (AT-01) to
assess safety and amyloid-reactivity in patients with a confirmed diagnosis of systemic
amyloidosis [51]. The anatomic distribution of amyloid was assessed from the patients’
medical records prior to imaging. Healthy subjects had no evidence of amyloid-related
pathologies and no family history of hereditary amyloidosis. No participants were taking
heparin or heparin-derived anticoagulants. The study design is shown in Figure 1.
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4.5. Image Acquisition

PET/CT images were acquired using a Siemens PET/CT Biograph imaging platform
(Siemens, Knoxville, TN) with a low-dose CT (120 kVp, 50 effective mAs) at ~5 h post-
infusion using 5 min PET acquisitions per bed position.

PET data were reconstructed using a 3DOSEM algorithm with attenuation weighting
and prompt gamma correction with a 168 × 168 image matrix and an image resolution of
~8 mm full-width half maximum. CT data were reconstructed using a medium smoothing
kernel and 4 mm reconstruction increments.

4.6. Image Analysis

PET/CT images were visually evaluated for organ-specific retention of radioactivity
using the XD General Oncology Review application in Mirada Medical DBx (Build 1.2.0.59)
by a nuclear medicine physician blinded to subjects’ disease status. Maximum intensity
projections (MIPs) and PET/CT images were prepared using Inveon Research Workplace
(IRW) software (Ed. 4.2 [4.2.0.15], Siemens Preclinical Solutions).

4.7. Study Oversight

The study protocol was approved by the US Food and Drug Administration and
performed under the auspices of Investigational New Product (IND) No. 132282. Approval
was obtained from the Institutional Review Board (protocol #4386) at the UT Graduate
School of Medicine (Knoxville, TN, USA). All participants provided informed written
consent prior to the prescreening of medical records and study participation.
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