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Abstract: The incidence of inflammatory bowel disease (IBD) is increasing worldwide. It is reported
that TGF-β/Smad signal pathway is inactivated in patients with Crohn’s disease by overexpression
of Smad 7. With expectation of multiple molecular targeting by microRNAs (miRNAs), we currently
attempted to identify certain miRNAs that activate TGF-β/Smad signal pathway and aimed to
prove in vivo therapeutic efficacy in mouse model. Through Smad binding element (SBE) reporter
assays, we focused on miR-497a-5p. This miRNA is common between mouse and human species
and enhanced the activity of TGF-β/Smad signal pathway, decreased Smad 7 and/or increased
phosphorylated Smad 3 expression in non-tumor cell line HEK293, colorectal cancer cell line HCT116
and mouse macrophage J774a.1 cells. MiR-497a-5p also suppressed the production of inflammatory
cytokines TNF-α, IL-12p40, a subunit of IL-23, and IL-6 when J774a.1 cells were stimulated by
lipopolysaccharides (LPS). In a long-term therapeutic model for mouse dextran sodium sulfate (DSS)-
induced colitis, systemic delivery of miR-497a-5p load on super carbonate apatite (sCA) nanoparticle
as a vehicle restored epithelial structure of the colonic mucosa and suppressed bowel inflammation
compared with negative control miRNA treatment. Our data suggest that sCA-miR-497a-5p may
potentially have a therapeutic ability against IBD although further investigation is essential.

Keywords: inflammatory bowel disease; miR-497a-5p; TGF-β; macrophage

1. Introduction

Inflammatory bowel disease (IBD) such as ulcerative colitis (UC) and Crohn’s disease
(CD) is an intractable chronic inflammatory disease, and the number of patients is increasing
in the world year by year [1–3]. Medical treatments such as 5-aminosalicylic acid (5-ASA),
corticosteroids, and anti-tumor necrosis factor-α (TNF-α) antibody are first line-therapies
against IBD, but remissions and relapses are often repeated [4,5]. In recent years, anti-
interleukin 12/23 antibody, JAK inhibitors, and anti-α4β7 integrin antibody emerged as
new molecular-targeted drugs [6–9], but they carry the risk of immunocompromise, allergy
and other side effects and they still cannot cure IBD. Therefore, continuous effort to develop
novel therapy is required against IBD.

Pharmaceuticals 2023, 16, 618. https://doi.org/10.3390/ph16040618 https://www.mdpi.com/journal/pharmaceuticals

https://doi.org/10.3390/ph16040618
https://doi.org/10.3390/ph16040618
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/pharmaceuticals
https://www.mdpi.com
https://orcid.org/0000-0002-0825-6823
https://doi.org/10.3390/ph16040618
https://www.mdpi.com/journal/pharmaceuticals
https://www.mdpi.com/article/10.3390/ph16040618?type=check_update&version=3


Pharmaceuticals 2023, 16, 618 2 of 19

Although the cause of IBD has not been fully clarified, involvement of genetic factors
and environmental factors is suggested [10–12]. When the barrier mechanism of the intesti-
nal mucosa is destroyed, food residues and intestinal bacteria are phagocytosed by antigen
presenting dendritic cell which present antigen to Naïve T cells and induce differentiation
into regulatory T lymphocytes (Treg) and inflammatory T lymphocytes (Th17) [13,14]. In
IBD patients, Th17 becomes dominant and Treg declines, so that inflammatory cytokines,
TNF-α, and interferon-γ (IFN-γ) increase, and an anti-inflammatory cytokine transforming
growth factor-β (TGF-β) decreases [15]. It is reported that TGF-β/Smad signal pathway
is suppressed in IBD patients [16–18]. Smads involved in this pathway are classified
into three types: Inhibitory Smads (I-Smad: Smad 6/7) that inhibit the signal pathway,
Common mediator Smad (Co-Smad: Smad 4) that forms a complex with Smad 2/3, and
Receptor-regulated Smads (R-Smads: Smad 2/3 and others) that activate the signal path-
way [19,20]. It is reported that Smad 7 was highly expressed in mononuclear cells at
intestinal lamina propria in patients with IBD [17,18,21]. Intestinal macrophages also play
an important role in IBD [22–24]. It is reported that intestinal-specific macrophages subset
CD14+ macrophages produce a large amount of inflammatory cytokines IL-23, TNF-α and
IL-6, leading to chronic inflammation in Crohn’s disease [25].

MicroRNA (miRNA) is a single-stranded non-cording RNA of 21 to 25 bases MiRNA
that binds to the 3′ UTR of the target mRNA to suppress translation, or control gene
expression by cleaving mRNA [26,27]. Although limited numbers of siRNA- and miRNA-
based therapeutic options have advanced to clinical stages [28–35], venous infusion of
nucleic acid medicine is expected as a powerful therapeutic option especially against severe
IBD at acute exacerbation. Using IBD models considerable efforts have been made for
systemic delivery of various miRNAs [36–43], but it still remains an unsolved clinical
challenge mainly due to lack of suitable delivery system. Thus, miRNA and siRNA are
rapidly degraded when administered to the blood stream, which made it difficult to supply
sufficient amount of nucleic acid to target lesions.

sCA nanoparticle is a pH-sensitive in vivo delivery system for miRNA and siRNA
with no significant immune activation based on modified calcium phosphate method [44].
We had previously reported that systemic administration of sCA incorporating siRNA and
miRNA showed antitumor effects in various carcinomas and anti-inflammatory effects in
IBD model [44–55].

A phase II clinical trial showed that oral Smad 7 antisense oligonucleotides improved
clinical symptoms in patients with Crohn’s disease [21], but the phase III clinical study was
unfortunately discontinued [56]. Some reports suspect insufficient quality of nucleic acid
prepared in the phase III study [56–59]. Unlike antisense oligonucleotides, miRNA can bind
to and regulate multiple genes [26,27]. Instead of single molecule targeting, we currently
attempted to identify certain miRNAs based on TGF-β/Smad signal activity, which should
exert multiple function. Finally, we investigated therapeutic efficacy of miR-497a-5p in
mouse dextran sodium sulfate (DSS)-induced colitis using super carbonate apatite as a
systemic delivery vehicle.

2. Results and Discussion
2.1. Selection of microRNAs That Up-Regulate TGF-β/Smad Signal Pathway

Using a public database TargetScan [60] miRbase [61], 18 mmu miRNAs were selected
as candidates which may potentially bind and inhibit expression of negative regulators in
TGF-β/Smad signal pathway such as Smad 6, Smad 7, SMURF1, SMURF2, LTBP1, TGIF
(Supplementary Figure S1, Point 1). Among 18 miRNAs we chose 13 miRNAs which
conserve identical sequences also in human species (Supplementary Figure S1, Point 2).
Potential binding combination between 3′ UTR mRNA of the negative regulators and mmu
miRNAs are summarized in Table 1.
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Table 1. Potential binding combination between inhibitors of TGF-β/SMAD signal pathway and
mmu miRNAs.

Gene mmu miRNA Position in the UTR Seed Match Count

SMURF1

125a-5p 2315–2322 8mer

125b-5p 2315–2322 8mer

15a-5p 2628–2634 7mer-m8

15b-5p 2628–2634 7mer-m8

16-5p 2628–2634 7mer-m8

19a-3p 642–649 8mer

19b-3p 642–649 8mer

SMURF2

497a-5p 205–211 7mer-1A

322-5p 205–211 7mer-1A

15a-5p 205–211 7mer-1A

15b-5p 205–211 7mer-1A

16-5p 205–211 7mer-1A

195a-5p 205–211 7mer-1A

19b-3p 2572–2578 7mer-m8

19a-3p 2572–2578 7mer-m8

148a-3p 2574–2580 7mer-m8

152-3p 2574–2580 7mer-m8

186-5p 2441–2447 7mer-m8

LTBP1

152-3p 37–43 7mer-m8

148a-3p 37–43 7mer-m8

148b-3p 37–43 7mer-m8

SMAD6

196b-5p 102–108 7mer-1A

196a-5p 102–108 7mer-1A

186-5p 248–254 7mer-m8

SMAD7

15a-5p 69–76 8mer

497a-5p 69–76 8mer

195a-5p 69–76 8mer

15b-5p 69–76 8mer

16-5p 69–76 8mer

322-5p 69–76 8mer

TGIF

19a-3p 625–632 8mer

19b-5p 543–549 7mer-1A

6965-5p 192–198 7mer-m8

7075-5p 195–202 8mer

148b-3p 126–132 7mer-m8

148a-3p 126–132 7mer-m8

15a-5p 1709–1715 7mer-m8

16-5p 1709–1715 7mer-m8

152-3p 1678–1685 8mer

195a-5p 1709–1715 7mer-m8

322-5p 1709–1715 7mer-m8

497a-5p 1709–1715 7mer-m8

All mmu miRNAs except for miR-15b-5p-, miR-125b-5p, miR-322-5p-, miR-6965-5p, miR-7075-5p are identical to
human hsa miRNAs.
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To find certain miRNAs that activate TGF-β/Smad signal pathway, SBE reporter
assays were performed using the two different systems (Supplementary Figure S1, Point
3,4). Supplementary Figure S2 shows the principle of this reporter assay. Thus, once Smad
3/Smad 4 binds to SBE together with various transcriptional factors, luciferase signal comes out.

In the first screening, we examined the ability of 13 miRNAs in activation of TGF-
β/Smad signal pathway using HEK293 cells where the SBE reporter plasmid was initially
transduced. The experimental time schedule is shown in Figure 1A. Thus, cells were
exposed with TGF-β at 0.5 ng/mL for 18 h in the assay medium (DMEM supplemented
with 0.5% FBS, 1% non-essential amino acids, 1 mM Na pyruvate), and SBE reporter assay
was performed. Treatment with TGF-β significantly enhanced SBE activity in parental cells
and miR-NC-treated cells (* p < 0.05 for each, Figure 1B). We found that 7 of 13 miRNAs
activated the TGF-β/Smad signal pathway by TGF-β treatment when compared with
miR-NC (* p < 0.05, Figure 1B).
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Figure 1. The first-round screening. (A) The experimental time schedule is shown here. (B) Of
the 13 candidate miRNAs, 7 miRNAs significantly activated SBE reporter activity when compared
to miR-NC (** p < 0.01,* p < 0.05, miR-NC vs. miR-125a-5p, p = 0.043; miR-NC vs. miR-148b-3p,
p = 0.005; miR-NC vs. miR-152-3p, p = 0.005; miR-NC vs. miR-16-5p, p = 0.005; miR-NC vs. miR-497a-
5p, p = 0.003; miR-NC vs. miR-186-5p, p = 0.001; miR-NC vs. miR-195a-5p, p = 0.016).
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In the second screening, we employed a dual luciferase assay system in which SBE ac-
tivity is normalized by expression of co-transfected Renilla luciferase vector, thus providing
more accurate data. Seven miRNAs selected in the first-round screening were transfected
24 h prior to transfection of the plasmids. Then cells were exposed in the assay medium
containing 0.5 ng/mL TGF-β for 24 h (Figure 2A). As results, we found that 3 miRNAs
(miR-497a-5p, miR-186-5p, miR-195a-5p) again significantly activated the SBE activity when
compared with miR-NC (* p < 0.05) (Figure 2B). Because miR-195a-5p had already been re-
ported as a potential treatment option for IBD by promoting intestinal barrier integrity and
restoration of the intestinal epithelium [62,63], we focused on miR-479a-5p and miR-186-5p
in the subsequent experiments.
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Figure 2. The second-round screening. (A) The experimental time schedule is shown here. (B) Of the
7 miRNAs, 3miRNAs (miR-497a-5p, miR-186-5p, miR-195a-5p) significantly activated SBE reporter
activity when compared to miR-NC (** p < 0.01, * p < 0.05, miR-NC vs. miR-497a-5p, p = 0.016;
miR-NC vs. miR-186-5p, p = 0.001; miR-NC vs. miR-195a-5p, p = 0.001).

2.2. Effect of miRNA Treatment on Smad Expression

The sequences of miR-186 and miR-497a-5p were conserved between mouse and
human species [60]. HEK 293 cells were transfected with miR-NCs, miR-186, and miR-
497a-5p, grown for 24 h or 48 h under treatment with TGF-β at 0.5ng/mL for 1 h, as
previously reported [17,64–66] (Figure 3A). MiR-497a-5p treatment increased the expres-
sion of phosphorylated-Smad 2 (p-Smad 2) and decreased Smad 7 expression compared
with parental HEK293 cells, miR-NC1, and miR-NC2-treated cells 48 h after transfection
(Figure 3B). By contrast, treatment with miR-186 did not affect p-Smad 2 or Smad 7 expres-
sion. In colorectal cancer (CRC) cell line HCT116 under TGF-β treatment, miR-497a-5p
up-regulated p-Smad 2 largely and p-Smad 3 to some extent, and decreased Smad 7 24 h
after transfection (Figure 3C). In mouse macrophage J774a.1 cells, miR-497a-5p treatment
decreased Smad 7 expression 48 h after transfection, although p-Smad 2 and p-Smad 3
levels were maintained as well (Figure 3D).
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Figure 3. Western blot analyses for Smads in TGF-β/Smad signal pathway. (A) Experimental time
schedule is shown here. (B) In HEK293cells, miR-497a-5p suppressed the expression of Smad 7 and
increased the expression of p-Smad 2 48 h after transfection. The expression of p-Smad 3 was not
detected. (C) In CRC line HCT116, miR-497a-5p suppressed the expression of Smad 7 and increased
the expression of p-Smad 2 and p-Smad 3 24 h after transfection. (D) In mouse macrophage cell
line J774a.1, miR-497a-5p suppressed the expression of Smad 7 miR-NC 48 h after transfection. The
expressions of p-Smad 2 and p-Smad 3 were not affected much.

2.3. Smad 7 Is a Direct Target of miR-497a-5p

Based on the findings of western blots, we preferentially focused on miR-497a-5p. It is
reported that miR-497-5p indirectly activated latent TGF-β via reversion-inducible cysteine-
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rich protein (Reck) in lung fibrosis model [67]. Here we show that miR-497a-5p directly
inhibit Smad 7 expression. In silico survey showed that mouse Smad 7 mRNA has the
binding site of miR-497a-5p in its 3′ UTR (Figure 4A). Seed sequence of human miR-497-5p
and its binding site in 3′ UTR of human Smad 7 mRNA are both well conserved between
mouse and human species (Supplementary Figure S3). We constructed a luciferase reporter
plasmid containing the miR-497a-5p binding sites in the 3′ UTR of Smad 7 (Figure 4B).
When luciferase assay was performed using HCT116 cells, it was revealed that miR-497a-5p
significantly suppressed luciferase activity compared with miR-NC (p < 0.05), indicating
the direct binding between miR-497a-5p and the 3′ UTR of Smad 7 (Figure 4C).
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Figure 4. Binding assay of miR-497a-5p and 3′ UTR of Smad 7. (A) TargetScan was used to identify
a binding site at position 69–76 of the Smad 7 mRNA 3′ UTR that was complementary to the seed
sequence of miR-497a-5p. (B) Schematic illustration for binding assay. PmirGLO plasmid vector
expresses luminescence according to luciferase activity. When miR-497a-5p binds to the cloning
site of the 3′ UTR of Smad 7, luciferase luminescence reduces. At 24 h after transfection, firefly and
Renilla luciferase activities were measured. (C) In CRC cell lines HCT116, miR-497a-5p significantly
suppressed the luciferase activities as compared to miR-NC or parental cells (** p < 0.01, miR-NC vs.
miR-497a-5p, p = 0.0007), indicating a direct binding of miR-497a-5p to the sequence of 3′ UTR of
Smad 7.
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2.4. MiR-497a-5p Suppressed Expression of Inflammatory Cytokines in Mouse Macrophage J774a.1

It is reported that Smad 7 was highly expressed in mononuclear cells in lamina pro-
pria of intestinal mucosa in patients with IBD [16–18,21]. A part of mononuclear cells turns
into macrophages which produce a large number of inflammatory cytokines such as IL-23,
TNF-α, and IL-6 by stimulation of intestinal bacteria, leading to chronic inflammation [23–25].
Co-culture of macrophages and intestinal epithelial cells is also used as a colitis model
in vitro [68]. Therefore, we examined whether miR-497a-5p would suppress the production
of inflammatory cytokines TNF-a, IL-6, and IL-12p40 (a subunit of IL-23), when lipopolysac-
charides (LPS) at 100 ng/mL was added to mouse macrophage cell line J774a.1 according
to the time schedule shown in Figure 5A. qRT-PCR assays showed that miR-497a-5p
suppressed the production of TNF-α, IL-6, and IL-12p40 compared with miR-NC at the
indicated time points with asterisks (* p < 0.05, Figure 5B).
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Figure 5. miR-497a-5p suppressed the production of inflammatory cytokine from mouse macrophage
cell line J774a.1. (A) Time course schedule is shown here. Cells were stimulated by LPS at 100 ng/mL.
(B) qRT-PCR revealed that miR-497a-5p suppressed the production of inflammatory cytokine, TNF-α,
IL-6, and IL-12p40 compared with miR-NC (** p < 0.01, * p < 0.05. TNF-α: miR-NC vs. miR-497, 4 h
p = 1.45E-07, 24 h p = 0.003, 48 h p = 0.033; IL-6: miR-NC vs. miR-497, 4h p = 0.0006, 24 h p = 0.003,
48 h p = 2.36E-09; IL-12p40: miR-NC vs. miR-497, 4 h p = 0.496, 24 h p = 0.006, 48 h p = 0.0005).
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2.5. sCA Delivered miRNA to Macrophages in Colonic Mucosa

In our previous study, we showed that sCA incorporating miR-NC tagged with Alexa
Fluor 647 was largely co-localized with CD11c+ dendritic cells in the inflamed colon [46].
In this study, we performed in vivo uptake test of miRNA into macrophages. To visualize
the extent and localization of miRNA in the normal and inflamed colon, sCA incorporating
miR-NC tagged with Alexa Fluor 647 was administered via tail vein, and the colon was
excised 4 h after administration. Fluorescence microscopy showed that the red fluorescence
of the Alexa 647 conjugate miR-NC was present in the mucosa and submucosa of the colonic
epithelium. Immunostaining of macrophages with the anti-F4/80 antibody showed that
co-localization of miRNA with the F4/80 positive macrophages was often found (Figure 6A)
and the percentage of uptake of miRNA in macrophages was 47.12 ± 8.27 in inflamed
colon and 38.23 ± 2.79 in normal mucosa, respectively (Figure 6B). There was no significant
difference between the two groups.

Anti- TNF-a antibodies such as infliximab and adalimumab are already used in the
treatment of IBD [69]. Because miR-497a-5p was able to suppress IL-6 and IL-12p40 in
addition to TNF-α in J774a.1, sCA-miR-497a-5p complex targeting macrophages at inflamed
colon may have a clinical benefit.

1 

 

 Figure 6. Co-localization of miRNA with macrophages in colonic mucosa. DSS-induced colitis was
produced by free drinking of 2% DSS for 7 days in female mice (n = 2). sCA incorporating miR-NC
tagged with Alexa Fluor 647 (25 µg) was administered via tail vein, and the colon was excised 4 h
after administration. Immunostaining of macrophages with the anti-F4/80 antibody showed that
co-localization of miRNA with the F4/80 positive-macrophages was noted 47.12 ± 8.27 in inflamed
colon by DSS treatment and 38.23 ± 2.79 in normal mucosa, respectively (n = 6 per mice). Scale bar,
50 µm. Red: miR-NC tagged with Alexa Fluor 647, Green: F4/80 positive-macrophages. Yellow:
merged signals, indicated by arrows.
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2.6. Therapeutic Efficacy of Systemic Administration of sCA-miR-497a-5p on Mouse
DSS-Induced Colitis

Mice were treated with 1.5% DSS in drinking water for 16 days. sCA-miR complexes
were injected to tail vein 8 times on days 9, 11, 13, 15, 17, 19, 21, and 23. On day 24,
mice were sacrificed (Figure 7A). Here we attempted a long-term experiment to evaluate
the therapeutic efficacy of miR-497a-5p; 1.5% DSS for 16 days followed by therapeutic
treatments from day 9 to day 23 every two days. Because most studies were performed to
assess preventive effect of drugs or gene manipulation in DSS-induced colitis [69–73], we are
not aware of any reports that assessed the therapeutic effect of miRNA in DSS-induced colitis
especially in such a long-term schedule. As a result, a drastic inflammatory change was noted
as early as on day 5 in the inflamed rectum and colon (Supplementary Figure S4). Compared
with normal colon epithelium, DSS treatment alone or DSS and sCA-miR-NC destroyed
normal epithelial structures, and numerous inflammatory cells infiltrated into the lamina
propria of colonic mucosa (Figure 7B). By contrast, DSS and sCA-miR-497a-5p treatment
restored epithelial structures of the colonic mucosa and infiltration of inflammatory cells
rather decreased (Figure 7B). The colon length was significantly longer in mice treated
with DSS and sCA-miR-497a-5p as compared to those treated with DSS alone or DSS and
sCA-miR-NC (* p < 0.05, Figure 7C). There was no significant difference in body weight loss
among the DSS-treated groups (Figure 7D). Significantly worse histological scores in mice
treated with DSS alone or DSS and sCA-miR-NC were noted, whereas sCA-miR-497a-5p
treatment significantly improved the histological damages (Figure 7E, * p < 0.05).
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here. Normal mice (n = 3), DSS-treated mice (n = 3), DSS and sCA-miR-NC-treated mice
(n = 4), DSS and sCA-miR-497a-5p-treated mice (n = 3). (B) H&E staining of distal colon in each group.
The mucosal structure was destroyed and many inflammatory cells were noted in DSS-treated mice
or DSS and sCA-miR-NC-treated mice. By contrast, DSS and sCA-miR-497a-5p-treated mice had the
notable therapeutic effect. Scale bars, 100 µm for each. (C) The colon length was significantly longer
in mice treated with DSS and sCA-miR-497a-5p as compared to those treated with DSS alone or DSS
and sCA-miR-NC (** p < 0.01, * p < 0.05, DSS alone vs. DSS and miR-497a-5p, p = 0.002; DSS and
miR-NC vs DSS and miR-497a-5p, p = 0.022). (D) There was no significant difference in body weight
loss among the DSS-treated groups. (E) Significantly worse histological scores in mice treated with
DSS alone or DSS and sCA-miR-NC were noted, whereas sCA-miR-497a-5p treatment significantly
improved the histological damages (** p < 0.01, * p < 0.05, DSS alone vs DSS and miR-497a-5p,
p = 0.046, DSS and miR-NC vs DSS and miR-497a-5p p = 0.034).

2.7. Therapeutic Efficacy of Systemic Administration of sCA-miR-186-5p on Mouse DSS-Induced Colitis

Finally, we compared the in vivo efficacy of miR-186-5p and miR-497a-5p loaded
on sCA. Studies have shown anti-tumor effect of miR-186-5p in carcinomas of colon,
breast, bladder, prostate, and osteosarcoma through maintaining NK cell stability and
suppressing epithelial-mesenchymal transition (EMT) [74–79], but its role in IBD has not
been investigated. A shorter time course study, where 2% DSS in drinking water was given
for 8 days and sCA-miRNAs were injected to tail vein 6 times (Figure 8A), indicated that
miR-186-5p had similar therapeutic efficacy to miR-497a-5p in terms of histological score
(Figure 8B–E). Our current data with regard to selected three miRNAs acting at activation
of TGF-β/Smad signal pathway support the notion that this pathway is an important factor
to suppress IBD.
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was administered in drinking water for 8 days. sCA loaded with miRNA (50 µg) was injected on
days 8,9, 10, 12, 13, and 14. Mice were sacrificed on day 15. The mice were divided into four groups
as follows: Normal mice (n = 3), DSS-treated mice (n = 3), DSS and sCA-miR-497a-5p-treated mice
(n = 3), and DSS and sCA- miR-186-5p-treated mice (n = 3). (B) H&E staining. The mucosal structure
was destroyed in DSS-induced colitis on day 8, only partially regenerated on day 15. On the other
hand, the colonic mucosa was largely reconstructed in DSS and sCA-miR-497a-5p and DSS and
sCA-miR-186-5p-treated groups. Scale bars, 100 µm. (C) Compared with DSS-induced colitis mice,
colon length was significantly longer in DSS and sCA-miR-497a-5p or DSS and sCA-miR-186-5p
treatment groups compared with DSS-induced colitis mice (* p < 0.05, DSS-induced colitis mice vs.
DSS and sCA-miR-497a-5p, p = 0.029; DSS-induced colitis mice vs. DSS and sCA-miR-186-, p = 0.196).
(D) Changes in body weight. No significant differences were observed among the groups. (E) The
histological score was significantly improved in DSS and sCA-miR-497a-5p or DSS and sCA-miR-186-
5p-treated mice compared with DSS-induced colitis mice (* p < 0.05, ** p < 0.01, DSS-induced colitis
mice vs DSS and sCA-miR-497a-5p p = 0.026; DSS-induced colitis mice vs DSS and sCA-miR-186-5p,
p = 0.026).

2.8. Limitation and Future Perspective

There are several limitations in this study. (i) TGF-β activation and production of
cytokines from mouse macrophages had not been examined in the in vivo model yet. (ii) It
remains to be clarified how miR-186-5p acts against IBD. (iii) In vivo experiments for miR-
186-5p should be repeated although in vivo efficacy of miR-497a-5p was confirmed by two
different experiments. During preparation of this manuscript, Zhang M et al. demonstrated
a preventive role of miR-497 in DSS-induced colitis using knockout mice and inhibition of
Wnt/β-catenin pathway was suggested as one possible mechanism [80]. Collectively it is
considered that miR-497 exerts multiple functions such as activation of TGF-β signaling
pathway through targeting Smad 7 and inhibition of Wnt/β-catenin pathway. Our study
proved therapeutic efficacy of miR-497a-5p using sCA as a delivery tool. Recent review
articles introduce sCA nanoparticle as a hopeful non-viral systemic strategy [81–84].

3. Materials and Methods
3.1. Cell Lines and Cell Culture

Human colon cancer cell line HCT116 and human embryonic kidney HEK293 cells
were obtained from the American Type Culture Collection (Rockville, MD, USA). Mouse
macrophage cell line J774a.1 was purchased from JCRB (Japanese Cancer Research Re-
sources Bank) (Ibaragi, Osaka, Japan). HCT116 and J774a.1 cells were cultured in Dul-
becco’s modified Eagle medium (Sigma-Aldrich, Cat. No. D6404, St. Louis, MO, USA)
supplemented with 10% fetal bovine serum (FBS), 100 U/mL penicillin, and 100 µg/mL
streptomycin at 37 ◦C. HEK293 cells were cultured in DMEM supplemented with 10%
FBS, 1% non-essential amino acids (Hyclone, Cat. No. SH30238.01, Tokyo, Japan), 1 mM
Na pyruvate (Hyclone, Cat. No. SH30239.01), and 100 U/mL penicillin, and 100 µg/mL
streptomycin. Cells were cultured in a humidified incubator at 37 ◦C in an atmosphere
containing 5% CO2.

3.2. miRNAs

The specific miRNAs (mmu miR-125a-5p, mmu miR-148a-3p, mmu miR-148b-3p,
mmu miR-152-3p, mmu miR-15a-5p, mmu miR-16-5p, mmu miR-497a-5p, mmu miR-186-
5p, mmu miR-195a-5p, mmu miR-19a-3p, mmu miR-19b-3p, mmu miR-196a-5p, and mmu
miR-196b-5p), and the two negative control miRNAs (NC-miR-1and NC-miR-2) were used
in in vitro experiments.

The specific miRNAs (mmu miR-497a-5p) and the negative control miRNA-1 (NC-
miR-1) were used in in vivo experiments. The specific miRNAs and NC-miR-1 were
purchased from Gene Design Inc. (Ibaragi, Osaka, Japan) and NC-miR-2 was purchased
from Sigma-Aldrich. The sequences of miRNAs used are listed in Supplementary Table S1.



Pharmaceuticals 2023, 16, 618 13 of 19

3.3. TGF-β Pathway-Responsive Reporter Assays

The first round screening was performed using HEK293 cells where SBE reporter
plasmid was introduced (BPS Bioscience, Cat. No. 60653, Court West, Suite E San Diego,
CA, USA). The cells were maintained with 400 µg/mL of Geneticin (Invitrogen, Cat. No.
10131035, Carlsbad, CA, USA). Cells were seeded in 96-well plates at a density of 2.5 × 104

per well and transfected with miR-NC and candidate miRNAs at a final concentration of
50 nM. The second round screening was performed using SBE Reporter Kit (BPS Bioscience,
Cat. No. 60654). The kit contains transfection-ready SBE luciferase reporter vector. This
reporter contains a firefly luciferase gene under the control of multimerized SBE responsive
element located upstream of a minimal promoter. The SBE reporter is premixed with
constitutively expressing Renilla-Sea Pansy luciferase vector that serves as internal control
for transfection efficiency. Luciferase assay was performed using Dual-Luciferase® Reporter
Assay System (Promega, Cat, No. E1910, Madison, WI, USA) and luminescence was
measured by a luminometer (TriStar2 LB942).

3.4. Transfection

Plasmid DNAs were transfected by LipofectamineTM 2000 Transfection Reagent (Invit-
rogen, Cat, No. 11668019) and miRNAs were transfected by LipofectamineTM RNAiMAX
Transfection Reagent (Invitrogen, Cat, No. 13778150). At transfection, Opti-MEM™ I
Reduced Serum Medium (Thermo Fisher Scientific, Cat. No. 31985062, Wilmington, DE,
USA) was used.

3.5. Western Blotting

Cells were seeded in six-well plates at a density of 1 × 105–2 × 105 per well and
transfected with miR-NC, miR-497a-5p and miR-186-5p at a final concentration of 50 nM.
After 24 h and 48 h, cell lysates were extracted by lysis buffer (0.05 M Tris-HCl pH8.0,
0.15 M NaCl, 0.5 % Nonidet P-40) with 1% proteinase inhibitor cocktail (Nacalai Tesque,
Inc. Kyoto, Kyoto, Japan. Cat, No. 04080-24). The protein samples (30 µg/lane) were
electrophoresed by SDS-PAGE using 9% acrylamide gel and transferred to PVDF transfer
membranes (Bio-Rad Laboratories, Inc. Hercules, CA, USA. Cat, No. #1620177). The
membranes were blocked with 5% non-fat dry milk (Cell Signaling Technology, Inc. Cat,
No. #9999, Beverly, MA, USA) in TBS with Tween-20 (TBS-T; 50 mM Tris, 158 mM NaCl,
2.7 mM KCl, pH 7.5, 0.1% Tween-20) or Blocking One (Nacalai Tesque, Inc. Cat, No. 03953-
66) or Blocking One-p (Nacalai Tesque, Inc. Cat, No. 05999-84) for 1 h at room temperature
and incubated with the following primary antibodies overnight at 4 ◦C:

Antibodies and dilution used were as follows:
Phospho-Smad 2 (Ser465/467) (138D4) Rabbit mAb (1:1000, Cell Signaling Technology,

Cat, No. #3108,), Phospho-Smad 3 (Ser423/425) (C25A9) Rabbit mAb (1:1000, Cell Signaling
Technology, Cat, No. #9520), Smad 7 Polyclonal Antibody (1: 500, Invitrogen, Cat, No.
10466413), β-Actin (13E5) Rabbit mAb (1:3000, Cell Signaling Technology, No. #4970),
and anti-Rabbit IgG, HRP-Linked Whole Ab Donkey secondary antibody (1: 3000, GE
Healthcare, Cat, No. NA934, Chicago, IL, USA). The bands were visualized by the ECL
Detection System (GE Healthcare Life Sciences, Cat, No. 89168-782) and analyzed using
ImageJ 1.52v software (National Institutes of Health).

3.6. Binding Assay Using pmirGLO Plasmid Vector

RT-PCR was performed to amplify parts of the 3′ UTRs of Smad 7 miRNA. The primer
sequences were as follows: insert of Smad 7, forward 5 5′-GCTCGCTAGCCTCGACTGAGC
AGGCCACACTTCAAAC-3′, reverse 5′-ATGCCTGCAGGTCGAGGTGTCCTGCCGA
TCATACCTG-3′. The amplified product (304 bp) was subcloned and ligated into the
multi-cloning site between Sal I and Xho I in the pmirGLO Dual-Luciferase miRNA Target
Expression Vector (Promega, Cat, No. E1330) using the In-Fusion HD Cloning Kit (Clontech,
Cat, No. 639650, Mountain View, CA, USA).

The sequences of inserts and vectors were confirmed by Sanger sequencing.
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Cells were seeded in 96-well plates at a density of 1 × 104 cells per well and were
co-transfected with 50 ng pmirGLO plasmid vector containing the insert and either miR-
negative control (5 pmol) or miR-497a-5p (5 pmol). At 24 h after transfection, firefly and
Renilla luciferase activities were measured using the Dual- Luciferase Reporter Assay
System (Promega, Cat, No. E1910). All experiments were conducted in triplicate.

3.7. qRT-PCR

Total RNA was extracted using TRIzolTM Reagent (Invitrogen, Cat, No. 15596018).
RNA quality was assessed with a NanoDrop ONE spectrophotometer (Thermo Fisher Scientific,
Wilmington, DE, USA). About 2 µg of RNA was reverse transcribed with the high-capacity
RNA to cDNA Kit (Applied Biosystems, Cat, No. 4388950, Foster City, CA, USA).

qPCR analysis was performed using THUNDERBIRD SYBR qPCR Mix (TOYOBO
LIFE SCIENCE, Cat, No. QPS-201). The qPCR was performed on the LightCycler® 480
real-time PCR system (Roche Diagnostics, Basel, Switzerland). The qPCR conditions were
as follows: 95 ◦C for 30 s; followed by 40 cycles of 95 ◦C for 10 s, 60 ◦C for 10 s and 72 ◦C for
30 s. The expression of the target gene was normalized to endogenous GAPDH expression.
Relative expression was quantified by the 2−∆∆Cq method.

The primers used were as follows:

TNF-α: 5′-CGTCAGCCGATTTGCTATCT-3′ (forward) and 5′-CGGACTCCGCAAAGTCTAAG-
3′ (reverse).
IL-6: 5′-AGTTGCCTTCTTGGGACTGA-3′ (forward) and 5′-CAGAATTGCCATTGCACAAC-3′

(reverse).
IL-12p40: 5′-AGGTGCGTTCCTCGTAGAGA-3′ (forward) and 5′-AAAGCCAACCAAGCA
GAAGA-3′ (reverse).
GAPDH: 5′-AGGTCGGTGTGAACGGATTTG-3′ (forward) and 5′-TGTAGACCATGTA
GTTGAGGTCA-3′ (reverse).

3.8. Therapeutic Model for DSS-Induced Mouse Colitis

Eight-week-old BALB/c mice (female) which retain intact immune system were pur-
chased from CLEA (Tokyo, Japan). DSS (MW 36,000–50,000) was purchased from MP
Biomedicals (Cat, No. 9011-18-1, Santa Ana, CA, USA). For producing therapeutic model
of DSS-induced colitis, drinking water at a concentration of 1.5% DSS was given to mice for
16 days with reference to previous studies [46,81]. MiR-497a-5p loaded on super carbonate
apatite nanoparticle was injected eight times on the tail vein from day 9 to day 23 every
two days. Mice were sacrificed on day 24. For a comparative therapeutic study between
sCA-miR-497a-5p and sCA-miR-186-5p, 2% DSS in drinking water was given to mice for
8 days [82–84]. MiR-497a-5p or miR-186-5p loaded on super carbonate apatite nanoparticle
was injected on days 8, 9, 10, 12, 13, and 14. Mice were sacrificed on day 15. The study
protocol was in accordance with the Declaration of Helsinki, and the Ethical Guidelines
for Medical and Health Research Involving Human Subjects in Osaka University. Animal
experiments were approved by the Institutional Animal Care and Use Committee of Osaka
University Graduate School of Medicine and by the Committee for the Ethics of Animal
Experiments of Osaka University (Permit Number: 30-02-5, 20 June 2018).

3.9. Histological Inflammation Scoring of DSS Colitis Mice

Based on previous reports [46,69], the extent of inflammation in colon and intestinal
wall was scored as follows: Mucosal damage: 0, normal; 1, focal damage and 3–10 intraep-
ithelial lymphocytes (IELs)/high power field (HPF); 2, rare crypt abscesses plus >10 IELs
/HPF; 3, multiple crypt abscesses and erosion/ulceration plus >10 IELs /HPF. Submucosal
damage: 0, normal or widely scattered leukocytes; 1, focal aggregates of leukocytes; 2,
diffuse leukocyte infiltration with expansion of the submucosa; 3, diffuse leukocyte infil-
tration. Muscularis damage: 0, normal or widely scattered leukocytes; 1, widely scattered
leukocyte aggregates between muscle layers; 2, leukocyte infiltration with focal effacement
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of the muscularis; 3, extensive leukocyte infiltration with transmural effacement of the
muscularis.

3.10. Production of sCA

sCA was prepared as described previously [44]. Briefly, 50 µg miR-497a-5p or miR-
negative control 1 (NC1) was incubated in 25 mL of inorganic solution (44 mM NaHCO3;
0.9 mM NaH2PO4; 1.8 mM CaCl2 pH 7.5) at 37 ◦C for 30 min. The solution was centrifuged
at 12,000 rpm for 3 min. The pellets from two tubes were dissolved in 200 µL saline contain-
ing 0.5% albumin, and sonicated (38 kHz, 80 W) in a water bath for 10 min. Approximately
50 µg miRNA per one administration was injected into the tail vein.

3.11. Fluorescent Immunostaining of Macrophages at Propria Muscularis of Colon Mucosa

DSS-induced colitis was produced by free drinking of 2% DSS for 7 days in female mice
(n = 2). Non-treated mice (n = 2) served as a comparative reference. The Alexia 647-tagged
NC-miRNA (25 µg) encapsulated in sCA was injected into the tail vein and the distal colon
was collected 4 h later, and frozen in OCT compound. About 8 µm sections were cut and
fixed in 4% paraformaldehyde. The frozen sections (n = 6 per mouse) were incubated
overnight with rat anti-mouse F4/80 antibody (BIO RAD, Cat, No. MCA497G, Hercules,
CA, USA) at a concentration of 1:100. As a secondary antibody, FITC-conjugated goat anti-
rat IgG was used (Jackson ImmunoResearch, Cat, No. 112-095-167, West Grove, PA, USA).
The nuclei were stained with ProLong Gold anti-fade reagent with DAPI (Invitrogen, Cat,
No. #8961). Sections were observed using a fluorescence microscope (BZ-X 700, Keyence
Corporation, Osaka, Japan).

3.12. Statistics

F-test was performed to find out if there were equal variances between the two
groups. Statistical significance of the difference between two groups was then calculated by
Student’s t-test or Welch’s t-test, and data are presented as means ± standard deviations
unless specifically otherwise indicated. When more than two groups were compared,
one-way ANOVA was used followed by Bonferroni correction to determine the statistical
significance of the differences. Statistical analyses were performed using the JMP13 program
(SAS Institute, Cary, NC, USA). Differences with p < 0.05 were considered significant (File S1).

4. Conclusions

In conclusion, we have demonstrated that sCA-miR-497a-5p complex exerts a potent
anti-inflammatory effect through activation of TGF-β/Smad signal pathway and inhibition
of secretion of inflammatory cytokines from macrophages in IBD therapeutic mice model.
These results suggest that sCA-miR-497a-5p may potentially have a therapeutic ability
against IBD although further investigation is essential.

Supplementary Materials: The following supporting information can be downloaded at: https:
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miR-497a-5p and has-miR-497-5p; Figure S4: HE staining of 1.5% DSS induced colitis mice; Table S1:
Sequences of the miRNAs used in this study; File S1: Summary of statistics.
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