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Abstract: Curcumin, one of the major ingredients of turmeric (Curcuma longa), has been widely
reported for its diverse bioactivities, including against malaria and inflammatory-related diseases.
However, curcumin’s low bioavailability limits its potential as an antimalarial and anti-inflammatory
agent. Therefore, research on the design and synthesis of novel curcumin derivatives is being actively
pursued to improve the pharmacokinetic profile and efficacy of curcumin. This review discusses the
antimalarial and anti-inflammatory activities and the structure–activity relationship (SAR), as well as
the mechanisms of action of curcumin and its derivatives in malarial treatment. This review provides
information on the identification of the methoxy phenyl group responsible for the antimalarial activity
and the potential sites and functional groups of curcumin for structural modification to improve
its antimalarial and anti-inflammatory actions, as well as potential molecular targets of curcumin
derivatives in the context of malaria and inflammation.

Keywords: curcumin derivatives; antimalaria; anti-inflammatory; structure–activity relationship;
molecular targets

1. Introduction

Malaria is a highly life-threatening infectious disease caused by the transmission of
five Plasmodium parasites infecting the human body, which are P. falciparum, P. vivax, P. ovale,
P. malariae, and P. knowlesi. P. falciparum, identified as being the most common and feared
species infecting humans, is transmitted into the circulatory system through the infective
bite of female Anopheles mosquitoes. This triggers the development of sporozoites, which
can rapidly infect liver cells within 30 min after a bite (Figure 1). After approximately five
days, the sporozoites mature into merozoites, and upon release from the cell, will begin
to invade erythrocytes. The merozoites then multiply within the erythrocytes, leading
to the release of more invasive merozoites to infect other erythrocytes. At this point,
malarial-associated symptoms, namely, fever, headaches, body aches, general malaise, and
rigors, will become apparent [1]. At the same time, mature merozoites will continue their
development into gametocytes (sexual-stage parasites), which will subsequently form new
sporozoites within female Anopheles mosquitoes to complete the Plasmodium life cycle [2,3].
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Plasmodium life cycle [2,3].  

 
Figure 1. The life cycle of the Plasmodium parasite, beginning from the infection of sporozoites re-
leased by the bite of a female Anopheles mosquito into the circulatory system of humans [1,4]. 

Recent statistical data from the World Health Organization (WHO) indicate that 1.7 
billion cases of malaria have been recorded worldwide, which led to 10.6 million deaths 
within the previous 20 years (2000–2020) [5]. Plasmodium infection and the consequent in-
flammation can lead to advanced and fatal malaria if left untreated, including cerebral 
and severe malaria, and other complications such as cardiovascular diseases. With severe 
and cerebral malaria being leading causes of mortality, many studies are currently fo-
cused on developing effective antimalarial and anti-inflammatory treatments. In addition, 

Figure 1. The life cycle of the Plasmodium parasite, beginning from the infection of sporozoites
released by the bite of a female Anopheles mosquito into the circulatory system of humans [1,4].

Recent statistical data from the World Health Organization (WHO) indicate that
1.7 billion cases of malaria have been recorded worldwide, which led to 10.6 million deaths
within the previous 20 years (2000–2020) [5]. Plasmodium infection and the consequent
inflammation can lead to advanced and fatal malaria if left untreated, including cerebral
and severe malaria, and other complications such as cardiovascular diseases. With severe
and cerebral malaria being leading causes of mortality, many studies are currently focused
on developing effective antimalarial and anti-inflammatory treatments. In addition, ther-
apeutic efficacy studies (TESs) have shown increasing drug resistance in malaria, where
currently available antimalarial drugs such as artemisinin and chloroquine are no longer
effective against malaria infection. In line with the primary goal of the Global Fund Strategy
2023–2028, sourcing and developing novel and potent inhibitors to combat drug resistance
in malaria treatment is now a necessity, hence, the growing list of bioactive compounds,
which are proven for their antimalarial activities (Figure 2) [2,3,5–7].
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Curcumin, which has been proven to be a promising candidate as an antimalarial 
and anti-inflammatory agent, is a natural polyphenolic compound, originating from the 
rhizomatous perennial plant, turmeric [10,11]. Curcumin was first named and reported by 
Vogel and Pelletier as a compound isolated from Curcuma longa rhizomes and was identi-
fied as an “orange-yellow substance” [12]. In commercially available curcumin, curcumin 

Figure 2. Currently available drugs and biologically active compounds used in the research for
treatment of malaria. [2,3,8,9].

Curcumin, which has been proven to be a promising candidate as an antimalarial
and anti-inflammatory agent, is a natural polyphenolic compound, originating from the
rhizomatous perennial plant, turmeric [10,11]. Curcumin was first named and reported
by Vogel and Pelletier as a compound isolated from Curcuma longa rhizomes and was
identified as an “orange-yellow substance” [12]. In commercially available curcumin,
curcumin is present as a mixture of three curcuminoids, namely, curcumin (77%), bis-
demethoxycurcumin (3%), and demethoxycurcumin (17%) [13] (Figure 3). Due to its high
abundance among curcuminoids, curcumin is more accessible for research and drug devel-
opment compared to other naturally sourced bioactive compounds that are present in low
concentrations in the source plants [2].
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Figure 3. The chemical structures of curcumin and two other curcuminoids naturally present in
commercially available curcumin.

Curcumin is known for its diverse applications worldwide. Aside from its use as
a therapeutic remedy such as in traditional medicine and as an antiseptic agent, it is a
popular cooking ingredient in many Asian countries. Further, it is applied as a coloring
agent in manufacturing, food and beverage, and cosmetic industries [14]. Curcumin, which
has been proven to show no toxicity even at high doses [15,16], has been approved as a
“Generally Recognized as Safe” (GRAS) compound by the US Food and Drug Administra-
tion (FDA) [13]. However, the low bioavailability of curcumin limits its clinical applications
and presents challenges in developing curcumin into a potent antimalarial drug candidate
due to its poor oral absorbability, low aqueous solubility, and rapid metabolism in the
body [17].

This review identifies curcumin derivatives with reported antimalarial and anti-
inflammatory properties, evaluates the key functional groups/sites responsible for the
antimalarial and anti-inflammatory activities, and discusses the mechanisms of action of
these compounds that are associated with their biological effects. Several approaches to
improve the activity of curcumin, including through drug combination, adjuvant appli-
cation, curcumin nanoencapsulation, and structural modifications, have been previously
suggested [18]. A specific approach focusing on the structural modification of the parent
curcumin to enhance its bioactivity as an antimalarial and anti-inflammatory agent based
on structure–activity relationship (SAR) analysis will also be expounded in this review.
In addition, the absorption, distribution, metabolism, and excretion (ADME) properties of
the curcumin derivatives will also be reviewed to evaluate their pharmacological profiles.
Thus, this work is expected to be helpful in understanding the potential enhancement of
curcumin bioactivity in malaria and inflammatory-related diseases, as well as in elucidating
a detailed molecular-level mechanism of action associated with malarial infection.

2. Antimalarial and Anti-Inflammatory Activities of Curcumin and Its Structural
Modifications

Curcumin has been reported to possess multiple therapeutic effects, including anti-
inflammatory [19–22], anti-plasmodial [16,23–25], antifungal [16,26,27], antibacterial [28–30],
antioxidant [31–33], and antitumor [16,34–36] activities. An understanding of its chemical
structure has led to the identification of the sites responsible for its bioactivity, which
are primarily its two methoxy phenolic groups (Figure 4). The hydroxy group attached
at the para position of the aromatic phenyl group contributes toward the stability of
curcumin, as the electrons from the hydroxy group are delocalized into the aromatic ring.
Dohutia et al. investigated the effect of substituting the hydroxy group of curcumin with O-
acetyl and methoxy groups on its antimalarial activity (Figure 5). The IC50 values from the
in vitro study showed that substitution with an O-acetyl group (IC50 = 2.34 µM) exhibited
similar potency as curcumin (IC50 = 3.25 µM); however, the potency decreased markedly
(IC50 = 7.86 µM) when substituting with a methoxy group [37]. This was thought to be due
to the biodegradability of the acetyl group through ester bond cleavage by esterases, which
regenerates the parent curcumin structure, in contrast to the bond attached to an alkyl
group, which is not readily cleaved [38]. Hence, this finding revealed the importance of the
unsubstituted phenol group since the modification of the site led to the loss of curcumin’s
antimalarial activity [38,39].
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The need to develop potent inhibitors of proteins involved in the pathogenesis of
malaria pathways is currently at a crisis point due to the increasing resistance of Plasmodium
parasites against present antimalarial drugs and the lack of lead compounds for new anti-
malarial and anti-inflammatory agents. Thus, one approach that is actively implemented
for malaria treatment is drug combination therapy [5,40–43]. Such an approach for the
treatment of various diseases has long been applied, for example, to reduce drug resistance
for tuberculosis in the 1960s [36]. According to the WHO, current front-line medications de-
signed to mitigate the resistance of Plasmodium parasites against present antimalarial drugs
are often based on artemisinin combination therapy (ACT), involving the combination of
artemether–lumefantrine and amodiaquine (AL-AQ) [5]. Curcumin has also been used as a
component in combination therapy against malaria. For instance, Tjahjani et al. showed
that curcumin produced a synergistic antimalarial effect when administered together with
dihydroartemisinin [44]. Furthermore, the combination of curcumin and piperine, an active
compound found in black pepper, has proven to significantly enhance the bioavailability of
curcumin by 2000% compared to curcumin alone [41].

Although drug combination therapy is proven for its efficacy, a potential drawback
to its application are side effects, which are more likely compared to single-drug ther-
apy [42]. Therefore, drug discovery by way of structural modification of existing bioactive
compounds remains an important approach to combat drug resistance, along with drug
combination therapy. The bioactivity of curcumin against the infected host and parasite
target proteins is highly dependent on its reactivity [45,46]. However, the chemical structure
of curcumin limits its bioavailability and stability at physiological pH and, thus, its efficacy
as an antimalarial and anti-inflammatory agent [15,40]. Factors such as poor absorption,
rapid metabolism, and rapid elimination contribute to the low bioavailability of curcumin
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in the body [15,47–49]. Therefore, deriving compounds with better pharmacokinetic prop-
erties than the parent curcumin is important in developing compounds with enhanced
anti-inflammatory and antimalarial activities.

The instability and low bioavailability of curcumin are mainly due to the presence
of the dicarbonyl group with a highly acidic α-H, which can easily resonate between
keto and enolate forms, as illustrated in Figure 6 [50]. Previous research has indicated
that the extremely reactive β-diketone group appears to be highly unstable and can be
quickly degraded. Hence, curcumin derivatives are being actively studied to overcome
the pharmacological limitations due to the chemistry of curcumin (Figure 7). Examples
of curcumin derivatives exhibiting reasonable and better efficacy against various diseases
than the parent curcumin are shown in Figure 8. A common strategy in designing curcumin
derivatives with enhanced bioactivity is by lowering rotational flexibility and producing a
more rigid orientation by reducing the reactivity of methylene alpha-H of the β-diketone
moiety [51,52].
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Figure 6. The equilibrium between the (i) keto and (ii) enolate forms of curcumin due to the reactivity
of the methylene α-hydrogen, which is susceptible to nucleophilic attack, leading to the low stability
of curcumin [45,53,54].
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Figure 8. Examples of curcumin derivatives with a wide range of therapeutic properties [9,38,50,55–61].

Before structural modification of curcumin is performed, the potential enhancement
of curcumin bioactivity can be preliminarily suggested through pharmacokinetic analysis.
Pharmacokinetic analysis is useful to predict the absorption, distribution, metabolism, and
excretion (ADME) profiles of a compound and, thus, can provide supplementary screening
data to evaluate the possible effects of a compound upon administration into the body.

The Swiss ADME server was employed to evaluate the potential of curcumin deriva-
tives over the parent curcumin as drug candidates with enhanced antimalarial activity [62].
Table 1 shows the results of the analysis, which includes the predictions of physicochemical
properties, drug-likeness according to Lipinski’s Rule of Five, and pharmacokinetic param-
eters for curcumin and its derivatives, as illustrated in Figure 9. The data also provide an
overview of the ability of the compounds to form hydrogen bonds, which can be indicators
of favorable interaction with protein active sites.

The majority of curcumin derivatives illustrated in Figure 9 are predicted to have better
solubility, better GI absorbability, and BBB permeability than the parent curcumin. En-
hanced interactions with the active site of proteins would theoretically delay the metabolism
and elimination of a drug, hence, prolonging its duration of action. This analysis provides
information to understand the possible enhancement of bioactivity contributed by struc-
turally modifying the parent curcumin, which will be discussed in more detail in the later
parts of this review.
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Figure 9. Chemical structures of curcumin derivatives, which have been synthesized and studied for
their anti-inflammatory and antimalarial activities [23,47].

Table 1. Physicochemical and pharmacokinetic properties of each compound shown in Figure 7, as
generated by the Swiss ADME server [62].

Compound

Physicochemical Properties Lipophilicity Water
Solubility Drug-Likeness Pharmacokinetics

Molecular
Weight
(g/mol)

Heavy
Atoms

Rotatable
Bonds

H-Bond
Acceptors

H-Bond
Donors Log P Log S Lipinski’s Rule

Violation
GI

Absorption
BBB

Permeability

1 368.38 27 8 6 2 3.27 −3.94 No High No
2 365.38 27 6 6 2 3.60 −4.33 No High No
3 366.41 27 6 5 3 3.47 −4.33 No High No
4 460.65 33 9 5 3 4.45 −4.95 No High Yes
5 478.64 34 9 6 3 4.53 −5.12 No High Yes
6 505.65 36 10 7 3 3.79 −5.05 1 High No
7 529.54 35 9 5 3 4.82 −6.16 1 High No
8 490.68 35 10 6 3 4.72 −5.05 No High No
9 456.49 34 9 6 2 3.61 −5.83 No High No
10 472.49 35 9 7 3 3.55 −5.69 No High No
11 502.51 37 10 8 3 4.34 −5.77 1 Low No
12 452.45 33 12 8 0 3.83 −4.28 No High No
13 396.43 29 10 6 0 3.59 −4.37 No High Yes
14 472.49 35 9 7 3 3.56 −5.69 No High No
15 472.49 35 9 7 3 3.37 −5.69 No High No
16 488.49 36 9 8 4 3.44 −5.56 No Low No
17 504.48 37 9 9 5 3.63 −5.42 1 Low No
18 486.51 36 10 7 2 4.11 −5.91 No High No
19 486.51 36 10 7 2 3.95 −5.91 No High No
20 516.54 38 11 8 2 3.86 −5.99 1 High No
21 474.48 35 9 7 2 3.76 −5.99 No High No
22 492.47 36 9 8 2 3.65 −6.15 No High No
23 470.51 35 9 6 2 3.62 −6.13 No High No
24 484.54 36 9 6 2 3.90 −6.44 No High No
25 484.54 36 9 6 2 3.97 −6.44 No High No
26 490.93 35 9 6 2 3.82 −6.42 No High No
27 525.38 36 9 6 2 3.48 −7.02 1 High No
28 501.48 37 10 8 2 2.99 −5.89 1 Low No
29 499.55 37 10 6 2 4.22 −6.07 No High No
30 501.48 37 10 8 2 2.76 −5.89 1 Low No
31 498.57 37 10 6 2 3.89 −6.69 No High No
32 500.54 37 9 7 3 3.67 −6.30 1 Low No
33 498.57 37 9 6 2 3.61 −6.74 No High No
34 500.54 37 11 7 2 4.50 −6.14 1 High No
35 498.57 37 9 6 2 3.60 −6.74 No High No
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Table 1. Cont.

Compound

Physicochemical Properties Lipophilicity Water
Solubility Drug-Likeness Pharmacokinetics

Molecular
Weight
(g/mol)

Heavy
Atoms

Rotatable
Bonds

H-Bond
Acceptors

H-Bond
Donors Log P Log S Lipinski’s Rule

Violation
GI

Absorption
BBB

Permeability

36 484.54 36 10 6 2 4.19 −6.41 No High No
37 488.50 36 9 7 2 3.44 −6.29 No High No
38 488.50 36 9 7 2 3.86 −6.29 No High No
39 481.50 36 9 7 2 3.36 −5.78 No High No
40 471.50 35 9 6 3 3.38 −5.47 No High No
41 546.48 40 11 10 2 2.14 −5.97 2 Low No
42 502.58 36 10 6 2 4.66 −6.35 1 Low No
43 326.34 24 6 5 2 3.10 −3.95 No High Yes
44 266.29 20 4 3 2 2.17 −3.93 No High Yes
45 324.29 24 6 5 0 2.18 −4.22 No High No
46 294.34 22 6 3 0 3.46 −4.39 No High Yes
47 392.08 20 4 1 0 3.61 −6.11 1 High Yes

GI—gastrointestinal; BBB—blood–brain barrier.

3. Structure–Activity Relationship of Curcumin Derivatives as Antimalarial and
Anti-Inflammatory Agents

The presence of various functional groups can influence the pharmacodynamic and
pharmacokinetic effects of a drug. The unsubstituted methoxy phenol group of curcumin
has been identified as crucial for its antimalarial and anti-inflammatory activity. Hence, the
structural modification of curcumin is mostly focused on the β-dicarbonyl group and the
highly acidic methylene α-hydrogen bridging the dicarbonyl groups.

In a study by Mishra et al., the keto–enol moiety was converted into the more rigid five-
membered isoxazole and pyrazole rings, targeting the reactive methylene α-hydrogen [38,63].
The isoxazole and pyrazole derivatives of curcumin were synthesized based on the previ-
ously reported reaction schemes, as illustrated in Figure 10 [38,64,65]. The isoxazole and
pyrazole derivatives have been reported for their improved anti-inflammatory and antiplas-
modial effects, with the latter based on in vitro assays against both chloroquine-sensitive
and chloroquine-resistant P. falciparum [38] (Table 2).
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Table 2. Data reported by Mishra et al. [38] showing the in vitro efficacy of curcumin and its
derivatives against P. falciparum.

Compound

P. falciparum In Vitro Analysis

Chloroquine-Sensitive
FCK2

Chloroquine-Resistant
MP-14

IC50 (µM) IC50 (µM)

1 3.25 4.21
2 8.44 7.92
3 0.48 0.45
4 8.48 9.10
5 2.42 2.10
6 0.87 0.89
7 4.65 4.80
8 22.60 24.56
9 3.89 4.12
10 5.85 5.36
11 0.92 0.75
12 2.34 2.51
13 7.86 8.40

Interestingly, the isoxazole derivative (2) exhibited reduced antiplasmodial potency
compared to the parent curcumin. Changing the oxygen atom of the isoxazole ring into a
nitrogen atom, thus, forming the pyrazole derivative (3) (Figure 11), greatly enhanced the
activity, with an IC50 value of 0.48 µM, compared to 3.25 µM of the parent curcumin. Thus,
the presence of nitrogen is vital for the antimalarial activity of the curcumin derivative.
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Figure 11. The pyrazole derivative of curcumin has higher efficacy than the isoxazole derivative.

The activity of the pyrazole derivatives (4–8) upon the addition of a phenyl group
to the nitrogen atom was also investigated (Figure 12). The formation of derivatives (5),
(6), and (7) revealed that the presence of different functional groups on the phenyl ring
greatly affects the potency of the compounds. Derivative (5), which contains fluorine as
opposed to chlorine, as in derivative (7), showed significantly higher activity, as can be seen
in Table 2. This can be attributed to the lower steric hindrance caused by fluorine compared
to chlorine, leading to a more favorable structural characteristic for interaction with other
molecules. In addition, the low IC50 value of derivative (6), which contains a nitro group
attached to the phenyl (Figure 13), indicates that the electron withdrawing group enhances
the activity and potency of curcumin derivatives against malaria. This is believed to be due
to the negative mesomeric effect, which delocalized and withdrew electrons from the ring,
hence stabilizing the compound [66].
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Figure 13. Pyrazole derivative (6) with a nitro substituent at the phenyl ring, which contributes to its
enhanced bioactivity.

Similar to derivatives synthesized by the Knoevenagel reaction (9, 10, 11, and 14–42),
the presence of an electron donating group (8) resulted in a negative effect on the anti-
malarial activity of the derivative, with lower potency compared to the parent curcumin.
Therefore, these observations demonstrate that electron-withdrawing substituents are
crucial to enhancing the antimalarial activity of curcumin derivatives.

Apart from the pyrazole derivatives, a series of Knoevenagel condensate derivatives
(9–11) were also derived from curcumin and tested for in vitro antimalarial activity by
Mishra et al. [38,67]. The curcumin derivatives were then extendedly synthesized by
Dohutia et al. (Table 3) (Figure 14) through further structural modifications producing
compounds 14–42, whose reactive methylene α-hydrogen was substituted with a phenyl
group, as shown in Figure 15 [37]. It was suggested that the Knoevenagel condensate
derivatives were able to inhibit NF-κβ [38,68] and Pf ATP6 [39,69] based on in silico studies,
and exhibited varying levels of antimalarial and anti-inflammatory activities (Figure 15).
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Table 3. In vitro and in silico assessment of antimalarial activity of curcumin derivatives by
Dohutia et al. [37].

Compound MW
(g/mol) logP H-Bond

Donor
H-Bond
Acceptor

Solubility
(mg/L)

IC50
(µM)

Free Binding
Energy (kcal/mol)

% Schizont
Inhibition

5 µg/mL 50 µg/mL

(21) 474.48 5.43 2 6 1382.51 - −6.75 97.8 100
(15) 472.49 4.97 3 7 1869.61 - −5.89 89.5 100
(9) 456.49 5.33 2 6 1583.74 3.89 −5.35 80.1 100

Curcumin 368.38 3.29 2 6 7.475 3.25 −5.25 79.6 100
(10) 472.49 4.97 3 7 1869.61 5.85 −3.87 - -

Parameters based on Lipinski’s rule of five, such as solubility and log P, as well
as the number of H-bond donors and acceptors, were evaluated in the study. These
parameters provide information on the stability and bioavailability of curcumin derivatives
and facilitate the design of the most potent derivative structures [71,72]. The Knoevenagel
condensate derivatives produced generally exhibited enhanced antimalarial potential,
based on their better solubility, binding energy, and percentage of schizont inhibition.

The addition of the phenyl group substituting the α-H (9) provides a steric effect and
deactivates the reactive methylene site. The extended substituent at the α-carbon position
also enables additional interactions with proteins through hydrophobic interactions, re-
sulting in higher free binding energy and percentage of schizont inhibition. The enhanced
solubility and log P value of the derivatives translate to their enhanced stability within the
hydrophilic and hydrophobic regions of the binding sites on the target protein compared
to the parent curcumin (1).

The functional groups introduced to the aromatic phenyl also affect the binding and
percentage of schizont inhibition of the derivatives. An additional hydroxy group at the
meta position (15) increases the binding energy through the introduction of additional
H-bond donors and acceptors. The hydroxy group also limits the free rotation of the phenyl
group, contributing to steric effect and improved interaction with protein, leading to higher
free binding energy and percentage of schizont inhibition than derivative (9) [73].

Interestingly, the substitution of the meta hydroxy with a methoxy group combined
with the addition of another hydroxy at the para position (11) further enhanced the potency
of the compound compared to both curcumin (1) and derivative (9) (Table 2). However,
eliminating the methoxy group at the meta position, leaving a monosubstituted para-
hydroxy phenol group (10), had the opposite effect of reducing its potency to a level lower
than even the parent curcumin (Table 2). Thus, the presence of both the electron-donating
methoxy group at the meta position and the electron-withdrawing hydroxy group is crucial
for the improved antimalarial and anti-inflammatory activities of the curcumin derivative
(Figure 16).
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Comparing the Knoevenagel condensate derivatives, compound (21), which has fluo-
rine (EWG) attached to the phenyl (Figure 17), exhibited the highest percentage of schizont
inhibition and the strongest binding. The highly negative and electron-withdrawing fluo-
rine confers structural stability through an inductive effect, similar to the hydroxyl group.
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Another approach to eliminating the keto–enol and the active methylene moieties is
through the reduction of the dicarbonyl group into a monocarbonyl group. The compounds
reported by Yusuf et al. [74] were not synthesized by modification of the parent curcumin,
but instead by total synthesis, as shown in Figure 18. The bioactivity of each monocarbonyl
derivative against P. falciparum was assessed based on an in silico study of their interaction
with the Pf DXR protein, as well as an in vitro antimalarial assay, initially developed
by Hanne et al. and Mukhtar et al. [74–76]. Notably, the activity of the monocarbonyl
derivatives was observed to be highly dependent on the substituents attached to the
aromatic phenyl rings [74].
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The mechanism of action for this range of curcumin derivatives was identified to
be through the inhibition of the parasite protein Pf DXR, which is a proven target for
the antimalarial drug fosmidomycin [77]. The carbonyl group at the center of the com-
pounds facilitates a ligand–protein interaction through the formation of two hydrogen
bonds at the center of the binding pocket. The hydrophobic aromatic region of the deriva-
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tives also contributes to additional hydrophobic interactions, which were not present
with fosmidomycin.

Monocarbonyl derivative (43), which maintained the methoxy phenol group present
in the parent curcumin (1) (Figure 19), showed 55% parasite elimination in the study. Upon
further modification by substituting the methoxy and hydroxy groups into a monosub-
stituted ring, derivatives (44, 45) were produced. However, the percentage of parasite
elimination decreased, indicating their reduced potency. This result supports the impor-
tance of the unsubstituted methoxy phenol group of curcumin, as modifying this site leads
to the loss of its antimalarial activity [38,39].
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4. Mechanism of Action of Curcumin

Finding a safe and effective anti-inflammatory therapy remains an obstacle in anti-
malarial drug development. Malarial infection affects the regulation of the immune system
and inflammation levels within the body. Curcumin and its derivatives have emerged as an
attractive anti-inflammatory agent due to their wide range of effective cellular-level actions,
including regulating the levels of transcription factors [78], cytokine expression [78], and
enzymes involved in the progression of infected cells [40,61].

4.1. Host Proteins as Molecular Targets of Curcumin

Since malaria causes dysregulation in the inflammatory response, the elucidation
of the mechanisms of action of malarial infection is important in order to understand
the pathways and binding targets for inhibition. One potential mechanism involved in
regulating the pathophysiology of malaria was identified to involve the Toll-like receptor
(TLR) signaling pathways. TLRs, which are located on the cell surface, recognize the
released Plasmodium DNA and trigger the initiation of immune responses through the
activation of NF-κB [79,80]. The transcription factor NF-κB is a critical signaling protein
involved in various inflammatory responses and gene expressions [68,81,82]. NF-κB is
found in a dormant state in the cytoplasm and will only be transcribed when it is activated
and translocated into the nucleus [80,83]. This transcription factor is the main target protein
that directly regulates the pro- and anti-inflammatory cytokines within the body, including
COX-2, TNF, IL-1, IL-6, IL-8, IL-10, and chemokines [79,84–86]. The dysregulation of
these cytokines and chemokines will lead to the expression of malarial symptoms such
as fever, and if left untreated, will lead to severe malaria (Figure 20). Therefore, NF-κB
has become the most targeted factor in the development of antimalarial agents. Another
study also established and reported that P. falciparum infection leads to the elevation of
TNF production, which is the main malarial pathogenic factor, and, hence, could lead to a
high risk of severe malaria and even death [87–89].
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Figure 20. Cellular level mechanism of action of malarial infection in the host cell involving the
activation of NF-κB [79].

Curcumin has been proven to suppress the activation and translocation of NF-κB
into the nucleus, thus, controlling the level of inflammatory cytokines and the larger
inflammatory response. Its ability to interact and inhibit various proteins helps in the
elucidation and modulation of the pathophysiology of diseases at the molecular level,
including malaria [8,90,91]. The interaction of curcumin with proteins is facilitated by its
structural flexibility conferred by the presence of the unsaturated diketo group at the center
of curcumin [8,85] (Figure 21).
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Figure 21. The structural flexibility of curcumin allows for bond rotation around the α-carbon,
bridging the two carbonyl groups.

A recent study by Ali et al. on TLR pathways involving the control of the protein
kinases Akt and glycogen synthase kinase-3β (GSK3β) also proved NF-κB as a downstream
target that regulates anti-inflammatory cytokines [92]. Based on in vivo studies, curcumin
was demonstrated to directly inhibit the host GSK3β, leading to the phosphorylation
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of NF-κB, hence, modulating the regulation of pro- (TNF-α, IFN-γ, and IL-18) and anti-
inflammatory (IL-4 and IL-10) cytokine levels [92]. The immunomodulating effect of
curcumin in reducing pro-inflammatory cytokine expression can potentially prevent severe
and cerebral malaria [93,94]. As evidence to this claim, several in vitro studies have shown
that curcumin downregulates pro-inflammatory cytokine production and the expression
of cell adhesion molecules in TNF-activated human endothelial cells observed at the
trophozoites stage of P. falciparum transmission [93]. Furthermore, the inhibition of NF-
κB by curcumin also suppresses the generation of reactive oxygen species (ROS), which
attenuates the inflammatory response [95–97].

4.2. Parasite Proteins as Molecular Targets of Curcumin

With regard to parasite proteins, curcumin induces ROS generation in parasite cells,
which affects the function of the Pf GCN5 histone acetyltransferases (HATs) p300/CREB-
binding protein (CBP), thus, inhibiting histone acetylation and the transcription process
in the parasite [98]. The generation of ROS is an important antimalarial mechanism as it
induces protein and DNA damage within parasite cells, leading to their death [92,99,100].
The specific inhibition of parasite HAT by curcumin prevents the acetylation of K9 and
K14 of histone H3. Cui et al. also reported that the antiplasmodial activity of curcumin is
attributed, at least in part, to the production of ROS and the downregulation of Pf GCN5
HAT activity [48].

Another mechanism of action of curcumin is by disrupting the transmission and devel-
opment of Plasmodium parasites at the erythrocytic stage. As erythrocytes burst to release
more merozoites, heme is also released. However, the released heme is highly toxic to the
merozoites. Thus, the parasites will be stimulated to convert hematin into its detoxified
polymeric form, hemozoin [3,47,101]. Curcumin treatment was reported to inhibit the
formation of hemozoins in vitro, as observed through transmission electron microscopy in
a study using the P. falciparum 3D7 strain [44]. This proved that the antimalarial activity of
curcumin is similar to that of quinine and chloroquine [101].

Uncontrolled parasite transmission in the body can develop into fatal severe anemia
or cerebral malaria, whose pathophysiology involves the inflammatory response [91,102].
The excessive stimulation of pro-inflammatory cytokines by the parasite subsequently
leads to the sequestration of parasites in the brain [103]. Several reports have indicated
the ability of curcumin to eliminate parasites at the trophozoite stage, synergistically and
effectively better than artemisinin [37,38,63,104]. This observation was also proven using
chloroquine-sensitive (CQS) and chloroquine-resistant (CQR) P. falciparum strains, with a
proposed mechanism of curcumin action against the parasite proteins Pf RIO2-kinase and
Pf GCN5 HAT [38,104,105].

The Knoevenagel condensate curcumin derivatives mentioned earlier were suggested
to target the Pf ATP6 parasite protein to explain their schizont inhibition activity. This was
based on the established target of the reference antimalarial drug, artemisinin, which shares
the same binding pocket on Pf ATP6 as curcumin [37,69]. The study applied PreADMET
predictions, which demonstrated the attachment and interaction of curcumin and its
derivatives with the active site of Pf ATP6.

The identification of therapeutic targets involved in malarial infection can provide a
better understanding of the inhibitory mechanism of antimalarial agents (Figure 22) [39,106].
The current knowledge on the action of curcumin derivatives is limited, as their host-
targeting mechanisms have not been entirely established (Table 4) [41,90,107]. Therefore,
future research that can explain an in-depth understanding of the molecular-level mech-
anism of action of curcumin and its bioactive derivatives will not only help in the de-
velopment of potent antimalarial and anti-inflammatory agents [108] but also for other
diseases [109–111].
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Table 4. Antimalarial and anti-inflammatory activities of curcumin and its derivatives.

Activity In Vitro/In Vivo/In Silico Evidence References

Antiplasmodium
Pf ATP6

Curcumin (1) reduced P. falciparum viability, causing parasitic cell
proliferation to decrease.

- Reported IC50 value: 5 µM.
[69]

Curcumin (1) and its derivatives (9, 14, 15, 19, 21, 23, 27, and 28)
showed 100% inhibition of P. falciparum growth upon a 50 µg/mL
dose of treatment.

[37]

Molecular docking results validated binding of curcumin (1) and its
derivatives to Pf ATP with favorable free binding energy.

- Reported free binding energy:

Curcumin derivative (21): –6.75 kcal/mol
(higher than both artemisinin (–6.73 kcal/mol) and curcumin
(–5.25 kcal/mol), hence, better interaction with the protein).

- Hydrogen bonding with Lys1213 and Leu1044

[37]

In vitro study using CQR P. falciparum showed potent antimalarial
activity of curcumin (1), with reported IC50 value of ~5 µM.
In vivo treatment of P. berghei-infected mice with 100 mg/kg
curcumin showed:

- More than 80% inhibition of parasitic growth.
- A 29% increase in survival rate.

[23,25]

Curcumin treatment on P. berghei-infected C57BI/6 mice delayed
mice death by 10 days and prevented cerebral malaria.
Dose: 50 mg/kg, twice daily for 6 days.

[112]

Curcumin exhibited antimalarial activity in P. berghei-infected mice.
Dose: 300 mg/kg daily for 4 days (60.22% parasitemia inhibition).
Dose: 80 mg/kg daily for 4 days (60.21% chemosuppressive effect).

[113,114]
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Table 4. Cont.

Activity In Vitro/In Vivo/In Silico Evidence References

Antiplasmodium
Pf 3D7

Curcumin (1) showed potential inhibition of parasite transmission
at the trophozoite stage.
Curcumin derivative (monocarbonyl curcumin)

- Reported IC50 values against CQS: 1.97 µM, CQR: 1.69 µM.

Curcumin derivative (13)

- Reported IC50 value: 1.97 µM.

[115]

Antiplasmodium
Pf DXR

In silico and in vitro studies validated synergistic binding of
curcumin (1) to Pf DXR protein with fosmidomycin.

- Presence of methoxy substituent on the phenyl groups
facilitated parasite elimination:

(43)—55%.
(46)—57%.

[74]

Antiplasmodium
PGCN5 HAT

In vitro study suggested curcumin (1) as a potent inhibitor of
p300/CBP (CREB-binding protein) as tested on four P. falciparum
strains.

- Reported IC50 values—3D7: 24.69 µM, D10: 22.93 µM, 7G8:
29.61 µM, Dd2: 27.45 µM.

[92]

Antiplasmodium
Pf TrxR

In vitro study using CQS (D6 clone) and CQR (W2 clone) P.
falciparum strains showed that curcumin (1) inhibited Pf TrxR
protein with an IC50 value of 2 µM.

[116]

Antiplasmodium
Pf HGPRT
Pf SAHH

In silico simulation using Molegro Virtual Docker (MVD) and
admetSAR showed high binding energy of curcumin (1) to the
protein.

- Reported binding energy:
- Pf HGPRT: −175.97 kcal/mol.
- Pf SAHH: −138.30 kcal/mol.

[107,117]

Antimalaria
ROS

In vitro study showed that curcumin (1) induced intracellular ROS
production related to PPARG/Nrf2 activation.

- Reported IC50 value: 10 µM.
[95,118]

Antimalaria

In vitro study using NF54 intraerythrocytic-form P. falciparum strain
reported highly potent antiparasitic activity of curcumin (1).

- Reported IC50 value: 0.59 µM.
[119]

In vitro study using 3D7 clone strain of P. falciparum reported
synergistic antimalarial effect of curcumin (1) with
dihydroartemisinin and reduction in hemozoin formation upon
several consecutive treatments of curcumin.

- Reported IC50 value: 2.2 µg/mL.

[100]

In vitro study showed the effectiveness of curcumin–artemisinin
combination therapy with additive interaction in killing
P. falciparum.
In vivo study using P. berghei-infected mice showed 100% survival
upon treatment.
Dose: 750 µg.

[119]

In vivo study on P. berghei ANKA-infected mice revealed treatment
of curcumin (1) reduced parasitemia level and increased
survival rate.
Dose: 50 mg/kg daily.

[120]

In vitro study shows reported IC50:

- Curcumin Encapsulated to PLGA: 292.6 µg/mL.
- Curcumin (1): 1000 µg/mL.

In vivo study on P. berghei-infected mice and murine RAW 264.7
macrophages using curcumin encapsulated in PLGA showed 56.8%
parasite suppression (higher than free curcumin with 40.5%
suppression).
Dose: 5 and 10 mg/kg.

[121]
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Table 4. Cont.

Activity In Vitro/In Vivo/In Silico Evidence References

Anti-inflammatory
COX-2

In vitro study using DPPH radical-scavenging assay showed
anti-inflammatory activity of curcumin and its derivatives.
Reported IC50 value and % inhibition:

- Curcumin (1)—IC50 value: 11.06 µM, 35.0% inhibition.
- Derivative (2)—IC50 value: 10.71 µM, 58.1% inhibition.
- Derivative (3)—IC50 value: 9.70 µM, 61.0% inhibition.

[65]

Molecular docking using FlexX program validated COX-2 as a
target protein and showed binding of curcumin (1) and curcumin
derivatives (2, 3).
Favorable interactions:

- Hydrogen bonding interaction with Arg120.
- van der Waals interactions with Val523, Val116, Ala516, and

Try355.

[65]

Anti-inflammatory
NF-κB

In vivo study on P. berghei ANKA-infected mice upon treatment of
curcumin (1) showed inhibition of NF-κB activation, which reduced
expression of adhesion molecules and suppressed
pro-inflammatory cytokines level.
Dose: 100 mg/kg daily for 4 days.

[122]

Anti-inflammatory
GSK3β

In vivo study on P. berghei NK65-infected rats upon treatment of
curcumin (1) showed inhibition of host GSK3β, leading to the
phosphorylation of NF-κB and regulation of pro- (decrease in
serum TNF-α and IFN-γ levels) and anti-inflammatory (IL-10 and
IL-4) cytokines.
Dose: 3, 10, and 30 mg/kg.

[88]

Anti-inflammatory

In vivo study on P. berghei NK65- and ANKA-infected mice upon
treatment of curcumin (1).
Reported activity:

- Significant decrease in inflammatory cytokine levels
including serum p53, TNF-α, CRP, and IL-6.

- Inhibition of mPT pore opening, F0F1 ATPase activity and
mLPO.

Dose: 50 mg/kg.

[123]

5. Conclusions

Various therapeutic effects of curcumin against a wide range of diseases have been
extensively reported. Within the context of malarial infection, curcumin exhibits the dual
antiplasmodial activity against parasites as well as anti-inflammatory action within the host.
However, due to its limited bioavailability, the synthesis of derivatives with better phar-
macological profiles than the parent curcumin through structural modifications has been
explored. The incorporation of pharmacokinetic property prediction and structure–activity
relationship data to rationalize the design of curcumin derivatives with enhanced bioactivity
paves the way for the development of more potent antimalarial medicine. While preserving
the methoxy phenol groups, which are crucial for the antimalarial and anti-inflammatory
activities of curcumin, the reactive methylene group bridging the two carbonyl groups
has been targeted for structural modification to generate promising curcumin derivatives.
The presence of electron-withdrawing and electron-donating groups within the curcumin
derivatives significantly affects their potency, pharmacokinetics, and physicochemical prop-
erties, as evaluated in terms of free binding energy, solubility, lipophilicity, IC50 values, and
percentage of schizont inhibition. Even though the pharmacological effects of curcumin
have been attributed to the inhibition of multiple signaling pathways and enzymes in
various biological systems, the detailed and specific molecular mechanism underlying
its parasiticidal and anti-inflammatory activities remains to be elucidated in detail. The
identification of specific target proteins for inhibition that correlates with the mechanism of
action of curcumin and its various derivatives is essential for developing safer and more
effective therapies against malaria.
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