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Abstract: Nrf2 (nuclear factor erythroid 2-related factor 2) is a transcription factor related to stress
response and cellular homeostasis that plays a key role in maintaining the redox system. The imbal-
ance of the redox system is a triggering factor for the initiation and progression of non-communicable
diseases (NCDs), including Inflammatory Bowel Disease (IBD). Nrf2 and its inhibitor Kelch-like
ECH-associated protein 1 (Keap1) are the main regulators of oxidative stress and their activation has
been recognized as a promising strategy for the treatment or prevention of several acute and chronic
diseases. Moreover, activation of Nrf2/keap signaling pathway promotes inhibition of NF-κB, a
transcriptional factor related to pro-inflammatory cytokines expression, synchronically promoting an
anti-inflammatory response. Several natural coumarins have been reported as potent antioxidant and
intestinal anti-inflammatory compounds, acting by different mechanisms, mainly as a modulator of
Nrf2/keap signaling pathway. Based on in vivo and in vitro studies, this review focuses on the natu-
ral coumarins obtained from both plant products and fermentative processes of food plants by gut
microbiota, which activate Nrf2/keap signaling pathway and produce intestinal anti-inflammatory ac-
tivity. Although gut metabolites urolithin A and urolithin B as well as other plant-derived coumarins
display intestinal anti-inflammatory activity modulating Nrf2 signaling pathway, in vitro and in vivo
studies are necessary for better pharmacological characterization and evaluation of their potential
as lead compounds. Esculetin, 4-methylesculetin, daphnetin, osthole, and imperatorin are the most
promising coumarin derivatives as lead compounds for the design and synthesis of Nrf2 activators
with intestinal anti-inflammatory activity. However, further structure–activity relationships stud-
ies with coumarin derivatives in experimental models of intestinal inflammation and subsequent
clinical trials in health and disease volunteers are essential to determine the efficacy and safety in
IBD patients.

Keywords: IBD; Nrf2; NF-κB; plant-derived coumarins; gut microbial coumarin metabolites;
intestinal inflammation

1. Introduction

Coumarins, also known as benzopyrones, comprise a class of phenolic compounds
derived from cinnamic acid and composed of benzene fused to an α-pyrone ring. Nat-
ural coumarin and its derivatives are widespread and found in some fungi including
Basidiomycetes and Ascomycetes, a lot of plant species classes (edible, medicinal, and
spices) belonging to different botanical families, and as metabolites derived from the gut
microbiota fermentative process on the different constituents of plant diet commonly used
in human feeding. Dipteryx odorata Wild. belonging to Fabaceae botanical family is a
medicinal plant popularly known in the Brazilian Amazon Forest as “cumaru” (coumarou),
which originated the name coumarin. From seeds of Dipteryx odorata, named tonka beans,
coumarin was first isolated by Vogel in 1820 [1]. Tonka bean oil is rich in coumarin, which
has a pleasant smell to resemble vanilla and has been widely used, since 1882, in perfumery
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and cosmetics as a fixative or to highlight the scent [2,3]. Coumarin is also added to other
products including toilet soaps, hair sprays, detergents, tobacco, processed foods, and
alcoholic beverages such as vermouth and whiskey [2,3].

Coumarin chemical structure was the basic molecule, after oxidation reaction, for
the development of dicoumarol (3,3′-methylene-is(4-hydroxycoumarin) initially used as
rodenticides. Chemical changes in dicoumarol molecule generated several compounds
with anticoagulants properties, mainly warfarin, the main anticoagulant therapeutic drug
used to prevent and treat several diseases, including vein thrombosis, atrial fibrillation,
myocardial infarction, and pulmonary embolism [4]. Warfarin can be also synthesized
from 4-hydroxycoumarin, a natural simple coumarin, by the Michael condensation reaction
with benzal-acetone under basic or acid-catalyzed conditions using either water or piperi-
dine [5]. Initially classified as toxic compounds, coumarin derivatives induce no adverse
and toxic effects in response to doses that are more than 100 times the maximum human
daily intake, indicating coumarin derivatives exposure is considered safe for humans [2].
Coumarin derivatives at lower doses display a wide range of pharmacological activities
and therapeutic applications (Figure 1), which are potentially useful for the design and
synthesis of new bioactive compounds [3].
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Moreover, coumarins have been recognized as a natural, versatile, privileged, and ac-
cessible scaffold for the design and development of bioactive compounds with therapeutic,
agrochemical, cosmetic, fragrance, and chemical applications [6,7]. The chemical value of
coumarin for the development of new drugs is also correlated to the high potential of its
basic structure to combine with other bioactive compounds to produce coumarin hybrids
and dimers such as coumarin-chalcone, coumarin-imidazole, coumarin-pyrazole, coumarin-
triazole, coumarin-benzotriazole, coumarin-isoxazole, coumarin-dihydroartemisinin,
coumarin-hydrazine, coumarin-ergosterol, coumarin-ferrocene, coumarin-pyridine,
coumarin-pyrimide, coumarin-benzosulfone, coumarin-imine, and coumarin-uracil with
several biological activities [8–12]. Besides hybridization and dimerization as strategies
for the development of new drugs, natural coumarin derivatives have been highlighted
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due to their wide range of pharmacological activities (Figure 1), mainly as an antipro-
tozoal, vasodilator, inhibitors of several enzymes such as cholinesterase, carbonic an-
hydrase, monoamine-oxidase, serine protease, cyclooxygenase, and lipoxygenase, an-
titumor, anti-viral, anti-tuberculosis, antifungal, anti-neurodegenerative intestinal anti-
inflammatory, and antioxidant [6–19]. Coumarin derivatives can directly promote intestinal
anti-inflammatory activity by different mechanisms or display antioxidant properties by
modulating the Nrf2 signaling pathway, indirectly inducing intestinal inflammatory activity
through the reduction in oxidative stress (Figure 1).

The antioxidant and anti-inflammatory properties of coumarin derivatives have been
widely investigated and reported, mainly for those poly-hydroxylated coumarins rec-
ognized as efficient antioxidants in biological systems and useful to prevent and treat
several diseases related to oxidative stress [6,15,17,20]. Chemically, coumarin derivatives
display antioxidant properties acting by different mechanisms such as inhibiting free radi-
cal production by activated oxygen metabolites, changing the structural organization of
free radical, producing a local decrease of oxygen concentration, interacting with organic
radicals, chelating metal ions, and converting peroxides to stable and inactive products [21].
On the other hand, coumarin derivatives also act as modulators of the endogenous antiox-
idant system constituted by catalase (CAT), superoxide dismutase (SOD), nicotinamide
adenine dinucleotide phosphate (NADPH) oxidase (NOX), heme-oxygenase 1 (HO-1),
thioredoxin, and glutathione antioxidant systems formed by glutathione (GSH) and its
enzymes glutathione peroxidase (GPX), glutathione reductase (GR), glutathione synthetase
(GSS), glutathione S-transferase (GST), and γ-glutamyl-cysteine ligase (γ-GCL) [15]. The
endogenous antioxidant system is mainly regulated by nuclear factor erythroid 2 (NEF2)-
related factor 2, named Nrf2, which protects cells from oxidative stress induced by reactive
oxygen species (ROS), reactive nitrogen species (RNS), and environmental damage as well
as coordinates detoxification enzymes related to stress conditions [22]. In addition, Nrf2
activation can prevent inflammatory processes, inhibiting the nuclear factor-κB (NF-KB) ac-
tivation, the major transcriptional factor related to pro-inflammatory cytokines production
and release [23].

Oxidative stress is a redox imbalance condition in which excessive levels of reactive
oxygen and nitrogen species are related to inadequate availability of endogenous antiox-
idants, which destroy these harmful products from metabolic processes [24]. Excessive
levels of ROS and RNS can damage lipids, proteins, DNA, and other macromolecules,
leading to inflammation, oxidative stress, and cell death [19]. The imbalance of the redox
system is a key factor for the initiation and progression of several human diseases, includ-
ing metabolic disorders and non-communicable diseases (NCDs) such as Inflammatory
Bowel disease (IBD).

Given these facts, this review underpins the important recent advances in the study
of coumarin derivatives as modulators of the Nrf2 signaling pathway and their use as
promising lead compounds for the development of new drugs useful to control or treat
NCDs with an emphasis on IBD, after briefly introducing Nrf2 signaling pathway to control
oxidative stress and inflammatory processes and its particular importance for the control,
prevention, and treatment of intestinal inflammatory processes. A Medline search was
performed to identify relevant bibliography published between 2013 and 2022 using search
combined terms including: “nrf2 coumarin”, “HO-1 coumarin”, “nrf2 IBD”, “nrf2 colitis”,
“nfr2 coumarin colitis”, “nrf2 IBD coumarin”, HO IBD”, “HO IBB coumarin”, “HO-1 colitis”,
“keap1 coumarin”, and “HO-1 colitis coumarin”.

2. The Role of Oxidative Stress in NCDs Focusing on IBD

NCDs are a group of human chronic diseases without a definitive pharmacological cure
and long-term duration triggered by multifactorial etiological factors [15,19]. NCDs include
several human diseases, mainly diabetes, cardiovascular diseases, obesity, asthma, multiple
sclerosis, neurodegenerative diseases such as Parkinson’s and Alzheimer’s diseases, cancer,
and IBD. NCDs are the main cause of mortality worldwide, promoting 73.4% of global
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deaths or 41.1 million people in 2017, draining over USD 60 trillion from the global economy
from 2011 to 2030 [25,26]. NCDs are projected to increase to 55 million deaths throughout
the world by the year 2030, with important challenges to world health care systems and
whose prevention was assigned as a high priority by the World Health Organization [27,28].

NCDs, including IBD, have been recognized as chronic disorders with slow progres-
sion only becoming identified after the promotion of persistent cellular damage in several
target tissues, which are directly affected by biochemical changes related to redox imbal-
ance and generally linked to inflammatory processes [29,30]. Extrinsic etiological factors
including physical inactivity, psychological stress, high energy intake, poor sleep and
diet, alcohol and caffeine intake, smoking, intestinal microbiota dysbiosis, exposure to
ultraviolet radiation, and lack of vitamin D induce chronic oxidative stress, sustainable
cellular damage, and inflammation, which contribute with development and maintenance
of NCDs, particularly IBD (Figure 2) [29,31]. Therefore, the use of products or therapeutic
approaches to reduce cellular oxidative stress can improve the redox balance and reduce
cell damage is a potential and efficient strategy to prevent and control the development of
several NCDs, such as IBD [29].
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IBD is a chronic intestinal inflammatory process consisting of Crohn’s disease (CD)
and ulcerative colitis (UC), which are also part of an immune-mediated inflammatory
disease [15]. Although the IBD etiology is unclear, its occurrence and development are
triggered by the same NCDs extrinsic risk factors, which when combined with genetic
predisposition induce a dysregulated immune response as well as dysfunctional intestinal
barrier function related to gut dysbiosis [15,31]. These processes are accelerated and
perpetuated by persistent exposure to environmental factors, mainly those related to
redox imbalance and tissue oxidative stress either in individuals with or without genetic
predisposition (Figure 2) [32,33]. Oxidative stress is a key factor in the pathogenesis of
IBD and subsequently a prominent target for synthetic or natural compounds to produce
antioxidant effects for IBD control and prevention [15,33–38]. There is strong evidence that
oxidative stress is increased in NCDs, including IBD; therefore, the use of products and
therapeutic approaches to reduce the cellular oxidative stress and cell damage are important
and efficient strategies for the prevention, control, and remission of symptoms in IBD
patients [29,34,36]. Moreover, intestinal anti-inflammatory drugs commonly used in IBD
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management, including 5-amino salicylic derivatives such as sulfasalazine and mesalazine,
corticosteroids such as prednisolone, and immunosuppressants such as azathioprine also
exhibit antioxidant properties by different mechanisms by reducing myeloperoxidase
activity, avoiding glutathione depletion induced by intestinal damage, scavenging reactive
oxygen species, and modulating mitogen-activated protein kinases (MAPKs) [38–40]. An
antioxidant represents any compound that delays, prevents, or removes oxidative damage
in a target molecule, minimizing the exposure to oxygen molecules. Antioxidant defenses
include a lot of endogenous enzymatic and non-enzymatic products such SOD, CAT,
glutathione enzymatic family related to the production of GSH such as GR, GPX, and GST,
the NOX, and the thioredoxin systems. Redox regulation displays a key role in the control of
oxidative stress through several signaling pathways, including MAPKs and transcriptional
factors that activate the transcription of multiple genes in response to several stimuli,
including the activator protein 1 (AP-1), NF-κB, the peroxisome proliferator-activated
receptor gamma (PPAR-γ), and Nrf2. AP-1 transcription factor identifies intracellular
oxidative stress and regulates the expression of genes in response to cytokines and growth
factors related to stress response, cell growth, and differentiation, particularly associated
with cancer progression and control [41]. NF-κB pathway is a transcription factor activated
by several stimuli, including reactive oxygen species, which regulate the expression of
multiple genes related to the production of pro-inflammatory cytokines, mediating the
inflammatory response [42]. PPAR-γ is a key ligand transcription factor up-regulated by
Nrf2 particularly related to adipogenesis and metabolic regulation but also reported as
a notable enhancer of the antioxidant and anti-inflammatory genes [43,44]. Finally, Nrf2
and its bind with antioxidant response elements trigger the transcription of multiple genes
related to antioxidant defense, playing a pivotal role to control the expression of genes
that coordinates the maintenance of intracellular redox homeostasis and the regulation of
inflammatory processes [45].

3. Nrf2 and Its Interaction with NF-κB Signaling Pathways to Control Oxidative Stress
and Promote Intestinal Anti-Inflammatory Activity

The maintenance of cellular redox balance to regulate the cellular response to stress
and inflammation involves a cooperative interplay between Nrf2 and NF-κB signaling
pathways [23,44], which can be highlighted to explain simultaneous antioxidant and anti-
inflammatory properties induced by antioxidant compounds, including natural
coumarin derivatives.

Nrf2 signaling pathway or Keap1-Nrf2-ARE (Kelch-like ECH-Associated protein
1-nuclear factor erythroid 2-related factor 2-antioxidant response element) system has
been reported as the master defense mechanism against oxidative stress, which after
activation by different products, is useful to control, prevent, and relieve several symptoms
of NCDs, including hypertension and cardiovascular diseases, cancer, diabetes, obesity,
neurodegenerative and aging diseases, and IBD [46–53]. The Nrf2 is a complex signaling
pathway (Figure 3) imbricated with NF-κB transcription factor to simultaneously modulate
oxidative stress and inflammatory processes, increasing the expression of antioxidant and
detoxification enzymes, chaperones, growth factors, and transport proteins [46]. Gene
transcription is mediated after binding of Nrf2 with antioxidant response elements (ARE),
DNA sequences that encode several antioxidant defense enzymes, including CAT, SOD,
GST, GPX, GR, HO-1, γ-GCL, and thioredoxin enzymes system (Figure 3) [19,22].

The Nrf2 signaling pathway involves Keap1, which functions as an Nrf2 repressor
at the basal level (Figure 3). Under the unstressed condition, Nrf2 recruits two Keap1
molecules, which act as an adaptor protein that allows the binding between Nrf2 and
Cul3 (Cullin 3), an E3 ligase required for the ubiquitination of lysine and subsequent pro-
teasome degradation [22,46]. Under oxidative stress conditions promoted by drugs and
environmental conditions, endogenous Keap1 and Cul3 are uncoupled with subsequent
inhibition of ubiquitination of Nrf2 and proteasome degradation, leading to newly synthe-
sized Nrf2 cytosol accumulation and activation with subsequent Nrf2 translocation into the
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nucleus [23,46]. Into the nucleus, Nrf2 associates with small Maf proteins (sMaf) and binds
to ARE of DNA, promoting gene transcription (Figure 3) [23,46]. As commented, there is
an interplay between Nrf2, the master signaling pathway that regulates oxidative stress,
and NF-κB, the main transcription factor that mediates inflammatory response via the pro-
duction of pro-inflammatory cytokines [23]. NF-κB is the main regulator of inflammation,
which is activated by two routes, the canonical and non-canonical pathways [15,54]. In
the canonical pathway (Figure 3), (RelA/p65)/p50 heterodimers are maintained in the
cytoplasm at an inactive state by IκBα, a family of inhibitors of NF-κB [15,54]. The IκB
inhibitory complex (IKK) is composed of a regulatory IKKγ subunit and two active subunits
IKKα and IKKβ [55]. The activation of this complex occurs by membrane ligands such as
bacteria and virus metabolites, growth factors, and cytokines, leading to IκB phosphory-
lation and rapid proteolytic degradation (Figure 3) [56,57]. The activated heterodimeric
NF-κB is translocated into the nucleus, where it interacts with NF-κB response elements
(NRE), leading to the transcription of multiple genes related to the inflammatory process,
mainly pro-inflammatory cytokines (Figure 3) [15,54,57].
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The lack of Nrf2 has been associated with an increment in oxidative stress and pro-
inflammatory cytokine production because the NF-κB signaling pathway is activated under
oxidative stress conditions via phosphorylation and degradation of IκB [58]. In disease
conditions, the regulation of Nrf2 and NF-κB signaling pathways are affected and can be
used as two targets for the development of new drugs and therapeutic intervention. The
complex crosstalk between Nrf2 and NF-κB signaling pathways is two-ways, in which
Nrf2 modulates NF-κB and contrariwise [58]. In this interaction, Nrf2 increases glutathione
levels and GSH-dependent enzymes (Figure 3), which reduce oxidative conditions and
inhibit NF-κB [58]. This interaction has been related to the action of Keap1 diminishing the
phosphorylation of IκB (Figure 3) and autophagic degradation with subsequent negative
regulation of NF-κB [59]. Additionally, HO-1 produced by Nrf2 has also been reported
as the main Nrf2-mediator of NF-κB inhibition [23]. HO-1 cleaves the porphyrin ring
of heme into carbon monoxide, Fe++, and biliverdin, which is converted into bilirubin,
leading to the inhibition of the Nκ-B signaling pathway (Figure 3) [60]. On the other hand,
NF-κB also regulates Nrf2 interaction with ARE by differential mechanisms, particularly
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by the competition of Nrf2 and p65 proteins for the transcriptional co-activator CREB-
binding protein-p300 complex (CBP), which acetylates histones, Nrf2 and p65 proteins
(Figure 3) [61]. The p65 subunit of NF-κB represses the Nrf2-ARE at the transcriptional
level via the reduction of CBP from Nrf2 competitive interaction or promotion of his-
tone deacetylase 2 [62]. Although it is not completely elucidated, the p65 subunit also
interacts with Keap1, increasing the Keap1 nuclear abundance and reducing the Nrf2-
ARE signaling pathway by translocation into the nucleus [63]. The interplay between
Nrf2 and NF-κB involves complex molecular interactions and mechanisms previously
reported [23,58,59,63,64]. Although the co-regulation between these two signaling path-
ways is not completely elucidated, this interplay can support the effects of compounds
on the Nrf2 signaling pathway as modulators of oxidative stress with simultaneous anti-
inflammatory activity as evidenced by the reduction in the pro-inflammatory cytokine
levels, which is mainly coordinated by NF-κB signaling pathway. Therefore, natural induc-
ers of Nrf2 such as natural coumarin derivatives can display simultaneous antioxidant and
anti-inflammatory activities with high pharmacological and therapeutic applications to
prevent and control IBD and other NCDs (Figure 4).
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4. Intestinal Anti-Inflammatory Coumarin Derivatives Targeting Nrf2-Keap1
Signaling Pathway

In this section, the studies with coumarin derivatives from different natural sources,
which modulated Nrf2 signaling and showed intestinal anti-inflammatory activity were
revised. Scientific evidence based on in vivo and in vitro studies were used to identify
promising candidates as lead compounds for design and drug development for the pre-
vention and control of the intestinal inflammatory process in IBD patients. Intestinal
anti-inflammatory properties of natural coumarin derivatives were recently revised, some
with protective effects through oxidative stress modulation [15]. Moreover, the ability
of natural coumarins to modulate the Nrf2 signaling pathway as a central mechanism
against oxidative stress has been also previously reported [19]. These studies demonstrated
coumarin derivatives modulating the Nrf2 signaling pathway and displaying simultaneous
intestinal anti-inflammatory activities, effects potentially useful in the management of
intestinal inflammatory processes. Coumarin derivatives modulating the Nrf2 signaling
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pathway and displaying intestinal anti-inflammatory activity include simple coumarins,
linear and angular furanocoumarins from plant origin, and coumarin derivatives produced
by the fermentative process performed by gut microbiota on the plant-derived products
commonly used in human feeding.

4.1. Simple Intestinal Anti-Inflammatory Coumarin Derivatives Targeting Nrf2 Signaling

The simple coumarin derivatives with simultaneous effects on the Nrf2 signaling
pathway and intestinal inflammation include esculetin, 4-methylesculetin, esculin, daph-
netin, umbelliferone, osthole, fraxetin, scopoletin, and scoparone. The previous in vitro and
in vivo studies with these simple coumarin were analyzed to identify the most promising
natural coumarins as lead compounds for the development of new drugs to control IBD.

4.1.1. Esculetin, 4-Methylesculetin, and Esculin

Esculetin (6,7-dihydroxycoumarin) is found in several plants, mainly in Fraxinus rhyn-
chophylla Hance (ash tree) and other Fraxinus species belonging to Oleaceae family, whereas
its methylated derivative at C4, 4-methylesculetin (6,7-dihydroxy-4-methyl-coumarin), is
obtained from several plants and chemical synthesis. Both derivatives are simple antioxi-
dant coumarin derivatives (Figure 5) that modulate the Nrf2 signaling pathway and display
several pharmacological activities [65,66]. Esculetin glycosylated at C6, named esculin
and known as 6-glucoside-7-hydroxycoumarin (Figure 5) also activates the Nrf2 signaling
pathway [67] and is mainly found in Aesculus hippocastanum L. (horse-chestnut) medicinal
plant belonging Hippocastanaceae family and other plant species.
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Esculetin at concentrations of 100, 200, 300, and 500 µM was evaluated on the PANC-1,
AsPc-1, and MIA PaCa-2 carcinoma cells and when used at high concentrations inhibited
cell growth [65]. This effect was related to a high decrease in ROS generation and the
protein levels of NF-κB with a simultaneous increase of Nrf2 nuclear accumulation and
upregulation of Nrf2-induced NADPH quinone dehydrogenase 1 (NQO1) expression [65].
The effects of esculetin on the Nrf2 signaling pathway were dependent on both direct
binding between esculetin and Keap1 as evidenced by in silico analyses, docking studies,
and pull-down assay as well as by high Keap1 phosphorylation associated with activation
of ARE interaction with Nrf2 [65]. In the same study, esculetin simultaneously decreased
the p65 subunit of NF-κB [65]. Esculetin at concentrations of 12.5, 25, 50, and 100 µM also
inhibited the oxidative stress, reducing nitric oxide synthase and nitric oxide levels as well
as exhibited an anti-inflammatory response through the reduction in TNF-α and chemoat-
tractant protein-1 (MCP-1) production [66]. These protective effects were related to an
induction of HO-1 in co-cultured macrophages (RAW264.7 cells) and 3T3-L1 adipocytes [66].
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The dual effects of esculetin activating Nrf2 and inhibiting NF-κB signaling pathways im-
proved the antioxidant imbalance in NB4 leukemia cells at concentrations ranging from
20 to 500 µM [67]. These effects were dependent on the reduction of ROS levels and 5-LOX
(5-lipoxygenase) activity with simultaneous increased SOD activity and c-jun NH2 terminal
kinase (JNK) and p38 MAPKs phosphorylation [67]. Pretreatment of human corneal cells
with esculetin at concentrations of 20, 40, 80, and 100 µM promoted antioxidant defense
through induction of Nrf2 translocation into the nucleus, upregulating HO-1, NQO1, and
SOD gene expression [68]. The counteraction of oxidative stress by esculetin through Nrf2
activation and differential mechanisms of action was also demonstrated in in vitro assays
using human neuronal SH-SY5Y cells and C2C12 myoblasts at concentrations ranging from
1.25 to 20 µM [69,70].

Esculetin, when evaluated by different in vivo studies, also produced a series of phar-
macological activities related to the control of oxidative stress. The protective effects of
esculetin orally administered at a dose of 20 or 40 mg/Kg in experimental lupus nephri-
tis model in MRL/Ipr mice was dependent on simultaneous Nrf2 activation and NF-κB
inhibition with subsequent reduction of oxidative stress and pro-inflammatory cytokines
production [71]. NF-κB inhibition and Nrf2 activation signaling pathways were accom-
panied by increased GSH levels and GPX activity after oral administration of 50 mg/Kg
esculetin in a model of aluminum chloride-induced male reproductive toxicity in rats [72].
Cognitive impairments in male ICR mice were improved after administration of esculetin
at 20 and 80 mg/Kg, which acted upregulating Nrf2 signaling with additional effects on
the regulation of mitochondrial fragmentation and mitophagy markers [73]. The pharma-
cological effects of esculetin to promote intestinal anti-inflammatory activity via the Nrf2
signaling pathway are illustrated in Figure 5.

The activation of the Nrf2 signaling pathway was also reported as a key action for
4-methylesculetin to induce a reduction of body weight, visceral obesity, blood glucose,
adipocyte size, and hepatic lipid accumulation, after oral treatment with 15 and 50/Kg by
8 weeks in obese mice by a high-fat diet [74]. Similar to other simple coumarins, the anti-
inflammatory effects of esculin were closely related to the Nrf2 activation and subsequent
upregulation of HO-1 and NQO1 expression [75]. These effects were mechanistically related
to the suppression of Nrf2 ubiquitination and reduction in Nrf2 degradation in RAW264.7
cells [75]. These effects were improved when an esculin transglycosylated derivative was
obtained using cellobiose and β-glucosidase, indicating additional glycosylation increases
the esculin action on the Nrf2 signaling pathway [75]. Moreover, it was demonstrated
in zebrafish cultures and molecular docking studies that esculin inhibits the binding of
Keap1 with Nrf2, significantly increasing the Nrf2 target genes, including HO-1 [76].
In an experimental model of lipopolysaccharide/D-galactosamine-induced acute liver
damage in BALBc mice, esculin intraperitoneally administered at 10, 20, and 40 mg/Kg
has a hepatoprotective effect, reducing MPO activity, MDA content, TNF-α, and IL-1β
production through inhibition of NF-κB and upregulation of Nrf2 and HO-1 expression [77].

Esculetin, 4-methylesculetin, and esculin were reported as active intestinal anti-
inflammatory coumarin derivatives in the trinitrobenzene sulphonic acid (TNBS) or dextran
sulfate sodium (DSS) experimental models, protecting intestinal damage through reduction
of the oxidative stress as evidenced by a reduction in myeloperoxidase (MPO) activity and
counteraction of the GSH depletion induced by intestinal damage [78–80]. These effects
were observed in the TNBS model of intestinal inflammation in rats after oral adminis-
tration of 10 mg/Kg of esculetin and 2.5, 5, and 10 mg/Kg of 4-methylesculetin, which
were more pronounced than those effects promoted by 25 mg/Kg of sulphasalazine, a
reference drug to treat UC in human [78]. Intestinal inflammation induced by TNBS in
male Sprague Dawley rats also was alleviated after intra-rectal administration of 100 and
200 µM of esculetin, which reduced intestinal damage, MPO, cyclo-oxygenase 2 (COX-2),
and inducible nitric oxide synthase (iNOS) activities with no differences between doses [81].
When evaluated in human colon carcinoma (HCT116), human embryonic kidney 293, and
human renal cancer UMNRC2 cells, esculetin at concentrations of 25, 50, and 100 µM
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activated hypoxia-inducible factor-1α (HIF-1α) via inhibition of HIF prolyl hydroxylase-2
(HPH-2), an enzyme responsible by negative regulation of HIF-α stability [81]. The intesti-
nal anti-inflammatory activity of esculetin (25 mg/Kg by oral route) in mice DSS-induced
intestinal inflammation model was related to a reduction in MPO activity, counteraction
of GSH depletion, and reduction in IL-6 production [80]. In the same experimental model
of intestinal inflammation using C57BL/6 female mice, esculetin orally administered at
20 mg/Kg ameliorated intestinal injury, decreased MPO activity and IL-6 and TNF-α pro-
duction, and inhibited NF-κB/MPAKs signaling pathways [82]. The inhibitory action of
the NF-κB activation, p38, JNK, and extracellular signal-regulated kinase (ERK) phosphory-
lation, and IL-6, nitric oxide (NO), and TNF-α production were corroborated in RAW264.7
cells treated with 10, 25 and 50 µM of esculetin [82].

Moreover, 4-methylesculetin at doses of 5 and 10 mg/kg by oral route upregulated
the GST and GR as well as prevented the Nrf2 downregulation induced by oxidative stress
and intestinal inflammatory process induced by TNBS in rats [83]. 4-methylesculetin inter-
acted at molecular levels with glutathione reductase, stabilizing its enzymatic activity and
reducing oxidative stress [83]. Although 4-methylesculetin was not reported as an inhibitor
of the NF-κB signaling pathway, a reduction of pro-inflammatory cytokines production,
such as IL-1β, IL-6, IL-17, and TNF-α was described in experimental models of intestinal
inflammation at same doses [79,84]. Oral administration of esculin at doses of 5, 10, and
25 mg/Kg with TNBS-induced intestinal inflammation in rats alleviated the symptoms
of gut damage, reducing MPO activity and counteracting GSH depletion when treated
with 25 mg/Kg [84]. Intestinal anti-inflammatory activity of esculin (5 mg/kg by intraperi-
toneal route) was also reported in the DSS model of intestinal inflammation in BALBc
mice, protecting intestinal damage, inhibiting NF-κB signaling with reduced production
of pro-inflammatory cytokines and simultaneous increase in nuclear localization of PPAR-
γ [85]. The pharmacological effects of 4-methylesculetin and esculin to promote intestinal
anti-inflammatory activity via the Nrf2 signaling pathway are illustrated in Figure 5.

4.1.2. Daphnetin

Daphnetin (7,8-dihydroxy-coumarin) is found in several plant species, particularly
as the main coumarin derivative in Daphne odora Thumb. (winter daphne) belonging
to the Thymelaeaceae family. Daphnetin is a simple coumarin (Figure 6) with a wide
range of pharmacological activities, acting by different mechanisms mainly as an antiox-
idant agent via modulation of the Nrf2 signaling pathway. Daphnetin at doses of 20,
40, and 80 mg/kg by intraperitoneal route, protected animals against lipid peroxidation,
improving enzymatic (SOD, CAT, GPX) and GSH antioxidants markers in a model of 7,12-
dimethylbenz(a)anthracene-induced mammary carcinogenesis in female Sprague Dawley
rats [86]. These anti-oxidative properties were related to the upregulation of Keap1-Nrf2
associated with HO-1 expression with synchronized downregulation of protein kinase
B (Akt)-mediated NF-κB expression [86]. Similar results were reported in a model of
cisplatin-induced nephrotoxicity in C57BL/6 mice, in which daphnetin at doses of 2.5, 5,
and 10 mg/kg by intraperitoneal route upregulated Nrf2 and HO-1 expressions with si-
multaneous downregulation of NF-κB and subsequently the reduction in TNF-α and IL-1β
pro-inflammatory cytokines production [87]. Recently, the interplay between Nrf2 and
NF-κB signaling pathways was also reported as the main mechanism of daphnetin action
to inhibit spinal glial activation and to attenuate inflammatory pain, after administration
of 4 and 8 mg/kg (intraperitoneal route) in ICR mice [88]. These effects were associated
with a downregulation of expression and reduction of levels of IL-6, IL-1β, and TNF-α [88].
The control of allergic rhinitis induced by ovalbumin in C57BL/6 female mice after oral
treatment with 5 mg/Kg alleviated nasal symptoms, inflammatory response, and oxidative
stress, activating Nrf2/HO-1 and inactivating the NF-κB pathway through the reduction in
Toll-like Receptor 4, NF-κB protein levels, and TNF-α and IL-5 production [89].
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Modulation of Nrf2 associated with other signaling pathways has been reported as the
molecular mechanism of protection against several diseases, including cardiac hypertrophy
and fibrosis [90], diabetes, lipid metabolism, and insulin resistance [91,92], hepatotoxi-
city [93], inflammation [88], lung toxicity [94], and neuronal and renal damage [95–97].
Protective antioxidant properties of daphnetin upregulating the Nrf2/HO-1 pathway with
simultaneous inhibition of transforming growth factor β1 (TGF-β1)/Smad2/3 signaling
axis was demonstrated in rat cardiomyoblast H9c2 cells and transverse aortic constriction
model in C57BL/6 mice, alleviating cardiac hypertrophy and fibrosis [90]. Hepatoprotec-
tive effects were reported on HepG2 cells and acute liver failure experimental models using
C57BL/6 mice, in which daphnetin enhanced the Keap1/Nrf2 signaling, upregulating
thioredoxin-1 expression, inactivating thioredoxin-interaction protein, and suppressing
apoptosis signaling-regulating kinase/JNK pathways [93]. Daphnetin at 40 mg/Kg also
reduced renal toxicity in a model of gentamicin-induced renal injury in ICR mice upregu-
lating the Nrf2 and NOX-4 and reducing Bcl-2-like protein 4 and caspase-3 [96]. Several
in vitro studies corroborated the effects of daphnetin activating the Nrf2 signaling pathway
and its action on other mechanisms, including the stabilization of anti-apoptotic factor
B-cell lymphoma-2 with simultaneous activation of adenosine-5′-monophosphate (AMP)-
activated protein kinase, JNK, and ERK phosphorylation in human lung epithelial cells [94];
downregulation of the sterol regulatory element-binding protein-1C, patatin-like phos-
pholipase domain-containing protein, cytochrome p450 2E1, and cytochrome P450 4A;
upregulation of phosphoinositide 3-kinase (PI3K) and AMP kinase phosphorylation and
increase of Akt levels to control lipid metabolism, insulin resistance, and oxidative stress in
an in vitro model of non-alcoholic fatty liver disease [92]. Moreover, daphnetin inhibited
glucose-induced extracellular matrix components, oxidative stress, and inflammation in
human glomerular cells through Nrf2 activation and simultaneous inhibition of Akt and
p65 levels [91]. Daphnetin also modulated the Nrf2 signaling pathway activating JNK
and ERK with a subsequent increment of Nrf2 nuclear translocation [98]. This mechanism
was related to the effects of daphnetin at concentrations of 2.5, 5, and 10 µM reducing
ROS generation and malondialdehyde (MDA) formation and increasing SOD levels and
GSH/GSSG (oxidized GSH) ratio [98]. These effects were associated with the inhibition
of tert-butyl hydroperoxide-stimulated oxidative damage, cytotoxicity, cell apoptosis, and
mitochondrial dysfunction in RAW264.7 cells and peritoneal macrophage from WT and
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Nrf2−/−mice [98]. Daphnetin mechanisms of action to promote neuroprotective effects
acting on Nrf2 and other signaling pathways were also recently revised [99].

As demonstrated, daphnetin displays several mechanisms of action associated with the
modulation of the Nrf2 signaling pathway and inhibition of NF-κB signaling, reducing pro-
inflammatory cytokines transcription (Figure 6). Together, the studies showed daphnetin as
a very important coumarin derivative displaying a wide range of pharmacological activities
related to several diseases where oxidative stress takes place as a key etiologic factor, in-
cluding NCDs. Daphnetin was reported as a potent intestinal anti-inflammatory coumarin
derivative in the TNBS model of intestinal inflammation in rats, reducing gut damage
lesions, MPO, and alkaline phosphatase activities, and counteracting GSH depletion when
orally administered at doses of 2.5, 5, and 10 mg/Kg [84]. In the DSS model of intestinal
inflammation using BALB/c mice, daphnetin at 4, 8, and 16 mg/Kg orally administered,
ameliorated gut macroscopic and microscopic damages, downregulated TNF-α, CXCL1,
and CXCL2, upregulated IL-10 anti-inflammatory cytokine, and reversed DSS-induced
gut dysbiosis, increasing the short-chain fatty acid-producing bacteria [100]. In the same
study, it was demonstrated daphnetin regulates colonic immune responses and intestinal
integrity through the upregulation of zonulin-1, occluding, mucin 2, and E-cadherin and
downregulation of IL-1β, IL-6, IL-21, and IL-23 inflammatory cytokines [100].

4.1.3. Osthole

Osthole (7-methoxy-8-isopentenoxycoumarin) is a simple coumarin derivative (Figure 7)
originally isolated from fruits of Cnidium monnieri (L.) Cusson ex Juss. (Cnidii Fructus or
Monnier’s snow-parsley) and also found in other plant species belonging to the Apiaceae
family such as Angelica archangelica L. and Angelica pubescens Maxim. and Rutaceae family
such as Murraya alata Drake, Pentaceras australe (F. Muell.) Benth. Osthole displays a lot of
pharmacological properties, mainly acting as a neuroprotective, anti-inflammatory, anti-
cancer, antioxidant, and hepatoprotective agent [101,102]. Intestinal anti-inflammatory and
antioxidant properties of osthole were evidenced by in vitro and in vivo assays suggesting
its potential use to control and prevent IBD [15]. Several pharmacological activities of
osthole have been closely related to the regulation of the Nrf2 signaling pathway and
subsequent enhancement of endogenous antioxidant products such as HO-1 and NQO1
with simultaneous inhibition of NF-κB pathway to reduce pro-inflammatory cytokines
production [103,104].

Osthole (25, 50, and 100 mg/Kg by intraperitoneal route) administered in C57BL/6
mice submitted to transient global cerebral ischemia/reperfusion model of cognitive impair-
ments, improved the cognitive ability and enhanced pyramidal neurons in hippocampal
region with simultaneous increase in SOD activity and decrease in MDA level [105]. Us-
ing HT22 murine hippocampal neuronal cells, the authors also demonstrated osthole
(25, 50, and 100 µM) increasing Nrf2 and HO-1 protein levels in a concentration-dependent
response [105]. The protective effects of osthole on glutamate-induced apoptosis in HT22
cells and Alzheimer’s disease model in APP/PSI mice were also related to the modulation
of oxidative stress [106]. On the HT22 cells, osthole at concentrations of 20 and 40 µM
protected glutamate-induced cell damage, reducing caspase-3, caspase-8, and caspase-9
activities and upregulating Nrf2, HO-1, and SOD expression, which was related to a reduc-
tion in Keap1, effects corroborated after administration of 15 and 30 mg/Kg in Alzheimer’s
disease model in mice [106]. Similar results were reported after osthole administration at
a dose of 25 mg/Kg in chronic sleep deprivation-induced memory deficits in rats [107].
Osthole at doses of 30 and 40 mg/Kg in rats previously feed high-fat/high-sugar diet
improved metabolic syndrome and reduced IL-1β and IL-6 levels, improving kidney dys-
function, oxidative stress, and lipid accumulation via stimulation of Nrf2 expression with
subsequent upregulation of SOD, CAT, and GPX production [108]. Nephroprotection was
also reported after administration of 30 mg/Kg osthole in female B cell deficiency mice,
improving renal function and reducing renal progressive lesions, effects associated with a
reduction of ROS generation and increase of Nrf2 nuclear translocation with synchronized
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inhibition of NF-κB activation [109]. The enhancement of the Nrf2 antioxidant signaling
and inhibition of NF-κB was also described in BALB/c mice model of accelerated focal
segmental glomerulosclerosis, in which, osthole at a dose of 30 mg/Kg (intraperitoneal
route) improved renal function, reducing ROS generation, increasing HO-1 protein levels
and GPX activity, and inhibiting the expression of cyclooxygenase-2 and prostaglandin
production [104].
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Anti-inflammatory activity of osthole in several in vitro and in vivo studies has been
reported, suggesting differential mechanisms of action by different signaling pathways.
In vitro studies using LPS-induced BV2 mouse microglial cells were incubated with differ-
ent concentrations of osthole (4, 7, and 10 µg/mL), inducing a reduction in IL-6, TNF-α,
and IL-1β levels via inhibitory action of NF-κB pathway and an increase of HO-1 protein
via Nrf2 activation [110]. Inflammatory response on the stimulated HepG2 and 3T3-L1
preadipocyte cells was also attenuated by osthole at concentrations of 3, 10, 30, and 100 µM,
which inhibited IL-1β, IL-6, and IL-8 levels and expression and reduced COX-2 protein
expression [111]. These findings were related to a decrease of MAPKs ERK, p38, JNK, and
IκBα phosphorylation with increased HO-1 protein levels [111]. LPS-induced Caco2 human
colorectal adenocarcinoma cells and Caco-2/THP-1 and Caco2/macrophages co-cultures
were evaluated after incubation with 150, 300, and 450 ng/mL of osthole, which reduced
the secretion of IL-1β, IL-6, IL-8, and TNF-α proinflammatory cytokines through inhibition
of LPS-induced NF-κB activation and COX2 expression [112]. Osthole at 100 mg/kg by
intraperitoneal route attenuated several clinical and histopathological indicators in the
TNBS model of intestinal inflammation in C57BL/6 mice, significantly reducing the IL-1β,
TNF-α, IL-6, and COX-2 gene expression and improving intestinal barrier function via
upregulation of claudin-1 and zonulin-1 genes [113]. Using the model experimental of
intestinal inflammation induced by dinitrobenzene sulphonic acid (DNBS) in rats, oral
administration of 50 mg/Kg of osthole reduced TNF-α and increased anti-inflammatory
IL-10 cytokine, with no effects on the INF-γ levels [114]. Osthole also displayed an an-
tioxidant property, reducing MDA levels and MPO activity, increasing GPX, CAT, SOD,
and GST levels, and counteracting the GSH depletion induced by TNBS [114]. Moreover,
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in the DSS model of intestinal inflammation in BALBc mice, osthole showed protective
effects on intestinal inflammation improving clinical parameters and histological damages
and reducing MPO activity and colon TNF-α expression [115]. These findings were cor-
roborated using RAW164.7 cell cultures, in which osthole at concentrations of 12.5, 25, 50,
or 100 µM promoted several actions, inhibiting LPS-induced NO, COX-2, PGE2, TNF-α,
and IL-6 [115]. The intestinal anti-inflammatory activity of osthole was closely related to a
significant reduction in ERK and p-38 MAPKs and an increase in IκBα degradation [115].
The attenuation of p38 phosphorylation was previously reported in the TNBS model of
intestinal inflammation and RAW264.7 cells [113]. The pharmacological effects of osthole to
promote intestinal anti-inflammatory activity via the Nrf2 signaling pathway are illustrated
in Figure 7.

4.1.4. Umbelliferone

Umbelliferone (Figure 8) is a simple coumarin with widespread occurrence in sev-
eral botanical families such as Apiaceae, Asteraceae, Acanthaceae, and Hydrangenaceae.
Additionally, known as 7-hydroxycoumarin, hydrangine, and skimmetine, this coumarin
derivative displays several pharmacological activities. Among its actions, umbelliferone
attenuates oxidative stress modulating the Nrf2 signaling pathway to control several disor-
ders, mainly hepatotoxicity, diabetes, inflammation, allergy, and renal and cardiovascular
disorders [116–120].
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In vivo studies demonstrated umbelliferone protecting rats against tetrachloride-,
cyclophosphamide-, methotrexate-, and N-nitrosodiethylamine-induced hepatotoxicity
in rats, alleviating hepatic damage in db/db mice and hepatic ischemia/reperfusion-
induced oxidative stress in rats via activation and upregulation of Nrf2 signaling path-
way [116,117,120–123]. Hepatoprotective effects of umbelliferone at doses of 30, 40, or
50 mg/Kg were related to the modulation of Nrf2 signaling with subsequent upregulation
of HO-1, NQO1, GLC, CAT, GPX, and SOD genes and GSH content and reduction in NO and
ROS generation [116,121,122]. Umbelliferone also displays protection against metrothexate-
and cisplatin-induced nephrotoxicity in mice and rats, reducing oxidative stress by restora-
tion of GSH levels, SOD, and GST activities and reduction of ROS generation via Nrf2
signaling [124–126]. Similar to other coumarin derivatives, umbelliferone also inhibits
the NF-κB signaling pathway, reducing the production or expression of pro-inflammatory
cytokines, such as IL-1β, TNF-α, and IL-6 and increasing IL-10 anti-inflammatory cytokine
associated with MAPK and PPAR-γ signaling pathways [117,121,124]. Moreover, umbellif-
erone at 15 mg/kg by intraperitoneal route, attenuated streptozotocin-induced cognitive
dysfunction in rats, reducing oxidative stress and neuroinflammation through activation of
the Nrfr2/HO-1 signaling pathway [127]. Oral administration of 30 mg/Kg of umbellif-
erone in rats with acetic acid-induced intestinal inflammation improved the macroscopic
and microscopic damage, reduced colon TNF-α, IL-6, MPO, and downregulated TLR4,
NF-κB, and iNOS inflammatory factors, via upregulation of PPARγ and sirtuin 1 signaling
pathways [128].
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4.1.5. Fraxetin

Fraxetin (7,8-dihydroxy-6-methoxycoumarin), also isolated from seeds of Fraxinus
rhynchophylla Hance (ash tree), is a simple coumarin (Figure 8) with anti-inflammatory
and antioxidant properties, exerting some pharmacological actions by modulating the
Nrf2 signaling [129,130]. Antioxidant properties of fraxetin at 10, 25, 50, and 100 µM was
reported on HaCaT cells, upregulating HO-1 gene expression by AKT or AMPK pathways
and directly associated with an increase in Nrf2 levels via localization of Nrf2 into the
nucleus and increasing ARE gene activity [129]. In BALB/c mice, 5 and 25 mg/Kg of
fraxetin reduced lipid peroxidation and increased GSH levels and CAT, SOD, GST, GR, and
GPX enzymatic activity through positive modulation of Nrf2 levels [130]. Fraxetin inhibited
oxidative stress and inflammatory markers such as TNF-α and IL-1β via upregulation
of HO-1 protein in ethanol-induced hepatic fibrosis in rats [131]. Although fraxetin-8-O-
glucoside (fraxin) modulated Nrf2 pathway-dependent HO-1 expression and promoted
anti-inflammatory activity, its effects on intestinal inflammatory processes have not been
reported [19]. On the other hand, the intestinal anti-inflammatory activity of fraxetin (5, 10,
and 25 mg/Kg, oral route) was reported in the TNBS model of intestinal inflammation in
rats, ameliorating intestinal damage, reducing lipid peroxidation, and counteracting the
GSH depletion induced by intestinal damage [84].

4.1.6. Scopoletin and Scoparone

Other simple coumarin derivatives with antioxidant and intestinal anti-inflammatory
properties are scopoletin and scoparone (Figure 8). Scopoletin (6-methoxy-7-hydroxycoumarin)
is mainly found in the roots of several plants, mainly Scopolia carniolica Jacq. (henbane bell)
and Scopolia japonica Maxim. (Japanese belladonna) belonging to the Solanaceae family,
whereas scoparone (6,7-dymethoxycoumarin) is obtained from Artemisia scoparia Waldest
& Kit. (virgate wormwood) belonging to the Asteraceae family and two Rutaceae plant
species Haplophyllum ramosissimum (Paulsen) Vved. and Haplophyllum thesioides (Fisch ex
DC.) G.Don. The pharmacological effects of scopoletin and scoparone have been related to
the positive regulation of the Nrf2 signaling pathway. Scopoletin at 10 and 30 mg/Kg (oral
route) protected rats against methylglyoxal-induced hyperglycemia and insulin resistance
via Akt phosphorylation and upregulation of Nrf2 and PPARγ signaling pathways [132].
The activation of Nrf2 with simultaneous inhibition of NF-κB signaling pathways was
described as the main mechanism of scopoletin when administered at a dose of 50 mg/Kg
by intraperitoneal route) to induce protection against vancomycin-induced intoxication in
rats [133]. Scoparone (20, 40, and 80 mg/Kg) also regulated the ROS generation via Nrf2
activation to improve hepatic inflammation in an in vivo model of nonalcoholic fatty liver
disease-nonalcoholic steatohepatitis in mice and LPS-induced rAW264.7 cells [134]. Both
simple coumarin derivatives, after oral administration (5, 10, and 25 mg/Kg), promoted
intestinal anti-inflammatory activity in the TNBS model of intestinal inflammation in rats,
counteracting GSH depletion with no effects on MPO activity [84]. Moreover, scopoletin
was evaluated in the TNBS model of intestinal inflammation in Sprague Dawley rats, but
the intestinal anti-inflammatory effects were not related to the inhibition of the HPH-2
enzyme and HIF-1α pathway [81].

4.2. Intestinal Anti-Inflammatory Furanocoumarin Derivatives Targeting Nrf2 Signaling

Imperatorim also known as ammidin, marmelosin, or marmelide, is a linear fura-
nocoumarin isolated from several plants belonging Apiaceae family such as Angelica
archangelica L., Angelica dahurica Fisch. Ex Hoffm.m and Glehnia littoralis F. Schimidt ex
Miq. and other plant species from different genera and botanical families. Imperatorin
(8-isopentenyloxypsoralen) is a psoralen derivative containing an oxy-isopentenyl group
at C-8 (Figure 8). Psoralen, the basic structure of linear furanocoumarins, is found in
Psoralea corylifolia L. (Babchi) and several food plants, including Apium graveolens L. (celery),
Foeniculum vulgare Mill. (fennel), Daucus carota L. (carrot) belongs to the Apiaceae family,
and several Rutaceae plant species, such as Ficus carica L. (Figure 8). Psoralen and impera-
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torin have been reported as active natural coumarin derivatives able to modulate the Nrf2
signaling pathway promoting beneficial effects useful to prevent and control several NCDs,
including IBD [15,19,135–137].

Psoralen administered by gavage at a dose of 20 mg/Kg upregulated the Nrf2 sig-
naling pathway protecting mice against radiation-induced bone injury [135]. Psoralen
also ameliorated DSS-induced intestinal inflammation in C57BL/6 mice after intraperi-
toneal administration of 3 mg/Kg, inhibiting NLRP3 inflammasome, caspase-1, and IL-1β
gene expression [137]. However, psoralen induces hepatotoxicity at a dose range of 20 to
800 mg/Kg in mice [138–140], limiting its use as a drug.

On the other hand, imperatorin effects on the Nrf2 have been also reported in several
in vitro and in vivo studies. Treatment with imperatorin at concentrations ranging from
10 to 100 µg/mL in arsenic trioxide-induced cytotoxicity in H9c2 cells suppressed ROS
generation and increased Nrf2, NQO1, and HO-1 expression and protein levels [141].
Imperatorin also suppressed allergic response in peritoneal rat mast cells through Nrf2/HO-
1 activation and MAPK and NF-κB inhibition [142]. The upregulation of Nrf2 with reduction
of oxidative stress and the inflammatory process was reported after oral administration
of imperatorin at 15 and 30 mg/Kg in Sprague Dawley rats submitted to high-fat/high-
fructose diet-induced cardiac remodeling and dysfunction [143]. In BALB/c mice asthma
model using ovalbumin, imperatorin at 15, 30, and 60 mg/Kg regulated several signaling
pathways, increasing the nuclear Nrf2 and HO-1 levels with a simultaneous reduction in
cytosol Nrf2 and NF-κB, AKT, Erk, p-38 and JNK levels [144].

Several studies using TNBS and DSS experimental models of intestinal inflammation
demonstrated the intestinal anti-inflammatory properties of imperatorin, suggesting its
potential to control and prevent IBD. In the DSS model in mice, 25, 50, and 100/Kg of
imperatorin attenuated macroscopic and microscopic intestinal damage, avoiding body
weight loss and bloody diarrhea and reducing macroscopic and microscopic scores of the
lesion [145]. The effects of imperatorin at concentrations of 6.25, 12.5, and 25 µM were also
evaluated on the human intestinal epithelial HCT116, LS174T, human leukemia THP-1, and
HEK293T cell lines as an attempt to elucidate the main actions of imperatorin, which pro-
duced a range of effects, mainly acting as an agonist of pregnane X receptor and inhibiting
the NF-κB-mediated TNF-α, IL-1β, and IL-6 pro-inflammatory cytokines production [145].
The intestinal anti-inflammatory activity of imperatorin was also demonstrated in the TNBS
model and associated with several pharmacological mechanisms. Imperatorin adminis-
tered by an intraperitoneal route at concentrations of 15, 30, and 60 mg/Kg in Sprague
Dawley rats ameliorated the macroscopic and microscopic intestinal damage induced
by TNBS as well as reduced the colon levels of TNF-α and IL-6, upregulating the Nrf2,
ARE, and HO-1 expression [136]. Moreover, imperatorin was reported as the main active
component of Angelica dahurica and Angelica albicans plant extracts, which were able to
reduce TNBS-induced intestinal inflammation [146,147].

4.3. Intestinal Anti-Inflammatory Gut Microbial Coumarins Targeting Nrf2 Signaling

A remarkable group of natural coumarins derived from gut microbiota enzymatic
action and named urolithins has been highlighted in recent years due to their pharmacolog-
ical actions, particularly antioxidant properties. Urolithins are benzocoumarins derived
from diphenylpyran-6-one and classified as a combination of coumarin and isocoumarin
chemical structure [148,149]. Urolithins include several penta-, tetra-, tri-, di-, and mono-
hydroxylated compounds dependent on the level of hydroxylation on the ellagitannins
from the diet promoted by gut bacteria, mainly Gordonibacter urolithinfaciens and Gor-
dobacter pamelaceae, on the ellagitannins from the diet [149]. Other gut bacteria that can
participate in the production of urolithins are the Ellagibacteris isourilithinifaciens and strains
of Bifidobacteria, mainly Bifidobacterium pseudocatenulatum [150]. The main dietary sources
of ellagitannins include pomegranate (Punica granatum L., Lythraceae botanical family)
fruits, several nuts, mainly walnuts (Juglans regia L., Junglandaceae botanical family), and
several species of raspberries, mainly red raspberries (Rubus idaeus L., Rosaceae family)
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and black raspberries (Rubus occidentalis L.), and black tea (Camelia sinensis (L.) Kuntze,
Theaceae botanical family). Ellagitannins are firstly converted to ellagic acid by tannases
for further production of intermediate luteic acid, which generated urolithin M5, the key
precursor of several bioactive urolithins, mainly the bioactive urolithins A and urolithin B
(Figure 9) [150,151]. Urolithin A and urolithin B display several pharmacological properties,
including anti-cancer, neuroprotective, hepatoprotective, nephroprotective, anti-metabolic,
anti-inflammatory, and against autoimmune, cardiovascular, genetic, and aging-associated
diseases acting by different signaling pathway modulation [148,150].
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Urolithin A and urolithin B modulate oxidative stress and are recognized as emerging
antioxidant coumarin derivatives, reducing ROS generation, free radical scavenging, and
activating the Nrf2 signaling pathway through Nrf2 nuclear translocation with further
upregulation of HO-1, SOD, glutathione-related antioxidant system, and NQO1 [148]. The
antioxidant properties of urolithin A and urolithin B were related to the control of several
diseases such as diabetes, skin aging, sclerosis, kidney and liver toxicity, inflammation, and
osteoclastogenesis [152–159].

Urolithin A at a concentration of 10 µM on high glucose-induced human retinal
endothelial (HRE) cells counteracted the oxidative stress, increasing SOD activity and
GSH levels and reducing MDA, IL-6, IL-1β, and TNF-α levels and gene expression [152].
The antioxidant properties were related to the activation of Nrf2 and HO-1 levels and
Nrf2 activity in HRE cells as well as in streptozotocin-induced diabetic Sprague Dawley
rats treated with intraperitoneal administration of 2.5 mg/Kg/day for 12 weeks with
urolithin A [152]. In human dermal fibroblasts exposed to ultraviolet A (UVA) radiation,
pretreatment with urolithin A at a concentration of 0.2 µM ameliorated UVA-induced
proliferative fibroblast dysfunction, protected fibroblast from DNA damage, promoted ROs
scavenging activity and Nrf2 activation subsequently driving the activation of antioxidant
enzymes, corroborating the antiaging properties of urolithin A previously reported on
senescent human skin fibroblasts [152,160]. In vivo studies also demonstrated urolithin A
producing several pharmacological activities via Nrf2 activation. The anti-atherosclerotic
activity was reported after oral administration of urolithin A at a dose of 3mg/Kg/day
for three weeks in rats with a diet rich in cholesterol and subjected to balloon injury of
the aorta [156]. Oral administration of urolithin A (20, 50, and 100 mg/Kg/day for 7 days)
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in C57BL/6 mice subjected to renal/ischemia surgery model alleviated kidney injury
via the Keap1-Nrf2 pathway [155]. The hepatoprotective effect was also reported in an
acetaminophen hepatotoxicity model in mice, in which urolithin A at intraperitoneal doses
of 50, 100, and 150 mg/Kg inhibited oxidative stress accumulation and activated the Nrf2
pathway [154]. Moreover, urolithin A (25 mg/Kg, oral administration) in a model of LPS-
induced osteoporosis in C57BL/6 mice attenuated osteoclastogenesis through simultaneous
regulating of p28 MAPK and Nrf2 signaling pathways [157].

Urolithin B displayed cardioprotective effects and anti-inflammatory and anticlastoge-
nesis activities modulating the Nrf2 signaling pathway as described by in vitro and in vivo
studies [158,159,161]. Pretreatment of LPS-stimulated BV2 microglia cells with 30, 50, and
100 µM of urolithin B promoted anti-inflammatory effects by modulating pro-inflammatory
markers, reducing nitric oxide, TNF-α, IL-6, ROS generation levels, and increasing HO-1
levels and gene expression [158]. These effects were also related to the suppression of
NF-κB activity via inhibition of IκBα phosphorylation and AP-1 activity [158]. Urolithin B
(0.7 mg/Kg, intraperitoneal route) in the ischemia/reperfusion damage model in Sprague
Dawley rats reduced myocardial apoptosis and alleviated cardiac impairment through ROS
reduction [161]. In H9c2 cells, urolithin B (5, 10, 20, and 40 µM) reduced ROS production
through p62-Keap1 interaction and Nrf2 nuclear translocation with subsequent increase
of HO-1, NQO1, and GSTP1 protein expression [161]. Moreover, urolithin B (10, 30, 50,
and 100 µM) suppressed osteoclastogenesis through the reduction in ROS production in
RANKL-stimulated osteoclast formation and activation in RAW264.7 cells with simultane-
ous attenuation of NF-κB, MAPK, and Akt signaling pathways and upregulation of Nrf2
and antioxidant enzymes [159].

Urolithins display several actions and a key role in the maintenance of intestinal health,
acting by different mechanisms such as the regulation of intestinal microbiota, increasing
beneficial bacteria such as Lactobacillus, Akkermansia, Gordonibacter, Bifidobacterium and
Clostridium, and reducing bacterial infection with an improvement of intestinal barrier
function [149]. In the DSS-induced intestinal inflammation in male Fischer rats, urolithin A
at a dose of 15 mg/Kg/day for 25 days before damage induction ameliorated macroscopic
and microscopic intestinal inflammation parameters as well as promoted an increase of
bifidobacteria and lactobacilli and antioxidant properties as evidenced by ROS scavenging
activity, downregulation of COX-1 and iNOS expression and NO production [162]. In a
recent review was reported that several compounds, including urolithin A, can act on the
aryl hydrocarbon receptor to protect and control intestinal inflammatory processes [163].
Urolithin A (40 µM) and urolithin B (5 µM) were also evaluated in human acute monocytic
THP-1 cells and colon fibroblasts and promoted anti-inflammatory effects with a significant
reduction of IL-1β, TNF-α, a downregulation of PGE2 and IL-8 and other regulators of cell
migration and adhesion [164].

5. Conclusions

Considering the scientific evidence and proven relevance of coumarin derivatives as
modulators of the Nrf2 signaling pathway to increase endogenous antioxidant defense and
promote several pharmacological properties, several studies have been performed to design
and synthesize new coumarin derivatives able to activate Nrf2 signaling and its antioxidant
response, including oximes bearing coumarin derivatives [165], chalcone-coumarin hy-
brid compounds [166], coumarin-derived imino sulfonates [167], carbon monoxide release
coumarin complexes [168], and coumarin-containing hybrids [9–12]. Coumarins have
special physicochemical properties, such as π-π conjugation, low molecular weight, simple
chemical structure, high bioavailability, and solubility, rich in electrons and charge prop-
erties, which could bind to many targeted proteins to produce a wide range of biological
activities [6,7,168]. Moreover, coumarin derivatives have low toxicity and high versatility
for synthetic transformation into a variety of functionalized derivatives, ensuring them a
prominent role as lead compounds in drug design and development [6,7].
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Several structure-activity relationship studies have been performed with coumarin
derivatives in an attempt to identify the better chemical sites of coumarin structure to
improve pharmacological activity. Recently, in an elegant study, 23 compounds based on
osthole skeleton were designed, synthesized, and evaluated as potential Nrf2 agonists [169].
The study demonstrated that the introduction of an indole acetic acid structure in the C-7
position, after previous carboxylation, improved the Nrf2 agonistic activity of osthole,
whereas the introduction of the tryptamine carbamate structure at the same position cannot
improve the osthole activity as Nrf2 agonist [169]. On the other hand, the introduction of
phenyl and methyl-phenyl groups had a significant and more pronounced effect enhancing
agonistic properties of osthole, mainly when the substitution occurs at C-3 [169]. Similarly,
a series of chemical modifications in multiple sites, mainly at the C-7 and C-8 positions of
osthole were recently revised [170]. Structure-activity relationship evaluation demonstrated
several C-7 and C-8 substitutions enhanced a lot of biological activities, mainly larvicidal,
insecticidal, hemolytic, antitumoral, antimicrobial, antiparasitic, and neuroprotective prop-
erties [170]. Although it is not possible to conclude whether these chemical modifications
are useful to improve Nrf2 activation properties, two compounds substituted at the C-7
position promoted better antioxidant and anti-inflammatory activity when compared with
osthole [170].

Based on other coumarin derivative’s chemical structures, structure-activity relation-
ship analysis demonstrated that chemical modification at C-6, C-7, and C-8 as well as
the presence of an α,β-unsaturated carbonyl group or free hydroxyl at C-8 increases anti-
inflammatory activity, including intestinal anti-inflammatory properties when compared
with no substituted coumarins [84,168,171].

Among the coumarin derivatives here revised and displaying Nrf2/ARE signal-
ing pathway activation to reduce oxidative stress and simultaneously promote intesti-
nal anti-inflammatory activity, simple coumarins such as esculetin and its derivative 4-
methylesculetin, daphnetin, and osthole, and the furanocoumarin imperatorin are attractive
compounds for further backbone derivatization and screening as novel therapeutic agents
potentially useful to control and prevent NCDs, particularly inflammatory bowel diseases.
The efficacy at lower doses and the wide range of activities displayed by these highlighted
natural coumarins together with their chemical versatility supporting several chemical
modifications corroborate the use of the chemical skeleton of these coumarin derivatives
for the drug design of bioactive compounds. The structure-activity relationship studies
strongly suggest that C-6, C-7, and C-8 can be the main chemical sites of the coumarin
derivatives structures for the design and synthesis of new compounds with Nrf2 activation
and intestinal anti-inflammatory properties.

Although, other coumarin derivatives such as urolithin A, urolithin B, umbelliferone,
esculin, fraxetin, scopoletin, and scoparone can be useful for further medicinal chemistry
studies, additional in vitro and in vivo studies are necessary to better pharmacological
characterization and evaluation of their potential as lead compounds.

Moreover, future clinical trial studies must consider health volunteers and ulcera-
tive colitis and Crohn’s disease patients to determine the safety, efficacy, and impact of
esculetin, 4-methylesculetin, daphnetin, osthole, and imperatorin in inflammatory bowel
diseases. Even with these constraints, the studies here revised to highlight the potential
of coumarin derivatives as lead compounds for the design, synthesis, and development
of new compounds able to modulate the Nrf2 signaling pathway and promote intestinal
anti-inflammatory activity, useful for the control, prevention, and to alleviate the symptoms
of IBD and other NCDs.
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