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Abstract: Encouraged by the significant cytotoxic activity of simple α-aminophosphonates, a molecu-
lar library comprising phosphonoylmethyl- and phosphinoylmethyl-α-aminophosphonates, a tris
derivative, and N-acylated species was established. The promising aminophosphonate derivatives
were subjected to a comparative structure–activity analysis. We evaluated 12 new aminophospho-
nate derivatives on tumor cell cultures of different tissue origins (skin, lung, breast, and prostate).
Several derivatives showed pronounced, even selective cytostatic effects. According to IC50 values,
phosphinoylmethyl-aminophosphonate derivative 2e elicited a significant cytostatic effect on breast
adenocarcinoma cells, but it was even more effective against prostatic carcinoma cells. Based on our
data, these new compounds exhibited promising antitumor activity on different tumor types, and
they might represent a new group of alternative chemotherapeutic agents.

Keywords: α-aminophosphonates; phosphonoylmethyl-α-aminophosphonates; phosphinoylmethyl-
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1. Introduction

Within organophosphorus compounds [1,2], α-aminophosphonic derivatives are of
special importance due to their real and potential biological activity. This is not surprising if
the structural analogy between α-aminoalkylphosphonic acids and α-aminocarboxylic
acids is considered [3–5]. The α-aminophosphonic acid derivatives possess different
properties, e.g., they may inhibit enzymes and GABA-receptors, and they may be anti-
metabolites [6]. As a consequence, the compounds under discussion may reveal anti-
cancer [7], antibiotic [6], antiviral and HIV [8], anti-inflammatory [9], antimalarial [10],
antiasthma [11], antidiabetic [12], as well as antihypertensive effects [13]. Diaryl α-
aminophosphonate derivatives are selective and highly potent inhibitors of serine proteases
and, hence, can mediate the patho–physical processes of cancer growth, metastasis, os-
teoarthritis, or heart failure [14].

Various α-aminophosphonate derivatives were investigated and identified as antipro-
liferative and/or potential anticancer agents. While the diaryl or dialkyl phosphonate
ester unit remained unchanged, in most of the cases, different bioactive moieties, such as
coumarin [15] or peptidomimetic structures [16], were linked to the amino group. Alterna-
tively, the secondary carbon atom was substituted with heterocycles [17] or nucleobases [18].
In addition, the introduction of trifluoromethyl groups into the arylamino group increased
the antiproliferative and apoptosis-inducing properties [19].

The α-aminophopshonic derivatives may be prepared by the Kabachnik–Fields con-
densation of primary or secondary amines, oxo compounds, such as aldehyde or ke-
tones, and dialkyl phosphites or related derivatives [20–23]. The three-component reaction

Pharmaceuticals 2023, 16, 506. https://doi.org/10.3390/ph16040506 https://www.mdpi.com/journal/pharmaceuticals

https://doi.org/10.3390/ph16040506
https://doi.org/10.3390/ph16040506
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/pharmaceuticals
https://www.mdpi.com
https://orcid.org/0000-0001-7702-2206
https://orcid.org/0000-0002-5366-472X
https://doi.org/10.3390/ph16040506
https://www.mdpi.com/journal/pharmaceuticals
https://www.mdpi.com/article/10.3390/ph16040506?type=check_update&version=2


Pharmaceuticals 2023, 16, 506 2 of 12

has been an excellent model for green chemical studies [24–28]. A modification of the
Kabachnik–Fields condensation is the bis(phospha-Mannich) reaction when a primary
amine interacts with two equivalents of an aldehyde and a similar quantity of the >P(O)H
reactant to afford the corresponding bis derivatives [29–32]. A special variation is when
an α-aminophosphonic derivative is reacted further with another aldehyde and >P(O)H
reagent to furnish a phosphonoylmethyl-α-aminophosphonate or a phosphinoylmethyl-α-
aminophosphonate [33].

In this article, we wish to report the cytotoxic activity of our products prepared
using the tandem Kabachnik–Fields reaction [33]. Even the starting α-aminophosphonates
revealed considerable anticancer effects [34].

2. Results and Discussion
2.1. Synthesis of α-Aminophosphonate Derivatives

The α-benzylamino-benzylphosphonate derivatives (1a–c) obtained in the Kabachnik–
Fields reaction of substituted benzaldehydes, benzylamine, and diethyl phosphite [33]
were reacted further in another phospha-Mannich condensation applying paraformalde-
hyde and diethyl phosphite or secondary phosphine oxide to afford phosphonoylmethyl-
or phosphinoylmethyl-benzylamino-benzylphosphonates (2a–f) (Scheme 1) [33]. Com-
pound 1d (X = MeO) was also prepared from anisic aldehyde but was not reacted further.
Aminophosphonate 1e was obtained using aniline instead of benzylamine in condensation
with benzaldehyde and diethyl phosphite.
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Scheme 1. Synthesis of phosphonoylmethyl- and phosphinoylmethyl-α-aminophosphonates 2a–f.

A debenzylation of benzylaminophosphonate 1a afforded aminophosphonate 3 [33]
that was converted to acylated derivatives 4a and 4b (Scheme 2) [33].
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Scheme 2. Preparation of α-acylamino-benzylphosphonates 4a and 4b.

A bis(α,α’-phosphonoylbenzyl)amine (5) was prepared starting from benzaldehyde,
ammonium acetate, and diethyl phosphite (Scheme 3) [33].

α-Amino-benzylphosphonate 3 was a suitable starting material also for tris(phosphono
ylmethyl)amine derivative 6 (Scheme 4) [33].

The compounds subjected to bioactivity tests are shown in Figure 1.
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2.2. In Vitro Cytostatic Effect of α-Aminophosphonic Derivatives on Human Tumor Cell Lines

From among the above synthesized α-aminophosphonate derivatives, the cytotoxic activity
of N-benzyl- and N-phenyl α-aminophopshonates 1b–e, phosphonoyl-α-aminophosphonates
2a and 2b, phopshinoyl-α-aminophosphonates 2d–f, as well as α-(acylamino)phosphonates
4a and 4b, along with bis(diethylphosphonoylphenylmethyl)amine 5 and tris derivative 6
were subjected to investigations on different cancer cells.

To provide structure–activity relations, the in vitro cytostatic activity was evaluated on
four human cell lines of different origins: MDA-MB-231 human breast adenocarcinoma [35],
A431 human epidermoid carcinoma [36], PC-3 human prostate adenocarcinoma [37], and
Ebc-1 human lung squamous cell carcinoma [38].

Dose dependence of the cytostatic effect was studied by treating the cells with the
compounds for 24 h, and after removing the active agents, the cells were cultured for
another 72 h. The cytostatic effect was expressed in the percentage of the untreated control
(Tables 1 and 2). Compound 6 was insoluble in even DMSO and the aqueous medium
applied; therefore, it was excluded from in vitro experiments.

Table 1. In vitro cytostatic effect of α-aminophosphonic derivatives on human tumor cell lines.

Compound

Cytostasis (%) at c = 50 µM

Cell Line

MDA-MB 231 PC-3 Ebc-1 A431
1b
1c
1d
1e <10%
2a 10–20%
2b 20–30%
2d 30–40%
2e 40–50%
2f >50%
4a
4b
5

We found that at c = 50 µM, compounds 2a and 2b elicited the most pronounced
cytostatic effect on the A431 cell line (cytostasis = 43.7 ± 3.5% and 45.1 ± 6.9%, respectively)
(Table 2). Compound 2f proved to be the most cytostatic on both A431 (92.8 ± 0.3%)
and Ebc-1 cells (88.5 ± 0.3%). At c = 250 µM, the compound that killed the cells to the
greatest extent was 2f (cytostasis = 90.6 ± 0.3% on MDA-MB 231 cells, 92.8 ± 0.3% on A431
cells, 87.3 ± 0.7% on PC-3 cells, and 90.4 ± 0.3%on Ebc-1 cells at c = 250 um). In general,
we can say that A431 human epidermoid carcinoma and Ebc-1 human lung squamous
cell carcinoma cells were the most sensitive to the treatment, as most of the compounds
already showed a significant cytostatic effect on these cells at a concentration of 50 µM
(Tables 1 and 2).

For those compounds where the cytostatic effect exceeded 50% in certain concentra-
tions, the IC50 value that was characteristic of the compound on the appropriate cell line
was also determined (Table 3). The cell line on which most of the compounds showed a
cytostatic effect over 50% was MDA-MB 231 human breast carcinoma. Considering the IC50
values, the most effective was phosphinoylmethyl-aminophosphonate 2e on MDA-MB 231
cells (IC50 = 55.1 µM) and PC-3 cells (IC50 = 29.4 µM); its phenyl analog 2d on MDA-MB
231 cells (IC50 = 45.8 µM), and phosphonoylmethyl-aminophosphonate 2b on A431 cell
line (IC50 = 53.2 µM). The determined IC50 values were also below 100 µM in the case of
the following >P(O)CH2-aminophosphonates: 2f (on MDA-MB 231 and Ebc-1 cells), 2b (on
PC-3 cells), and 2a (on A431 cells).
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Table 2. Cytostatic effect of α-aminophosphonic derivatives compounds on human tumor cell lines.
Cells were treated for 24 h and then cultured for another 72 h. Cell viability was determined with an
MTT assay, and the percent of cytostasis was calculated.

Cell Line
Compound

2a 2b 2d 2e 2f 4a 4b 5
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50 10.3 ± 4.8 12.3 ± 4.9 n.d. 89.3 ± 0.9 n.d. 33.0 ± 4.6  20.7 ± 3.7 13.0 ± 2.4 

250 n.d. 69.0 ± 3.1 89.8 ± 0.5 89.5 ± 0.7 87.3 ± 0.7 n.d. n.d. n.d. 

Ebc-1 

2 32.2 ± 6.6 17.6 ± 2.7 11.8 ± 4.0 11.6 ± 2.5 26.2 ± 7.8 4.2 ± 5.9 9.8 ± 8.5 3.6 ± 6.3 

10 23.8 ± 2.8 18.6 ± 2.4 9.1 ± 4.6 21.9 ± 1.8 37.0 ± 1.3 5.8 ± 7.5 12.0 ± 10.0 8.5 ± 8.5 

50 39.0 ± 1.8 37.8 ± 6.8 17.3 ± 1.4 19.1 ± 6.0 88.5 ± 0.3 14.2 ± 5.6 6.8 ± 0.4 11.1 ± 0.6 

250 86.3 ± 1.1 88.5 ± 0.2 57.4 ± 1.8 54.9 ± 2.7 90.4 ± 0.3 n.d. n.d. n.d. 

A431 

2 n.d. 11.1 ± 0.2 11.9 ± 6.3 14.7 ± 5.2 9.1 ± 8.7 3.3 ± 3.8 −10.0 ± 9.2 2.7 ± 10.5 

10 17.3 ± 6.4 9.2 ± 6.7 7.8 ± 2.1 18.7 ± 5.4 0.3 ± 14.7 2.1 ± 4.0 −5.1 ± 11.1 6.6 ± 10.1 

50 43.7 ± 3.5 45.1 ± 6.9 25.8 ± 3.3 31.1 ± 6.3 92.8 ± 0.3 8.7 ± 2.6 5.6 ± 1.2 −0.4 ± 7.8 

250 89.1 ± 1.5 91.2 ± 0.4 52.4 ± 0.4 32.2 ± 0.9 93.3 ± 0.4 n.d. n.d. n.d. 

n.d.: Not determined. 

We found that at c = 50 µM, compounds 2a and 2b elicited the most pronounced 

cytostatic effect on the A431 cell line (cytostasis = 43.7 ± 3.5% and 45.1 ± 6.9%, respectively) 

(Table 2). Compound 2f proved to be the most cytostatic on both A431 (92.8 ± 0.3%) and 
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231 

2 −4.5 ± 8.9 −8.0 ± 3.3 36.7 ± 4.5 31.1 ± 1.2 38.8 ± 0.8 5.5 ± 5.9 17.9 ± 16.2 23.8 ± 13.4 

10 −9.0 ± 0.9 34.3 ± 6.9 28.7 ± 1.9 31.1 ± 3.5 32.5 ± 3.3 34.6 ± 6.2 21.7 ± 18.2 26.7 ± 9.6 

50 3.7 ± 1.6 29.5 ± 1.6 0.00 ± 3.3 10.3 ± 4.7 25.7 ± 1.6 26.9 ± 4.6 22.4 ± 3.4 21.5 ± 4.9 

250 58.8 ± 3.2 39.0 ± 0.6 90.5 ± 0.8 90.2 ± 0.6 90.6 ± 0.3 n.d. n.d. n.d. 
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250 n.d. 69.0 ± 3.1 89.8 ± 0.5 89.5 ± 0.7 87.3 ± 0.7 n.d. n.d. n.d. 

Ebc-1 

2 32.2 ± 6.6 17.6 ± 2.7 11.8 ± 4.0 11.6 ± 2.5 26.2 ± 7.8 4.2 ± 5.9 9.8 ± 8.5 3.6 ± 6.3 

10 23.8 ± 2.8 18.6 ± 2.4 9.1 ± 4.6 21.9 ± 1.8 37.0 ± 1.3 5.8 ± 7.5 12.0 ± 10.0 8.5 ± 8.5 

50 39.0 ± 1.8 37.8 ± 6.8 17.3 ± 1.4 19.1 ± 6.0 88.5 ± 0.3 14.2 ± 5.6 6.8 ± 0.4 11.1 ± 0.6 

250 86.3 ± 1.1 88.5 ± 0.2 57.4 ± 1.8 54.9 ± 2.7 90.4 ± 0.3 n.d. n.d. n.d. 
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2 n.d. 11.1 ± 0.2 11.9 ± 6.3 14.7 ± 5.2 9.1 ± 8.7 3.3 ± 3.8 −10.0 ± 9.2 2.7 ± 10.5 

10 17.3 ± 6.4 9.2 ± 6.7 7.8 ± 2.1 18.7 ± 5.4 0.3 ± 14.7 2.1 ± 4.0 −5.1 ± 11.1 6.6 ± 10.1 

50 43.7 ± 3.5 45.1 ± 6.9 25.8 ± 3.3 31.1 ± 6.3 92.8 ± 0.3 8.7 ± 2.6 5.6 ± 1.2 −0.4 ± 7.8 

250 89.1 ± 1.5 91.2 ± 0.4 52.4 ± 0.4 32.2 ± 0.9 93.3 ± 0.4 n.d. n.d. n.d. 

n.d.: Not determined. 

We found that at c = 50 µM, compounds 2a and 2b elicited the most pronounced 
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Table 2. Cytostatic effect of α-aminophosphonic derivatives compounds on human tumor cell lines. 

Cells were treated for 24 h and then cultured for another 72 h. Cell viability was determined with 

an MTT assay, and the percent of cytostasis was calculated. 

Cell Line 

Com-

pound 

2a 2b 2d 2e 2f 4a 4b 5 

        

c (µM) Cytostasis (%) ± SD 

MDA-MB 

231 

2 −4.5 ± 8.9 −8.0 ± 3.3 36.7 ± 4.5 31.1 ± 1.2 38.8 ± 0.8 5.5 ± 5.9 17.9 ± 16.2 23.8 ± 13.4 

10 −9.0 ± 0.9 34.3 ± 6.9 28.7 ± 1.9 31.1 ± 3.5 32.5 ± 3.3 34.6 ± 6.2 21.7 ± 18.2 26.7 ± 9.6 

50 3.7 ± 1.6 29.5 ± 1.6 0.00 ± 3.3 10.3 ± 4.7 25.7 ± 1.6 26.9 ± 4.6 22.4 ± 3.4 21.5 ± 4.9 

250 58.8 ± 3.2 39.0 ± 0.6 90.5 ± 0.8 90.2 ± 0.6 90.6 ± 0.3 n.d. n.d. n.d. 
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2 n.d. 32.3 ± 3.8 10.9 ± 8.3 6.9 ± 6.9 −0.3 ± 2.8 8.9 ± 3.8 24.3 ± 4.3 16.1 ± 9.7 

10 7.1 ± 5.1 21.1 ± 8.2 0.4 ± 6.0 3.4 ± 10.1 −4.5 ± 5.4 24.5 ± 6.8 19.3 ± 2.3 16.9 ± 2.9 

50 10.3 ± 4.8 12.3 ± 4.9 n.d. 89.3 ± 0.9 n.d. 33.0 ± 4.6  20.7 ± 3.7 13.0 ± 2.4 

250 n.d. 69.0 ± 3.1 89.8 ± 0.5 89.5 ± 0.7 87.3 ± 0.7 n.d. n.d. n.d. 

Ebc-1 

2 32.2 ± 6.6 17.6 ± 2.7 11.8 ± 4.0 11.6 ± 2.5 26.2 ± 7.8 4.2 ± 5.9 9.8 ± 8.5 3.6 ± 6.3 

10 23.8 ± 2.8 18.6 ± 2.4 9.1 ± 4.6 21.9 ± 1.8 37.0 ± 1.3 5.8 ± 7.5 12.0 ± 10.0 8.5 ± 8.5 

50 39.0 ± 1.8 37.8 ± 6.8 17.3 ± 1.4 19.1 ± 6.0 88.5 ± 0.3 14.2 ± 5.6 6.8 ± 0.4 11.1 ± 0.6 

250 86.3 ± 1.1 88.5 ± 0.2 57.4 ± 1.8 54.9 ± 2.7 90.4 ± 0.3 n.d. n.d. n.d. 

A431 

2 n.d. 11.1 ± 0.2 11.9 ± 6.3 14.7 ± 5.2 9.1 ± 8.7 3.3 ± 3.8 −10.0 ± 9.2 2.7 ± 10.5 

10 17.3 ± 6.4 9.2 ± 6.7 7.8 ± 2.1 18.7 ± 5.4 0.3 ± 14.7 2.1 ± 4.0 −5.1 ± 11.1 6.6 ± 10.1 

50 43.7 ± 3.5 45.1 ± 6.9 25.8 ± 3.3 31.1 ± 6.3 92.8 ± 0.3 8.7 ± 2.6 5.6 ± 1.2 −0.4 ± 7.8 

250 89.1 ± 1.5 91.2 ± 0.4 52.4 ± 0.4 32.2 ± 0.9 93.3 ± 0.4 n.d. n.d. n.d. 

n.d.: Not determined. 

We found that at c = 50 µM, compounds 2a and 2b elicited the most pronounced 

cytostatic effect on the A431 cell line (cytostasis = 43.7 ± 3.5% and 45.1 ± 6.9%, respectively) 

(Table 2). Compound 2f proved to be the most cytostatic on both A431 (92.8 ± 0.3%) and 
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Table 2. Cytostatic effect of α-aminophosphonic derivatives compounds on human tumor cell lines. 

Cells were treated for 24 h and then cultured for another 72 h. Cell viability was determined with 

an MTT assay, and the percent of cytostasis was calculated. 

Cell Line 

Com-

pound 

2a 2b 2d 2e 2f 4a 4b 5 

        

c (µM) Cytostasis (%) ± SD 

MDA-MB 

231 

2 −4.5 ± 8.9 −8.0 ± 3.3 36.7 ± 4.5 31.1 ± 1.2 38.8 ± 0.8 5.5 ± 5.9 17.9 ± 16.2 23.8 ± 13.4 

10 −9.0 ± 0.9 34.3 ± 6.9 28.7 ± 1.9 31.1 ± 3.5 32.5 ± 3.3 34.6 ± 6.2 21.7 ± 18.2 26.7 ± 9.6 

50 3.7 ± 1.6 29.5 ± 1.6 0.00 ± 3.3 10.3 ± 4.7 25.7 ± 1.6 26.9 ± 4.6 22.4 ± 3.4 21.5 ± 4.9 

250 58.8 ± 3.2 39.0 ± 0.6 90.5 ± 0.8 90.2 ± 0.6 90.6 ± 0.3 n.d. n.d. n.d. 

PC-3 

2 n.d. 32.3 ± 3.8 10.9 ± 8.3 6.9 ± 6.9 −0.3 ± 2.8 8.9 ± 3.8 24.3 ± 4.3 16.1 ± 9.7 

10 7.1 ± 5.1 21.1 ± 8.2 0.4 ± 6.0 3.4 ± 10.1 −4.5 ± 5.4 24.5 ± 6.8 19.3 ± 2.3 16.9 ± 2.9 

50 10.3 ± 4.8 12.3 ± 4.9 n.d. 89.3 ± 0.9 n.d. 33.0 ± 4.6  20.7 ± 3.7 13.0 ± 2.4 

250 n.d. 69.0 ± 3.1 89.8 ± 0.5 89.5 ± 0.7 87.3 ± 0.7 n.d. n.d. n.d. 

Ebc-1 

2 32.2 ± 6.6 17.6 ± 2.7 11.8 ± 4.0 11.6 ± 2.5 26.2 ± 7.8 4.2 ± 5.9 9.8 ± 8.5 3.6 ± 6.3 

10 23.8 ± 2.8 18.6 ± 2.4 9.1 ± 4.6 21.9 ± 1.8 37.0 ± 1.3 5.8 ± 7.5 12.0 ± 10.0 8.5 ± 8.5 

50 39.0 ± 1.8 37.8 ± 6.8 17.3 ± 1.4 19.1 ± 6.0 88.5 ± 0.3 14.2 ± 5.6 6.8 ± 0.4 11.1 ± 0.6 

250 86.3 ± 1.1 88.5 ± 0.2 57.4 ± 1.8 54.9 ± 2.7 90.4 ± 0.3 n.d. n.d. n.d. 

A431 

2 n.d. 11.1 ± 0.2 11.9 ± 6.3 14.7 ± 5.2 9.1 ± 8.7 3.3 ± 3.8 −10.0 ± 9.2 2.7 ± 10.5 

10 17.3 ± 6.4 9.2 ± 6.7 7.8 ± 2.1 18.7 ± 5.4 0.3 ± 14.7 2.1 ± 4.0 −5.1 ± 11.1 6.6 ± 10.1 

50 43.7 ± 3.5 45.1 ± 6.9 25.8 ± 3.3 31.1 ± 6.3 92.8 ± 0.3 8.7 ± 2.6 5.6 ± 1.2 −0.4 ± 7.8 

250 89.1 ± 1.5 91.2 ± 0.4 52.4 ± 0.4 32.2 ± 0.9 93.3 ± 0.4 n.d. n.d. n.d. 

n.d.: Not determined. 

We found that at c = 50 µM, compounds 2a and 2b elicited the most pronounced 

cytostatic effect on the A431 cell line (cytostasis = 43.7 ± 3.5% and 45.1 ± 6.9%, respectively) 

(Table 2). Compound 2f proved to be the most cytostatic on both A431 (92.8 ± 0.3%) and 
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Table 2. Cytostatic effect of α-aminophosphonic derivatives compounds on human tumor cell lines. 

Cells were treated for 24 h and then cultured for another 72 h. Cell viability was determined with 

an MTT assay, and the percent of cytostasis was calculated. 

Cell Line 

Com-

pound 

2a 2b 2d 2e 2f 4a 4b 5 

        

c (µM) Cytostasis (%) ± SD 

MDA-MB 

231 

2 −4.5 ± 8.9 −8.0 ± 3.3 36.7 ± 4.5 31.1 ± 1.2 38.8 ± 0.8 5.5 ± 5.9 17.9 ± 16.2 23.8 ± 13.4 

10 −9.0 ± 0.9 34.3 ± 6.9 28.7 ± 1.9 31.1 ± 3.5 32.5 ± 3.3 34.6 ± 6.2 21.7 ± 18.2 26.7 ± 9.6 

50 3.7 ± 1.6 29.5 ± 1.6 0.00 ± 3.3 10.3 ± 4.7 25.7 ± 1.6 26.9 ± 4.6 22.4 ± 3.4 21.5 ± 4.9 

250 58.8 ± 3.2 39.0 ± 0.6 90.5 ± 0.8 90.2 ± 0.6 90.6 ± 0.3 n.d. n.d. n.d. 

PC-3 

2 n.d. 32.3 ± 3.8 10.9 ± 8.3 6.9 ± 6.9 −0.3 ± 2.8 8.9 ± 3.8 24.3 ± 4.3 16.1 ± 9.7 

10 7.1 ± 5.1 21.1 ± 8.2 0.4 ± 6.0 3.4 ± 10.1 −4.5 ± 5.4 24.5 ± 6.8 19.3 ± 2.3 16.9 ± 2.9 

50 10.3 ± 4.8 12.3 ± 4.9 n.d. 89.3 ± 0.9 n.d. 33.0 ± 4.6  20.7 ± 3.7 13.0 ± 2.4 

250 n.d. 69.0 ± 3.1 89.8 ± 0.5 89.5 ± 0.7 87.3 ± 0.7 n.d. n.d. n.d. 

Ebc-1 

2 32.2 ± 6.6 17.6 ± 2.7 11.8 ± 4.0 11.6 ± 2.5 26.2 ± 7.8 4.2 ± 5.9 9.8 ± 8.5 3.6 ± 6.3 

10 23.8 ± 2.8 18.6 ± 2.4 9.1 ± 4.6 21.9 ± 1.8 37.0 ± 1.3 5.8 ± 7.5 12.0 ± 10.0 8.5 ± 8.5 

50 39.0 ± 1.8 37.8 ± 6.8 17.3 ± 1.4 19.1 ± 6.0 88.5 ± 0.3 14.2 ± 5.6 6.8 ± 0.4 11.1 ± 0.6 

250 86.3 ± 1.1 88.5 ± 0.2 57.4 ± 1.8 54.9 ± 2.7 90.4 ± 0.3 n.d. n.d. n.d. 

A431 

2 n.d. 11.1 ± 0.2 11.9 ± 6.3 14.7 ± 5.2 9.1 ± 8.7 3.3 ± 3.8 −10.0 ± 9.2 2.7 ± 10.5 

10 17.3 ± 6.4 9.2 ± 6.7 7.8 ± 2.1 18.7 ± 5.4 0.3 ± 14.7 2.1 ± 4.0 −5.1 ± 11.1 6.6 ± 10.1 

50 43.7 ± 3.5 45.1 ± 6.9 25.8 ± 3.3 31.1 ± 6.3 92.8 ± 0.3 8.7 ± 2.6 5.6 ± 1.2 −0.4 ± 7.8 

250 89.1 ± 1.5 91.2 ± 0.4 52.4 ± 0.4 32.2 ± 0.9 93.3 ± 0.4 n.d. n.d. n.d. 

n.d.: Not determined. 

We found that at c = 50 µM, compounds 2a and 2b elicited the most pronounced 

cytostatic effect on the A431 cell line (cytostasis = 43.7 ± 3.5% and 45.1 ± 6.9%, respectively) 

(Table 2). Compound 2f proved to be the most cytostatic on both A431 (92.8 ± 0.3%) and 
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Table 2. Cytostatic effect of α-aminophosphonic derivatives compounds on human tumor cell lines. 

Cells were treated for 24 h and then cultured for another 72 h. Cell viability was determined with 

an MTT assay, and the percent of cytostasis was calculated. 

Cell Line 

Com-

pound 

2a 2b 2d 2e 2f 4a 4b 5 

        

c (µM) Cytostasis (%) ± SD 

MDA-MB 

231 

2 −4.5 ± 8.9 −8.0 ± 3.3 36.7 ± 4.5 31.1 ± 1.2 38.8 ± 0.8 5.5 ± 5.9 17.9 ± 16.2 23.8 ± 13.4 

10 −9.0 ± 0.9 34.3 ± 6.9 28.7 ± 1.9 31.1 ± 3.5 32.5 ± 3.3 34.6 ± 6.2 21.7 ± 18.2 26.7 ± 9.6 

50 3.7 ± 1.6 29.5 ± 1.6 0.00 ± 3.3 10.3 ± 4.7 25.7 ± 1.6 26.9 ± 4.6 22.4 ± 3.4 21.5 ± 4.9 

250 58.8 ± 3.2 39.0 ± 0.6 90.5 ± 0.8 90.2 ± 0.6 90.6 ± 0.3 n.d. n.d. n.d. 

PC-3 

2 n.d. 32.3 ± 3.8 10.9 ± 8.3 6.9 ± 6.9 −0.3 ± 2.8 8.9 ± 3.8 24.3 ± 4.3 16.1 ± 9.7 

10 7.1 ± 5.1 21.1 ± 8.2 0.4 ± 6.0 3.4 ± 10.1 −4.5 ± 5.4 24.5 ± 6.8 19.3 ± 2.3 16.9 ± 2.9 

50 10.3 ± 4.8 12.3 ± 4.9 n.d. 89.3 ± 0.9 n.d. 33.0 ± 4.6  20.7 ± 3.7 13.0 ± 2.4 

250 n.d. 69.0 ± 3.1 89.8 ± 0.5 89.5 ± 0.7 87.3 ± 0.7 n.d. n.d. n.d. 

Ebc-1 

2 32.2 ± 6.6 17.6 ± 2.7 11.8 ± 4.0 11.6 ± 2.5 26.2 ± 7.8 4.2 ± 5.9 9.8 ± 8.5 3.6 ± 6.3 

10 23.8 ± 2.8 18.6 ± 2.4 9.1 ± 4.6 21.9 ± 1.8 37.0 ± 1.3 5.8 ± 7.5 12.0 ± 10.0 8.5 ± 8.5 

50 39.0 ± 1.8 37.8 ± 6.8 17.3 ± 1.4 19.1 ± 6.0 88.5 ± 0.3 14.2 ± 5.6 6.8 ± 0.4 11.1 ± 0.6 

250 86.3 ± 1.1 88.5 ± 0.2 57.4 ± 1.8 54.9 ± 2.7 90.4 ± 0.3 n.d. n.d. n.d. 

A431 

2 n.d. 11.1 ± 0.2 11.9 ± 6.3 14.7 ± 5.2 9.1 ± 8.7 3.3 ± 3.8 −10.0 ± 9.2 2.7 ± 10.5 

10 17.3 ± 6.4 9.2 ± 6.7 7.8 ± 2.1 18.7 ± 5.4 0.3 ± 14.7 2.1 ± 4.0 −5.1 ± 11.1 6.6 ± 10.1 

50 43.7 ± 3.5 45.1 ± 6.9 25.8 ± 3.3 31.1 ± 6.3 92.8 ± 0.3 8.7 ± 2.6 5.6 ± 1.2 −0.4 ± 7.8 

250 89.1 ± 1.5 91.2 ± 0.4 52.4 ± 0.4 32.2 ± 0.9 93.3 ± 0.4 n.d. n.d. n.d. 

n.d.: Not determined. 

We found that at c = 50 µM, compounds 2a and 2b elicited the most pronounced 

cytostatic effect on the A431 cell line (cytostasis = 43.7 ± 3.5% and 45.1 ± 6.9%, respectively) 

(Table 2). Compound 2f proved to be the most cytostatic on both A431 (92.8 ± 0.3%) and 

c (µM) Cytostasis (%) ± SD

MDA-MB
231

2 −4.5 ± 8.9 −8.0 ± 3.3 36.7 ± 4.5 31.1 ± 1.2 38.8 ± 0.8 5.5 ± 5.9 17.9 ± 16.2 23.8 ± 13.4

10 −9.0 ± 0.9 34.3 ± 6.9 28.7 ± 1.9 31.1 ± 3.5 32.5 ± 3.3 34.6 ± 6.2 21.7 ± 18.2 26.7 ± 9.6

50 3.7 ± 1.6 29.5 ± 1.6 0.00 ± 3.3 10.3 ± 4.7 25.7 ± 1.6 26.9 ± 4.6 22.4 ± 3.4 21.5 ± 4.9

250 58.8 ± 3.2 39.0 ± 0.6 90.5 ± 0.8 90.2 ± 0.6 90.6 ± 0.3 n.d. n.d. n.d.

PC-3

2 n.d. 32.3 ± 3.8 10.9 ± 8.3 6.9 ± 6.9 −0.3 ± 2.8 8.9 ± 3.8 24.3 ± 4.3 16.1 ± 9.7

10 7.1 ± 5.1 21.1 ± 8.2 0.4 ± 6.0 3.4 ± 10.1 −4.5 ± 5.4 24.5 ± 6.8 19.3 ± 2.3 16.9 ± 2.9

50 10.3 ± 4.8 12.3 ± 4.9 n.d. 89.3 ± 0.9 n.d. 33.0 ± 4.6 20.7 ± 3.7 13.0 ± 2.4

250 n.d. 69.0 ± 3.1 89.8 ± 0.5 89.5 ± 0.7 87.3 ± 0.7 n.d. n.d. n.d.

Ebc-1

2 32.2 ± 6.6 17.6 ± 2.7 11.8 ± 4.0 11.6 ± 2.5 26.2 ± 7.8 4.2 ± 5.9 9.8 ± 8.5 3.6 ± 6.3

10 23.8 ± 2.8 18.6 ± 2.4 9.1 ± 4.6 21.9 ± 1.8 37.0 ± 1.3 5.8 ± 7.5 12.0 ± 10.0 8.5 ± 8.5

50 39.0 ± 1.8 37.8 ± 6.8 17.3 ± 1.4 19.1 ± 6.0 88.5 ± 0.3 14.2 ± 5.6 6.8 ± 0.4 11.1 ± 0.6

250 86.3 ± 1.1 88.5 ± 0.2 57.4 ± 1.8 54.9 ± 2.7 90.4 ± 0.3 n.d. n.d. n.d.

A431

2 n.d. 11.1 ± 0.2 11.9 ± 6.3 14.7 ± 5.2 9.1 ± 8.7 3.3 ± 3.8 −10.0 ± 9.2 2.7 ± 10.5

10 17.3 ± 6.4 9.2 ± 6.7 7.8 ± 2.1 18.7 ± 5.4 0.3 ± 14.7 2.1 ± 4.0 −5.1 ± 11.1 6.6 ± 10.1

50 43.7 ± 3.5 45.1 ± 6.9 25.8 ± 3.3 31.1 ± 6.3 92.8 ± 0.3 8.7 ± 2.6 5.6 ± 1.2 −0.4 ± 7.8

250 89.1 ± 1.5 91.2 ± 0.4 52.4 ± 0.4 32.2 ± 0.9 93.3 ± 0.4 n.d. n.d. n.d.

n.d.: Not determined.

Table 3. IC50 of the compounds on human tumor cell lines. The 50% inhibitory concentration (IC50)
was determined from the dose–response curves fitted on the cytostasis data and is expressed in
micromolar units.

Compound

Cell Line

MDA-MB 231 PC-3 Ebc-1 A431

IC50 (µM)

2a 169.2 >250 >250 87.5
2b >250 73.8 107.1 53.2
2d 45.8 114.8 166.6 143.8
2e 55.1 29.4 138.6 >250
2f 82.6 128.2 97.9 115.6

We investigated the in vitro cytostatic effect of 12 novel α-aminophosphonic deriva-
tives on four human tumor cell lines of different tissue origins (skin, lung, breast, and
prostate). To compare the in vitro activity, we employed the end-point type MTT (3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay [39–41]. We determined
concentration-dependent and cell-selective effects. At a lower concentration (c = 50 µM),
Ebc-1 human lung squamous cell carcinoma and A431 human epidermoid carcinoma cells
proved to be more sensitive, whereas, in higher concentration (c = 250 µM), MDA-MB-231
human breast adenocarcinoma and PC-3 human prostate adenocarcinoma cells were inhib-
ited to the greatest extent. According to IC50 data, phosphinoylmethyl-aminophosphonate
derivative 2e elicited a significant cytostatic effect on MDA-MB 231 breast adenocarcinoma
cell line, but it was slightly even more effective against PC-3 cells. 2e Compound and
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its phenyl analog (2d) showed almost the same cytostatic effect on MDA-MB 231 cells.
Compared to the previous studies [42–46], IC50 values of those derivatives obtained from
the 72 h cytotoxicity data moved in the same range (22.9–352.9 µM) as the cytostasis data
we determined after a 24 h treatment and a subsequent 72 h culturing (29.4–169.2 µM).

It is a challenge for us to continue exploring the cytotoxic effect of newer α-aminophosp
ohonates, especially those of optically active derivatives. In order to be able to fulfill this
plan, suitable resolution methods have to be elaborated. So far, we have been successful in
separating racemic α-hydroxyphosphonates into their enantiomers [47].

2.3. In Silico Target Assessment of the Major Cytotoxic Hit Compounds

Since the mid-2000s, searchable annotated molecular databases have been available
that contain biological activities, frequently together with the protein targets they act
on [48].

BindingDB [49] (https://www.bindingdb.org, accessed on 31 January 2023), currently
containing 107,154 active compounds with biological data, gives the opportunity to predict
the protein targets of compounds found active in cellular assays based on the “similar
structure—similar property” principle. Some recent examples from the literature where
similarity search was used for initial target assessment are in [50–52]. We can identify
structurally similar compounds that interact with numerous protein targets, and further
analysis would reveal the putative protein targets of cell-based hit compounds.

The similarity search on the best aminophosphonate cytotoxic hit compound (2b, 2d,
2e) was carried out using InstantJChem software (ChemAxon, Budapest, Hungary) (Fig-
ure 2), which uses 2D molecular fingerprints for comparison. Compounds were considered
similar if the Tanimoto coefficient was ≥0.5. Although 0.5 represents a moderate similar-
ity threshold, it provides a broad preliminary target pool for more specific and detailed
analysis. Of course, in vitro biological screening could only validate the prediction.
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Table 4. Classification of the putative protein targets of the cytotoxic hit compounds (2b, 2d, 2e).

Cancer-Related Targets Non-Cancer-Related Targets

Furin Tyrosyl-DNA phosphodiesterase 1
Prostatic acid phosphatase Corticotropin-releasing-factor binding protein

Tyrosine phosphatase non-receptor type 2
(TCPTP) Muscarinic acetylcholine receptor M1/2

Tyrosine phosphatase non-receptor type 6
(SHP1) Solute carrier family 22 member 1

Tyrosine phosphatase non-receptor type 9
(PTP-MEG2) C-C chemokine receptor type 3

Tyrosine phosphatase non-receptor type 11
(SHP2) Acetylcholinesterase

The resulting putative protein targets can be analyzed and attempted to link to disease
states represented by the cell lines (e.g., MDA-MB-231 human breast, PC-3 prostate, and
A431 skin cancer) where the best aminophosphonate cytotoxic hits were identified. Thus, at
first, the predicted targets were classified as either cancer or non-cancer-associated targets.
Secondly, the cancer-related targets were further investigated to determine whether the
cell lines express or even overexpress such proteins and whether their overexpression
could promote the progression of the tumor. All the identified cancer-related targets
meet the specific OncoScore criteria and are listed among the cancer-associated genes (see
Supplementary Materials of Ref. [53]). The small molecules that inhibit any of such targets
could contribute to decreasing tumor growth as the aminophosphonate hits expressed
cytotoxic/antiproliferative effects on the cancer cell lines.

The similar compounds related to our cytotoxic hits, together with their annotated
protein targets, are shown in Table 5.

Table 5. Target annotation of known bioactive compounds found similar to the cytotoxic hits (2b, 2d,
2e). Note: the annotated bioactivity databases often lack chirality information.

Cancer-Associated
Protein + A1:D5

Expression/
Overexpression in

Cancer
Similar Structure Ref.

Furin breast, head/neck,
gastric cancer

Pharmaceuticals 2023, 16, x FOR PEER REVIEW 8 of 14 
 

such targets could contribute to decreasing tumor growth as the aminophosphonate hits 

expressed cytotoxic/antiproliferative effects on the cancer cell lines. 

Table 4. Classification of the putative protein targets of the cytotoxic hit compounds (2b, 2d, 2e). 

Cancer-Related Targets Non-Cancer-Related Targets 

Furin Tyrosyl-DNA phosphodiesterase 1 

Prostatic acid phosphatase 
Corticotropin-releasing-factor binding 

protein 

Tyrosine phosphatase non-receptor type 2 

(TCPTP) 
Muscarinic acetylcholine receptor M1/2 

Tyrosine phosphatase non-receptor type 6 

(SHP1) 
Solute carrier family 22 member 1 

Tyrosine phosphatase non-receptor type 9 

(PTP-MEG2) 
C-C chemokine receptor type 3 

Tyrosine phosphatase non-receptor type 11 

(SHP2) 
Acetylcholinesterase 

The similar compounds related to our cytotoxic hits, together with their annotated 

protein targets, are shown in Table 5. 

Table 5. Target annotation of known bioactive compounds found similar to the cytotoxic hits (2b, 

2d, 2e). Note: the annotated bioactivity databases often lack chirality information. 

Cancer-Associated  

Protein + A1:D5 

Expression/ 

Overexpression in  

Cancer 

Similar Structure Ref. 

Furin 
breast, head/neck,  

gastric cancer 

 

weak inhibitor 

[54] 

Prostatic acid phospha-

tase (PAP) 
prostate cancer 

 

highly potent inhibitor 

[55,56] 

Tyrosine phosphatase 

non-receptor type 11 

(SHP2),  

type 2 (TCPTP) 

breast, skin cancer,  

leukemia 
 

inhibitor of TCPTP and SHP2  

in various affinities 

[57–63] 

weak inhibitor

[54]

Prostatic acid
phosphatase (PAP) prostate cancer

Pharmaceuticals 2023, 16, x FOR PEER REVIEW 8 of 14 
 

such targets could contribute to decreasing tumor growth as the aminophosphonate hits 

expressed cytotoxic/antiproliferative effects on the cancer cell lines. 

Table 4. Classification of the putative protein targets of the cytotoxic hit compounds (2b, 2d, 2e). 

Cancer-Related Targets Non-Cancer-Related Targets 

Furin Tyrosyl-DNA phosphodiesterase 1 

Prostatic acid phosphatase 
Corticotropin-releasing-factor binding 

protein 

Tyrosine phosphatase non-receptor type 2 

(TCPTP) 
Muscarinic acetylcholine receptor M1/2 

Tyrosine phosphatase non-receptor type 6 

(SHP1) 
Solute carrier family 22 member 1 

Tyrosine phosphatase non-receptor type 9 

(PTP-MEG2) 
C-C chemokine receptor type 3 

Tyrosine phosphatase non-receptor type 11 

(SHP2) 
Acetylcholinesterase 

The similar compounds related to our cytotoxic hits, together with their annotated 

protein targets, are shown in Table 5. 

Table 5. Target annotation of known bioactive compounds found similar to the cytotoxic hits (2b, 

2d, 2e). Note: the annotated bioactivity databases often lack chirality information. 

Cancer-Associated  

Protein + A1:D5 

Expression/ 

Overexpression in  

Cancer 

Similar Structure Ref. 

Furin 
breast, head/neck,  

gastric cancer 

 

weak inhibitor 

[54] 

Prostatic acid phospha-

tase (PAP) 
prostate cancer 

 

highly potent inhibitor 

[55,56] 

Tyrosine phosphatase 

non-receptor type 11 

(SHP2),  

type 2 (TCPTP) 

breast, skin cancer,  

leukemia 
 

inhibitor of TCPTP and SHP2  

in various affinities 

[57–63] 

highly potent inhibitor

[55,56]



Pharmaceuticals 2023, 16, 506 8 of 12

Table 5. Cont.

Cancer-Associated
Protein + A1:D5

Expression/
Overexpression in

Cancer
Similar Structure Ref.

Tyrosine phosphatase
non-receptor type 11

(SHP2),
type 2 (TCPTP)

breast, skin cancer,
leukemia
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Short description of the putative targets.

Furin

Proprotein convertases, including furin, have been implicated in the activation of
a wide variety of various biological pathways and could facilitate tumor formation and
progression. The expression of furin has been confirmed in various cancers such as head
and neck cell carcinoma, breast cancer, etc. [53].

Several peptidomimetic and related small molecule inhibitors have been identified
over the years. In general, phosphates and phosphonates could often mimic the peptide
bonds; thus, they are replaceable in peptidomimetic inhibitor design.

Prostatic Acid Phosphatase

Prostatic acid phosphatase (PAP) originates in the prostate and is normally present
in small amounts in the blood. Elevated levels of PAP in patients indicate the progression
of various tumors such as prostate cancer [55], testicular cancer, leukemia, etc. Various
α-benzylaminobenzylphosphonic acid derivatives have been developed over the years
using structure-based drug design methods that led to the identification of low nanomolar
inhibitors [56].

Tyrosine Phosphatase Enzyme Family

The protein tyrosine phosphatase enzyme family (PTPs) removes phosphate groups
from proteins. PTPs are considered potential drug targets against several diseases, including
cancer [57], obesity, diabetes, etc. [58]. Several PTPs overexpressed in human cancers could
act as targets (oncogene) or “anti-targets” in tumor therapy since they could also suppress
tumor progression upon overexpression [59].

Based on recent data, the most important anticancer target is PTPN11 (SHP2). Overex-
pression of SHP2 is associated with an increased risk of leukemia [60], breast cancer [61],
and skin cancer cell lines [62]. Several PTPN11 (SHP2) inhibitors have been developed so
far, with an increasing focus on selectivity toward the anti-target PTPs [63]. Most of the
2nd generation compounds lack P-containing moieties; however, their structure partially
mimics the transition state complex of the enzyme–substrate interaction.

In summary, based on the above in silico target prediction, we could conclude that our
hit compounds that showed cytotoxicity against breast, prostate, and skin cancer cell lines
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might act through the above-described protein targets by applying the similarity principle.
Detailed molecular dynamics and docking studies and, most importantly, target-based
bioassays would confirm the above prediction. These future efforts are out of the scope of
the present paper.

3. Materials and Methods
3.1. Synthesis of α-Aminophosphonate Derivatives

The phosphonoylmethyl- and phosphinoylmethyl-benzylamino-benzylphosphonates
2a–f, acylated derivatives 4a and 4b, along with bis- and tris derivatives 5 and 6, respec-
tively, were synthesized as described earlier [32].

3.2. Cell Lines and Culture Conditions—In Vitro Cytotoxicity Assays of Carcinoma Cell Lines

In vitro cytostatic effect of the compounds was determined on MDA-MB-231 human
breast adenocarcinoma [36], A431 human epidermoid carcinoma [37], PC-3 human prostate
adenocarcinoma [38], and Ebc-1 human lung squamous cell carcinoma [39] cell lines.
Cells were cultured in DMEM medium supplemented with 10% FBS, 2 mM L-glutamine,
50 IU/mL penicillin/50 µg/mL streptomycin antibiotic cocktail, 1 mM sodium pyruvate,
and 1% non-essential amino acid mixture at 37 ◦C in a humidified atmosphere with 5%
CO2. At the confluent state, cells were plated into 96-well tissue culture plates with the
initial cell number of 5.0 × 103 cells/well. Cells were treated with the compounds after 24 h
in serum-free medium containing 1.0 v/v% DMSO at 2, 10, 50, and 250 µM concentrations.
Control cells were treated with serum-free medium only or with DMSO (c = 1.0 v/v %) at
the same conditions. After overnight incubation, cells were washed twice with a serum-free
medium; then, they were cultured for another 72 h in complete culturing medium at 37 ◦C.
Following that, MTT-solution (at c = 0.37 mg/mL final concentration) was added to each
well. The respiratory chain [40] and other electron transport systems [41] reduce MTT
and, thereby, form non-water-soluble violet formazan crystals within the cell [42]. After
3 h of incubation with MTT, the cells were centrifuged for 5 min at 900× g, and then
the supernatant was removed. The obtained formazan crystals were dissolved in DMSO
(100 µL), and the optical density (OD) of the samples was measured at λ = 540 nm and
620 nm, respectively, using ELISA Reader (iEMS Reader, Labsystems, Vantaa, Finland).
OD620 values were subtracted from OD540 values. The amount of these crystals serves as
an estimate for the number of mitochondria and, hence, the number of living cells in the
well [43]. The percent of cytostasis was calculated with the following equation:

Cytostatic effect (%) = [1−(ODtreated/ODcontrol)] × 100

where values ODtreated and ODcontrol corresponds to the optical densities of the treated and
the control wells, respectively. In each case, two independent experiments were carried out
with 4 parallel measurements; statistical analysis of data was performed using Student’s
t-test at the 95% confidence level. The 50% inhibitory concentration (IC50) values were
determined from the dose–response curves, which were defined using Microcal™ Origin
2018 software: cytostasis was plotted as a function of concentration, on which a sigmoidal
curve was fitted. Based on this curve, the half-maximal inhibitory concentration (IC50)
value was determined, which was expressed in micromolar units.

4. Conclusions

We have designed, synthesized, and in vitro evaluated 12 novel aminophosphonate
derivatives, the majority of which comprised species with two P-functions. The data
from cytostatic activity on skin, lung, breast, and prostate tissue-originated tumor cultures
revealed that these compounds could be classified as new α-aminophosphonic derivatives
with promising antitumor properties due to the pronounced and selective cytostatic effect.
Our results are consistent with the observations of the past two decades, which proved
that some α-aminophosphonic derivatives could have antitumor and genotoxic effects
on different tumor cell cultures in vitro. According to IC50 values, phosphinoylmethyl-
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aminophosphonate 2e elicited a remarkable cytostatic effect on breast adenocarcinoma and
on prostatic carcinoma cells. Moreover, our study revealed that Ebc-1, MDA-MB231, and
A431 carcinoma cultures were generally sensitive to the treatments with the compounds,
and there was significant inhibition detected at the 50–100 µM concentration range.

In silico target prediction proposed that the identified cytotoxic compounds would act
through the interaction with furin, prostatic acid phosphatase, and tyrosine phosphatase
protein targets that are highly expressed in the tumor cell lines used in the present study.
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