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Abstract: Trimethylamine N-oxide (TMAO) is a biologically active gut microbiome-derived dietary
metabolite. Recent studies have shown that high circulating plasma TMAO levels are closely as-
sociated with diseases such as atherosclerosis and hypertension, and metabolic disorders such as
diabetes and hyperlipidemia, contributing to endothelial dysfunction. There is a growing interest to
understand the mechanisms underlying TMAO-induced endothelial dysfunction in cardio-metabolic
diseases. Endothelial dysfunction mediated by TMAO is mainly driven by inflammation and oxida-
tive stress, which includes: (1) activation of foam cells; (2) upregulation of cytokines and adhesion
molecules; (3) increased production of reactive oxygen species (ROS); (4) platelet hyperreactivity; and
(5) reduced vascular tone. In this review, we summarize the potential roles of TMAO in inducing
endothelial dysfunction and the mechanisms leading to the pathogenesis and progression of asso-
ciated disease conditions. We also discuss the potential therapeutic strategies for the treatment of
TMAO-induced endothelial dysfunction in cardio-metabolic diseases.
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1. Introduction

The endothelium is a monolayer of cells that lines the interior surface of the blood
vessel and forms a partially permeable barrier between endothelial tissues and blood
circulation. Blood vessels, comprising endothelial cells and vascular smooth muscle cells
(VSMCs), serve essential secretory, synthetic, metabolic, and immunological roles [1].
Normal physiological conditions of the endothelium regulate vascular homeostasis by
modulating vascular tone, platelet adhesion, inflammation, plasmatic coagulation, fib-
rinolysis, and VSMC proliferation. The generation and release of vasoactive factors by
endothelial cells, such as endothelium-derived relaxing factors (EDRFs) and contracting
factors (EDCFs), are vital for the maintenance of normal physiological conditions, and
disturbances to these factors are known to increase the incidence of endothelial dysfunc-
tion [2–4]. Endothelial dysfunction, a pathophysiological condition wherein the endothelial
homeostasis is disrupted, enhances the risk of thrombosis, inflammation, angiospasm,
and intraplaque hemorrhage, resulting in atherothrombosis, infraction, and ischemia [1],
and contributes to cardio-metabolic diseases, such as atherosclerosis, acute coronary syn-
dromes, hypertension, reproductive disorders, and diabetes [5,6]. Multiple factors trigger
endothelial dysfunction, which includes high blood pressure, cholesterol levels, genetics,
and lifestyle practices such as smoking, physical inactivity, and diet. According to the
Global Burden of Disease, Injuries, and Risk Factor study 2013, dietary risks are one of the
most significant factors that contribute to cardio-metabolic diseases [7].
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In recent years, trimethylamine N-oxide (TMAO) was found to be closely associated
with cardio-metabolic diseases mediated through endothelial dysfunction. TMAO is a
biologically active compound from a class of amine oxides, generated from dietary precur-
sors highly enriched in red meat, fish, and egg yolk [8]. Studies have shown that plasma
TMAO levels are elevated in individuals with type II diabetes [9], diastolic dysfunction [10],
heart failure [10], atherosclerotic plaque deposition [11,12], and peripheral artery disease
(PAD) [13]. Subsequent mechanistic studies revealed that TMAO treatment elevates in-
flammation and oxidative stress, which triggers cardio-metabolic diseases [14,15]. Given
its well-established association with chronic inflammation and accelerated progression of
cardio-metabolic diseases, TMAO has recently gained significant scientific interest as a
potential circulating biomarker for predicting cardio-metabolic diseases and chronic kidney
diseases (CKD) [16].

In this review, we discuss the currently available methods for TMAO detection and its
known association with disease conditions. Furthermore, the molecular mechanisms of
TMAO-induced endothelial dysfunction in experimental and clinical studies, as well as
potential treatment strategies to prevent the progression of diseases triggered by TMAO,
are also summarized.

2. TMAO Metabolism, Biosynthesis, and Excretion

The biochemical pathways involved in TMAO biosynthesis, metabolism, excretion,
and processes leading to endothelial dysfunction causing cardiovascular complications are
summarized in Figure 1. Specifically, trimethylamine (TMA) is generated by gut microbes
through dietary precursors such as choline, L-carnitine, lecithin, phosphatidylcholine, and
betaine [15]. Bacterial strains involved in TMA generation include Anaerococcus hydroge-
nalis, Clostridium asparagiforme, Clostridium hathewayi, Clostridium sporogenes, Edwardsiella
tarda, Escherichia fergusonii, Proteus penneri, and Providencia rettgeri [17]. Interestingly, in-
dividuals with cardio-metabolic diseases have an imbalance in the levels of bacteria in
the gut. Elevated levels of pathogenic bacteria such as Firmicutes and Proteobacteria are
found and are known to be associated with increased levels of inflammation and insulin
resistance, resulting in poor metabolism [18]. In contrast, healthy individuals have a greater
diversity of gut microbes that are found in stable amounts. Beneficial bacteria namely
Bifidobacterium, Lactobacillus, and Faecalibacterium prausnitzii are present in abundant levels
and are associated with improved metabolism and lower levels of inflammation [19]. Most
of the TMA formed is rapidly absorbed via portal circulation [20]. In the liver, a class of
hepatic flavin monooxygenase (FMO) enzymes, predominantly FMO3, causes the oxidation
of TMA to TMAO [21]. Homogenous distribution of TMAO takes place throughout the
body through systemic circulation, but it may accumulate in higher amounts in certain
tissues [22]. In most individuals, about half of the TMAO generated is excreted without any
modifications within 24 h, through urine (95%), feces (4%), as well as by sweat and breath
(less than 1%) [23]. Not excreted TMAO remains circulating in the plasma, and its levels are
remarkably high in patients with type II diabetes, hypertension, heart failure, and coronary
heart disease [8]. In summary, these findings indicate that the gut microbiome plays an
essential role in the advancement and acceleration of cardio-metabolic diseases. Therefore,
understanding the species involved in TMA formation could potentially result in novel
therapeutic strategies to lower the risk of these diseases. Moreover, these observations
suggest that plasma TMAO levels may serve as a pre-chronic disease biomarker to assess
the health status of an individual.
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Figure 1. Biochemical pathways involved in the formation of TMAO. TMAO is synthesized from
dietary precursors after the action of the gut microbiota and flavin-containing monooxygenases,
mainly the FMO3 enzyme in the liver. Increased plasma TMAO levels are associated with biological
pathways that trigger endothelial dysfunction and lead to cardiovascular complications.

3. TMAO Detection and Measurement Methods

With the conceptual understanding that TMAO can be considered a potential biomarker
for chronic diseases, detection of TMAO in plasma becomes crucial in the preliminary prog-
nosis of several disease conditions. TMAO levels in plasma, feces, and urine samples have
been analyzed [24], and commonly used methods for TMAO detection include chromatogra-
phy techniques such as selective solid-phase extraction, ion chromatography, UPLC-M/MS,
flow injection gas diffusion-ion chromatography, and liquid chromatography-selective
ion monitoring [25–28] (Table 1). These methods are advantageous due to their analytical
precision and reproducibility, but they require the expertise of specialized technicians [29],
and the process is time-consuming and expensive. Other techniques involve the use of
electrochemical tools such as cyclic voltammetry, differential pulse voltammetry, oxygen
anti-interference membrane, and microbial electrochemical technology [30–33]. They are
user-friendly and have long operational stability. However, they may be prone to environ-
mental interferences in clinical applications. In summary, there is still a need to develop
cheaper, more reliable, and more efficient testing tools to detect TMAO clinically, and
identify patients with higher cardiovascular disease (CVD) risks. This will enable clinicians
to intervene with the right treatment strategies and prevent the evolution of the condition.
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Table 1. Current TMAO detection and measurement methods.

Experimental
Method Technique Linear Range Limit of

Detection Sensitivity Response
Time Advantage Limitations References

Chromatography FIGD-IC 40–600
nmol/dm3

1.35
nmol/dm3 - 20 min

Non-
hazardous,

reliable,
precise (3%),

sensitive

Time-consuming,
expensive

equipment,
requires

specialized
technicians

[34]

GC-MS SPME 14.9–956
µmol/L 0.01 µmol/L 14.9 µmol/L -

Analysis of
volatile and
semi-volatile
compounds

Complicated,
laborious,

time-consuming,
incomplete

TMAO
transformation

[35]

Electrophoresis

Capillary elec-
trophoresis

with indirect
UV-detection

0.025–2.5
mmol/L 2.5 mmol/L - -

Analytical
precision,

repeatability

Time-consuming,
expensive

equipment,
specialized
technicians,

restrict
point-of-care

testing (PCOT)

[36]

Liquid chro-
matography SPE 5.0–50.0

µg/mL 0.05 µg - -

Selective
determination
in presence of
other primary
and secondary

short chain
aliphatic
amines

- [25]

Chromatography Ion chro-
matography

1.0–20.0
mg/mL 0.10 mg/L - 16 min Inexpensive

and stable

Time-consuming,
requires

specialized
technicians

[26]

Chromatography LC-SIMs 15–944 pg/µL 115 pg/mL - 5 min

Robust, highly
sensitive,

reproducible,
no sample

pre-treatment
required, only
small volume

of sample
needed

Expensive [27]

Chromatography UPLC-M/MS 15–1500 µg/L 0.12 µg/L - 6 min
Repeatable,
rapid, and
economic

Not a
point-of-care

testing
[28]

Fluorescence IDA 0–1.22
mmol/L 8.98 µmol/L - -

Low cost, easy
to operate,
label free,
sensitive

- [37]

Electrochemical CV 2–110 µmol/L 2.96 nmol/L 14.16 nA/mM 16 s

Sensor can
operate over
prolonged

daily
measurements,

quite good
short-term

usage stability

Complex
preparation

process (enzyme
purification and

protein
reconstruction)

[30]

Electrochemical DPV 1–15 ppm 1.5 ppm 2.47 µA
mL/ppm/cm2 20 min

Easy to
construct and

operate,
highly

selective

- [31]

Electrochemical
Oxygen anti-
interference
membrane

2 µM–15
mmol/L 10 µmol/L 2.75 µA/mM 33 s

Operational
stability over 3

weeks

Vulnerable to
environmental
interferences in

clinical
applications

[32]

Electrochemical
Microbial elec-

trochemical
technology

0–250 µmol/L 5.96 µmol/L 23.92 µA/mM 600 s

90% accuracy
in real serum,

high feasibility
in clinical

applications

- [33]

FIGD-IC: flow injection-ion chromatography; GC-MS: gas chromatography-mass spectrometry; SPME: solid-
phase microextraction; SPE: solid-phase extraction; LC-SIMs: liquid chromatography-selective ion monitoring;
UPLC-M/MS: ultraperformance liquid chromatography tandem mass spectrometry; IDA: indicator displacement
assay; CV: cyclic voltammetry; DPV: differential pulse voltammetry.
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4. TMAO Level Variations and Disease Conditions

Plasma TMAO levels are regulated by several factors such as age, genetics, gut micro-
biome, FMO3 activity, and diet [22]. For example, many studies have shown that an increase
in age influences plasma TMAO levels [38,39]. Furthermore, links between various disease
conditions, their progression, and plasma TMAO levels have also been established [8,40],
which are summarized in Table 2. Hence, quantification and understanding of plasma
TMAO levels in individuals may be essential in the pre-diagnosis of certain specific diseases.
However, some findings have inherent limitations due to tight sample size, uneven gender
distribution, and lack of control groups. In addition, a controversial study has shown that
plasma TMAO levels may be an independent risk factor for disease conditions [41]. These
different findings need to be validated by a large-scale analysis including a greater number
of individuals with a balanced representation of both genders.

Table 2. Association of plasma TMAO levels with various disease conditions.

Experimental Model Condition (If Any) Plasma TMAO Level
for Control

Plasma TMAO Level
for Condition References

Human and Rodents - 0.5–5 µmol/L - [11,42]

Human

Patients undergoing
hemodialysis 0.92–1.9 µmol/L 28–67 µmol/L [43]

Chronic Kidney Disease - 32.2–75.2 µmol/L [44]

Inflammatory Bowel Disease - 2.27 µmol/L [45]

Plaque rupture 4.2 ± 2.4 µmol/L 8.6 ± 4.8 µmol/L [46]

Calcified aortic valve disease 1.4–2.8 µmol/L 2.3–6.4 µmol/L [47]

Stage 1 hypertensive patients - 87.2 ng/mL [48]

Older age, BMI, lower eGFR,
HDL-levels, higher choline
and carnitine levels, higher TG

2.83 ± 1.34 µmol/L 8.43 ± 4.85 µmol/L [49]

Stroke 1.4–3.7 µmol/L 1.6–4.0 µmol/L [50]

First ever acute ischemic stroke
and neurological deficit 2.6–6.1 µmol/L 0.5–18.3 µmol/L [51]

Stroke (LAA), transient
ischemic attack, history of
diabetes, CAD, HBP, HLP

1.91 µmol/L 2.70 µmol/L [52]

BMI: body mass index; eGFR: estimated glomerular filtration rate; HDL: high-density lipoprotein; TG: triglycerides;
LAA: large-artery atherosclerosis; CAD: coronary artery disease; HBP: high blood pressure; HLP: hyperlipidemia.

5. Molecular Mechanisms of TMAO-Induced Diseases (Table 3)
5.1. Endothelial Dysfunction Mediated by TMAO

Endothelial dysfunction, often classified as the impairment of endothelium-dependent
vasodilation, is associated with oxidative stress and exaggerated activation of inflammatory
pathways, which are mediated through foam cell formation, expression of inflammatory
cytokines, and generation of adhesion molecules [4,6]. Endothelial dysfunction is known
to play key roles in blood clotting, immune response, and vascular tone [4] (modulated
via the synthesis and release of various EDRFs and EDCFs by the endothelium [4,6]),
reported to contribute to CVD, CKD, and cardio-metabolic diseases such as diabetes.
The proposed mechanisms of action of TMAO-activating endothelial dysfunction and
triggering cardio-metabolic complications are summarized in Figure 2. These include a
reduction in endothelial cell viability, overproduction of reactive oxygen species (ROS),
enhanced vascular inflammation, vascular calcification leading to atherosclerotic plaques,
and reduced vascular tone, which will be discussed in detail in the subsequent section.
However, most studies associating TMAO and endothelial dysfunction were performed
in rodents or in cell culture [53]. There is a need for clinical data to better understand the
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molecular mechanisms of TMAO-driven endothelial dysfunction in humans. This is crucial
for the development of effective therapeutic interventions to overcome the complications
of disease evolution.
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Figure 2. Proposed mechanisms of action in TMAO-induced cardio-metabolic diseases. Increased
circulating levels of TMAO cause various processes within the endothelial cells, contributing to the
pathogenesis of endothelial dysfunction and atherosclerosis.

5.1.1. Effect of TMAO on Cell Viability

Cell viability assay is a common tool to evaluate the direct impact of TMAO exposure
on endothelial cells. Despite numerous studies reporting TMAO-induced endothelial
dysfunction, the effects of TMAO on endothelial cell viability remain inconsistent. For
instance, TMAO (125–1000 µM) treatment for 48 h was shown to increase apoptosis in
human aortic endothelial cells (HAEC) [54]. Consistent with this observation, human
umbilical vein endothelial cells (HUVEC) showed lower viability after 48 h of TMAO
treatment (100 µM or higher) [55]. On the other hand, several studies reported that TMAO
has no significant effect on endothelial cell viability. For example, HUVEC cells treated
with 10–100 µM of TMAO for 24 h did not result in any changes in cell viability [56].
Similarly, TMAO did not induce any difference in cell viability in other endothelial cell
types, such as human endothelial progenitor cells [53]. This observation was consistent
with another recent study where TMAO did not influence cell viability at any time point
or concentration in bovine aortic endothelial cells-1 (BAEC-1) treated with 1 µM–10 mM
of TMAO for 24 h–72 h [57]. Collectively, there is controversial evidence regarding the
impact of TMAO on cell viability. These contradicting results may be due to the usage of
different endothelial cell types, the wide range of treatment durations, and varied TMAO
doses, although the range of concentrations used in these in vitro experiments were usually
physiologically relevant to the plasma serum levels of patients with disease conditions
(Table 2).

5.1.2. TMAO Enhances Oxidative Stress

Oxidative stress is caused by the imbalance between the generation of ROS and the
ability of the cells to neutralize these ROS through antioxidant activities [3,58]. Many
studies have demonstrated that high TMAO concentrations induce endothelial dysfunction
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in cultured endothelial cells through oxidative stress [38,59]. Specifically, TMAO has
been shown to trigger ROS production through thioredoxin-interacting protein- NOD-,
LRR- and pyrin domain-containing protein 3 (TXNIP-NLRP3). It was demonstrated that
the TXNIP-NLRP3 inflammasome complex production was activated in a time and dose-
dependent manner by TMAO [60]. Another pathway responsible for oxidative stress is the
Sirtuin 3 and superoxide dismutase 2 (SIRT3-SOD2) ROS signaling, which is activated by
TMAO in vascular inflammation models [61]. Interestingly, TMAO lowered expression
levels of SIRT1 and increased oxidative stress, both in vivo and in vitro by triggering the
p53/p21/retinoblastoma tumor suppressor signaling pathways [62]. In addition, TMAO
is correlated with an increase in nicotinamide adenine dinucleotide phosphate (NADPH)
oxidase activity resulting in vascular oxidative stress [63]. Finally, elevated circulating
TMAO levels are associated with aging in mice and humans [64], which may deteriorate
endothelial cell through senescence and increase ROS generation.

5.1.3. TMAO Induces Inflammation

Inflammation is a sequence of native and comprehensive immune responses that
our body generates as feedbacks, upon exposure to harmful stimuli [65]. Inflammatory
response, involving migration of immune cells to the damaged region, is the first step. It is
followed by repair and regeneration (2nd step), involving the building of new collagen and
restoration of skin homeostasis [66]. Lastly, remodeling and maturation occur to improve
cellular organization where the injured tissue matures. Factors such as the overproduction
of inflammatory cytokines, enhanced adhesion, and activation of foam cell formation
is part of the inflammatory response [67]. Simultaneously, blood vessels present at the
inflammatory site narrow down, which slows down the blood flow and activates vascular
modifications [68], a phenomenon that can cause endothelial dysfunction.

Enhanced Cytokine Production

TMAO triggers inflammation by increasing the generation of inflammatory cytokines.
Inflammatory cytokines (or pro-inflammatory cytokines) are signaling molecules gener-
ated by activated macrophages and are important players of inflammation. Some of the
significant pro-inflammatory cytokines include interleukin 1 beta (IL-1β), tumor necrosis
factor-alpha (TNF-α), and IL-6 [69]. TMAO is known to initiate the production of TNF-α
and IL-1β [61,70], and in vitro studies confirmed the elevated levels of TNF-α production in
endothelial cells, through the activation of the nuclear factor-κB (NF-κB) signaling pathway,
which enhances leukocyte adhesion to endothelial walls [14]. This activates endothelial
dysfunction, which may trigger CVD risks such as thrombosis and atherosclerosis [15]. In
human trials, a positive relationship was also found between TMAO and IL-1β in patients
with angina [53], and in a population of individuals at risk of CVD, a positive correlation
was observed between TMAO levels and inflammation [71]. Collectively, data show that
elevated plasma TMAO levels contribute to inflammatory and cardio-metabolic risks via
the induction of inflammatory cytokines [72,73].

Activation of Adhesion Molecules

Relationships between TMAO and adhesion molecules have been established in the
evolution of endothelial dysfunction. Expression of the vascular cell adhesion protein 1
(VCAM-1) is induced by TMAO in primary rats and human vascular smooth muscle cells
(VSMCs) [74], while TMAO-induced VCAM-1 expression is triggered by the methylation
of the NF-κB p65 subunit in HUVEC [56]. In fact, many studies demonstrated that TMAO-
induced NF-κB activation is a significant downstream process that upregulates monocyte
adhesion through upregulation of cellular adhesion molecules such as VCAM-1, but also
intercellular adhesion molecule 1 (ICAM-1) and E-selectin, and enhances endothelial
dysfunction [14,15]. Moreover, TMAO (10, 50 and 100 µM) is known to activate the protein
kinase C (PKC) in a dose-dependent manner, which plays a crucial role in upregulating
monocyte adhesion [20,75]. In summary, increased TMAO levels, in animal models and
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human endothelial cells, contribute to increased adhesion of monocytes and low endothelial
self-repair by the activation of PKC, NF-κB, and VCAM-1 signaling pathways [56], resulting
in endothelial dysfunction.

Elevated Foam Cell Formation

Foam cell formation is an indicative feature in the introductory phase of atherosclerosis
progression, which characterizes CVD. Indeed, CVD is distinguished by inflammation-
induced atherosclerotic complications, resulting from an increase in lipid particle transport
to endothelial cells causing foam cell formation [76]. Foam cells (also called lipid-laden
macrophages) are a key source of pro-inflammatory phenotypes as they generate inflam-
matory mediators such as cytokines, chemokines, and ROS, and play a significant role in
activating inflammation at different stages of the atherosclerotic progression. Foam cells
are formed when immune cells such as macrophages take up large amounts of cholesterol
through absorption of lipoproteins via different transporters, mostly mediated by CD36,
SR-A, and LOX-1. They then become overloaded with cholesterol and are unable to process
it effectively. This causes these macrophages to transform into foam cells (which store
esterified cholesterol and are characterized by their large and frothy appearance), which
accumulate in the walls of blood vessels and contribute to atherosclerosis [77–79]. Studies
have shown that in mice models, TMAO stimulates macrophage recruitment by promoting
their migration and expression of TNF-α, IL-6 (considered promoters of foam cell forma-
tion [79]), as well ICAM1 [80]. Moreover, TMAO plays a critical role in the accumulation
of ox-LDL in macrophages through upregulation of multiple scavenger receptors, CD36,
lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), and class A1 scavenger
receptors (SR-A1) [77], that contribute to the formation of atherosclerosis by enhancing
cholesterol uptake with lipoprotein modifications [11]. This process triggers the transfor-
mation of more macrophages into foam cells within the vascular membrane [81]. Other
studies demonstrated that dietary choline, a precursor of TMAO, increases foam cell pro-
duction in ApoE knockout mice [11], extensively used as a model of atherosclerosis. Finally,
TMAO promotes the development of foam cells by upregulating macrophage scavenger
receptors [11,12,82]. Eventually, foam cell formation modulates lipoprotein metabolism and
causes lesions [83]. Plaques with abundant foam cells can rupture, leading to thrombosis
and CVD-related events [78]. In summary, there is a mechanistic link between TMAO and
elevated foam cell generation resulting in atherosclerosis.

5.1.4. TMAO Reduces Vascular Tone

Endothelial dysfunction is associated with abnormal changes in the vascular tone,
which is regulated by the production of at least three vasoactive factors, nitric oxide (NO),
prostaglandin I2 (PGI2), and endothelium-derived hyperpolarization (EDH) [3,58,84–86].
PGI2, one of the prostanoids of arachidonic acid metabolism, is a potent vasodilator that
inhibits platelet aggregation, leukocyte adhesion, and VSMC cell proliferation [87]. NO is
produced through the enzymatic conversion of L-arginine to L-citrulline by endothelial
NO synthase (eNOS) [86,88]. The vasodilator actions of NO are mediated via the activation
of soluble guanylate cyclase, leading to the accumulation of cGMP and the relaxation of
smooth muscle cells [89,90]. Lastly, EDH is generated by contact-mediated (myoendothelial
gap junctions) and non-contact-mediated mechanisms, which involve the opening of small-
and intermediate calcium-activated potassium channels (SKCa and IKCa) and subsequent
hyperpolarization and relaxation of VSMC. Collectively, the endothelium functions nor-
mally through the production of NO, PGI2, and EDH to maintain vascular tone and an
imbalance in these vasoactive factors result in endothelial dysfunction [91–93].

Effects of TMAO on NO Bioavailability

Studies have shown a link between elevated circulating TMAO levels and reduced
eNOS, and therefore reduced NO bioavailability in the aorta of Fischer-344 rats [38]. This
reduced eNOS seems to result from the upregulation of vascular oxidative stress and
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inflammation [94]. These data were consistent with another study where TMAO pre-
treatment for 24 h significantly reduced NO production after ATP stimulation in BAEC-1,
indicating the potential involvement of TMAO in damaging the endothelial-dependent
vasodilatory mechanism [57]. Conversely, in the same study, TMAO pre-treatment for 1 h
did not influence the intracellular NO release and eNOS phosphorylation in BAEC-1. Other
findings demonstrate that eNOS activity remains unchanged in the aorta of rats treated
with TMAO and in HAEC pre-incubated with 1 µM of TMAO [57]. These last findings
suggest that increased plasma TMAO levels in the near-physiological range are neutral to
vascular function. In summary, from these experimental results, the effects of TMAO on NO
bioavailability are inconsistent, and it appears that only pharmacological concentrations of
TMAO could have a negative effect in normal metabolic conditions. However, underlying
metabolic diseases may interfere with TMAO effects, explaining the contradictory data
from the different studies.

Association between TMAO and Hydrogen Sulfide (H2S)

H2S and other vasoactive factors are key signaling molecules associated with vasorelax-
ation, cardio-protection, neuroprotection, and anti-inflammation. Hence, TMAO-induced
NO bioavailability may potentially have a stronger effect in altering the vasculature in pa-
tients with underlying metabolic disorders, increasing their risk of endothelial dysfunction-
driven diseases. H2S is produced in various tissues and plays a significant role in the
circulatory system homeostasis, including the heart, blood vessels, and kidneys [95]. H2S
also protects against ROS, and its proangiogenic effects can lower blood pressure and heart
rate. Studies revealed that a diet enriched in choline reduces the plasma H2S levels, which
activates cardiac dysfunction through the cyclic GMP-AMP synthase -stimulator of inter-
feron genes-NOD-like receptor protein 3 (cGAS-STING-NLRP3) inflammasome-mediated
pathway in mice [96]. However, the study did not directly measure the association between
TMAO and H2S, hence, the direct impact of TMAO on H2S production and its vascular
effects warrants further investigation.

Role of Prostanoids in Vasoconstriction

Prostanoids, metabolites of arachidonic acid, are dominant lipid mediators that modu-
late inflammatory responses. They include PGD2, PGE2, PGF2 alpha, PGI2, thromboxane
A2 (TXA2) [88]. PGI2 is the most potent vasodilator prostanoid in the cardiovascular system
and lowers the risk of atherosclerosis plaque formation. In mice models, choline reduces
serum PGI2 levels and increases TXA2 production [97]. This causes a vasoconstrictor re-
sponse and a proatherogenic phenotype, resulting in endothelial cell damage. However,
there is a very limited number of studies showing the relationship between prostanoids
and TMAO in causing endothelial dysfunction.

EDH in Endothelial Dysfunction

EDH is an essential component in small arteries, and it impacts vascular resistance,
blood pressure, and the distribution flow [3]. In rats, acute treatment with TMAO specifi-
cally impairs acetylcholine-evoked EDH-mediated relaxation in the femoral arteries, indi-
cating that TMAO contributes to the progression of peripheral arterial disease [98]. This
observation is consistent with another study in rats where EDH-type relaxations were selec-
tively disrupted without interference with NO-induced vasodilation in isolated mesenteric
arteries. Taken together, these data suggest that a reduction in EDH elevates the process of
endothelial dysfunction in various diseases that could be influenced by TMAO levels.

5.1.5. TMAO-Enhanced Platelet Hyperreactivity

Platelet hyperreactivity is a significant factor in the activation of thrombotic environ-
ments resulting in heart attack, ischemic stroke, and severe diabetes complications [99].
High blood pressure, oxidative stress, and upregulated levels of vascular shear stress are
conditions that often contribute to platelet hyperreactivity [100]. Under resting periods,
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platelets show a low intracellular [Ca2+] ([Ca2+]i) as they circulate through the healthy
vessels [101]. However, at the site of vessel injury, platelets are activated by increased
[Ca2+]i, a precursor to thrombus formation [102]. Physiological levels of TMAO enhance
submaximal thrombin-induced augmentation of platelet [Ca2+]i in a dose-dependent man-
ner [103]. In addition, the MAPK signaling pathway is a well-established driving factor of
platelet aggregation by collagen [104], and TMAO causes platelet hyper-responsiveness to
collagen by promoting the phosphorylation of extracellular signal-regulated kinase (ERK)
1/2 and c-Jun N-terminal kinase (JNK) [105], triggering thrombotic phenotypes [103].

5.2. TMAO Triggers Heart Failure

As discussed, TMAO increases the risk of atherosclerosis and CVD by different mech-
anisms. The terminal stage of a variety of CVD complications is heart failure (HF), a
well-known cause of disability and death. The pathological mechanisms of HF are very
complex, and they initiate cardiac remodeling and inflammatory responses. These pro-
cesses include apoptosis and extracellular matrix accumulation, consequently causing
fibrosis [106]. Animal models, such as rats and mice, have been used to study the effects of
TMAO on HF. NLRP3 inflammasome activation by TMAO triggers cardiac hypertrophy
and fibrosis through the suppressor of mothers against decapentaplegic 3 (Smad 3) sig-
naling pathway [107]. In addition, TMAO triggers oxidative damage, promotes glycogen
synthesis, and reduces pyruvate dehydrogenase activity as well as fatty acid β oxidation
in mitochondria. This results in mitochondrial dysfunction and lower cardiac energy
production [108].

5.3. TMAO Promotes Metabolic Syndrome

Metabolic syndrome corresponds to simultaneous disorders including hypertension,
obesity, hyperglycemia, and hyperlipidemia, which increase the risk of heart disease,
stroke, and type II diabetes, as well as the risk of CVD. Some of the major causes of these
metabolic disorders are genetics, organ dysfunction, and mitochondrial dysfunction. A
high-fat diet with TMAO precursors activates impaired glucose tolerance and inhibits the
hepatic insulin signaling pathway [109]. Indeed, studies have shown that TMAO directly
binds to and activates the protein kinase R-like endoplasmic reticulum kinase (PERK),
causing hyperglycemia [110,111]. In addition, obesity traits are increased in mice treated
with TMAO resulting in a high risk of type II diabetes, mediated by the intestinal reverse
cholesterol transport and the TMA/FMO3/TMAO pathways [112]. TMAO also activates
metabolic dysfunction through bile acid metabolism. It positively correlates with plasma
levels of bile acids and hepatic mRNA expression of cholesterol 7 alpha-hydroxylase
(CYP7A1) in mice, which trigger hepatic lipogenesis and hepatic steatosis via the bile
acid-mediated hepatic farnesoid X receptor (FXR) signaling pathway [113].
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Table 3. In vitro and in vivo models studying TMAO-linked molecular mechanisms and diseases.

Disease Species/Cells Molecular Mechanisms Potential Pathways
Triggered References

Atherosclerosis and CVD

THP-1y HUVECs (Human
Umbilical Vein Endothelial

Cells)

↑ adhesion of monocytes,
↓ endothelial self-repair,
endothelial dysfunction

Activation of PKC, NF-κB
and VCAM-1 pathways [56]

LDLR-/- mice fed a choline
diet (aorta), HAECs (Human

Aortic Endothelial Cells),
VSMECs (Vascular Smooth

Muscle Cells)

↑ pro-inflammatory
cytokines,

↑ leukocyte adhesion to
endothelial wall

MAPK and NF-kB
signaling pathway [14]

HUVECs and ApoE-/- mice
(aorta)

Activation of NLRP3
inflammasome,

↑ vascular inflammation

Inhibition of SIRT3-SOD2-
mitochondrial ROS
signaling pathway

[61]

Human and C57BL/6J
ApoE-/- mice

↓ bile acid synthetic enzyme,
↓ reverse cholesterol

transport,
↓ lipid metabolism and

transport

Unknown pathway, likely
to be linked to Niemann
Pick Cl-like1 (Npc1L1)

[11,12,114]

ApoE-/- mice and ApoE-/-
mice with a high-fat diet

↑macrophage scavenger
receptors CD36 and SR-A1,
↑ lipid accumulation,
↑ foam cell formation

CD36-dependent
MAPK/JNK pathway [11,80,115]

Fischer-344 rats

↑ oxidative stress,
↑ pro-inflammatory

cytokines,
↑ endothelial dysfunction

and vascular inflammation

Unknown [38]

Heart failure

Male C57BL/6 mice and
adult male Sprague–Dawley

(SD) rats

Activation of NLRP3
inflammasome,

triggers cardiac hypertrophy
and fibrosis

Smad 3 signaling pathway [116]

Male C57BL/6 mice and
cultured cardiac fibroblasts

↑ pro-inflammatory
cytokines TNF and IL-1β,
↑ interstitial fibrosis in heart,
↑myocardial inflammation,

activation of NLRP3
inflammasome

NLRP3 inflammasome
signaling pathway [107]

ICR mice and male Wistar
rats

↓ cardiac energy production,
↓ pyruvate dehydrogenase

activity & fatty acid
β-oxidation,

↑ glycogen synthesis,
↑ oxidative damage to

proteins, mitochondrial
dysfunction

Cardiac energy
metabolism [108]

Kidney disease

Human and high-fat
diet/low-dose

streptozotocin-induced
diabetes rats

↑ pro-fibrotic factors
TGF-β1, IL-1β and Smad3,
↑ phosphorylation and

Smad3 activation,
↑ kidney injury molecule-1,

activation of NLRP3
inflammasome,

renal inflammation,
renal fibrosis and renal

dysfunction

NLRP3 inflammasome
signaling pathway,

transforming growth
factor β, SMAD signaling

pathway

[117,118]
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Table 3. Cont.

Disease Species/Cells Molecular Mechanisms Potential Pathways
Triggered References

Metabolic dysfunction

Male C57BL/6 mice with
high-fat diet (HFD)-fed

↑ insulin signaling pathway,
↑ glycogen synthesis,
↑ gluconeogenesis and

glucose transport in liver,
impaired glucose tolerance,
↑ insulin resistance

Hepatic insulin signaling
pathway [119]

Human and Male ob/ob
mice and wild-type

C57BL/6

↑ insulin resistance,
↑ FMO3,
↑ FOX01,

hyperglycemia
FMO3/TMAO pathway [111]

Male wild-type C57BL/6
mice

↑ hepatic FMO3 expression,
TMAO activates PERK,

↑ FOX01
Stress- and PERK-related

pathways [110]

Human and ASO-treated
mice

↑ obesity traits and Type II
diabetes, negative regulatory
role for FMO3 in beiging of

white adipose tissue

TMA/FMO3/TMAO
pathway and

transintestinal cholesterol
excretion

(TICE)/intestinal pathway
of reverse cholesterol

transport

[112]

Human and cholesterol 7
alpha hydroxylase (CYP7A1)

mice

↑ Cyp7a1 in mice,
↑ hepatic lipogenesis,

↑ hepatic steatosis through
bile acid metabolism

Bile acid-mediated hepatic
FXR signaling pathway [113]

THP-1y: the human monocyte cell line; PKC: protein kinase C; NF-Kb: NLR family pyrin domain-containing
3; VCAM-1: vascular cell adhesion molecule-1; LDLR -/-: low-density lipoprotein receptor; MAPK: mitogen-
activated protein kinases; SIRT3-SOD2: sirtuin 3-superoxide dismutase 2; CD36: cluster of differentiation 36;
JNK: c-Jun N-terminal kinase; TNF: tumor necrosis factor; IL-1β: interleukin-1 beta; NLRP3: nucleotide-binding
domain, leucine-rich–containing family, pyrin domain-containing-3; ICR: institute of cancer research; TGF-β1:
transforming growth factor- beta 1; SMAD3: mothers against decapentaplegic homolog 3; FMO3: flavin-containing
monooxygenase 3; FOX01: forkhead box protein O1; PERK: orotein kinase R-like ER kinase; TMA: trimethylamine;
TMAO: trimethylamine N-oxide; FXR: farnesoid X receptor.

6. Potential Treatment Strategies

Understanding the involvement of TMAO in various disease conditions has resulted
in active research and analyses to identify potential therapeutic strategies to reduce TMAO
levels in the serum. As no specific compound directed against TMAO was found yet, a
direct scavenger targeting TMAO is not available [23,120,121]. Hence, commonly proposed
potential treatment strategies target the process of TMA generation, the activity of gut
microbes to lower TMAO production, and the ingestion of natural products to reduce the
concentration of TMAO. These therapeutic approaches are outlined in Table 4.

Table 4. Proposed therapeutic approaches to target TMAO formation.

Intervention Therapy Model Intervention/Dosage Duration Route of
Administration Effects Limitations Reference

Targeting the
gut microbiome

Prebiotics Human

Whole grains,
traditional

Chinese medicinal
foods, and

prebiotics (WTP
diet)

30–90 days Oral

Improves
composition of
gut microbiota

to reduce
TMAO

formation

Gut microbiome is
influenced by

multiple
components

[122]

Probiotics

Female
germ-free

mouse (C3H
strain)

Basal mixed diet
and probiotics

supplementation
in saline water

14 days Oral
Lowers TMAO

formation in
the gut

Unclear safety and
effects in humans [123]

Antibiotics Mouse

Drinking water
with a cocktail of
broad-spectrum

antibiotics

21 days Oral

Suppression
and inhibition

of plasma
TMAO levels

Inhibition of
useful bacteria

and induction of
resistant bacteria.

Not feasible in the
long run

[11]
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Table 4. Cont.

Intervention Therapy Model Intervention/Dosage Duration Route of
Administration Effects Limitations Reference

Antibiotics Human

Metronidazole
(500 mg twice

daily) plus
ciprofloxacin (500
mg once daily) for

1 week

7 days Oral

Suppression
and inhibition

of plasma
TMAO levels

Inhibition of
useful bacteria

and induction of
resistant bacteria.

Not feasible in the
long run

[124]

Oral
non-absorbent

binders
Human and rat

10 mL solution of
800 mg of

polymyxin B and
320 mg of

tobramycin
(selective

decontamination
of the digestive

tract [SDD])

56 days Oral
Removal of

TMAO and its
precursors from

gut

Uncertain
approach.

Compound
specific to TMAO
has not yet been

found

[121]

Targeting TMA
formation

Inhibition of
FMO3

Wild-type
C57BL/6J, male

Sprague–
Dawley rat

(Harlan) and
human

50 mg/kg body
weight of
antisense

oligonucleotides
(ASO)

7 weeks or 16
weeks

Intraperitoneal
injection

Inhibition of
TMAO

formation from
TMA

Accumulation of
TMA in plasma
may cause other

diseases.
Metabolism of

other compounds
is also mediated

by FMO3

[111]

3,3-
Dimethyldimethyl-

1-butanol
(DMB)

Mouse 1% DMB in
drinking water 56 days Oral

Inhibition of
TMA formation

from dietary
precursors

choline,
carnitine,

corotonobetaine
by inhibiting

microbial TMA
lyase

Complete TMAO
formation cannot

be avoided by
DMB.

Study not
performed in

humans.
Unable to inhibit

formation of TMA
from

γ-butyrobetaine

[125]

3,3-
Dimethyldimethyl-

1-butanol
(DMB)

Mouse 1%, v/v in
drinking water 16 weeks Oral

Reorganization
of gut microbial
community and

inhibition of
TMA

production

Only partial
TMAO formation

inhibition

[115]

Meldonium Human and rat

Single dose of
13C-GBB (100

mg/kg) or
13C-GBB in

combination with
meldonium

(GBB + M, 100
mg/kg each)

14 days Oral

Lowers TMAO
formation from
L-carnitine and

increases
TMAO

excretion via
urine

Unable to reduce
TMAO formation

from choline
[126,127]

Therapeutic
alternatives to
lower TMAO
concentration

Resveratrol

Female
C57BL/6J

mouse and
ApoE-/- mouse
with a C57BL/6

genetic
background

0.4% RSV 30 days Oral

Alters gut
microbiome
composition,

hence reducing
bacteria that

forms TMA and
increasing

useful bacteria

Study performed
only in mice.

No changes when
antibiotics are

used

[128]

Capsanthin
High-fat-diet

induced obese
C57BL/6J mice

Capsanthin at 200
mg kg−1 body

weight
12 weeks Oral

Lowers body
weight,

effectively
reduces TMAO

levels, and
increases
microbial
diversity

Study performed
in mice [129]

Lycopene
(Lycopersicon
esculentum

[M.]), amaranth
(Amaranthus
tricolor), and
sorghum red

(Sorghum bicolor
(L.)) pigments

High-fat diet
fed C57BL/6

mice

200 mg/kg body
of lycopene or
amaranth or
sorghum red

administration

12 weeks Oral

Ameliorates
lipid

metabolism,
and lowers

TMAO levels

Study performed
in mice [130]

Gynostemma
pentaphyllum Rat 120 mg/kg/day 28 days Oral gavage

Lowers plasma
TMAO levels
and rises in

lecithin levels

Study performed
only in rats [131]
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Table 4. Cont.

Intervention Therapy Model Intervention/Dosage Duration Route of
Administration Effects Limitations Reference

Gancao (root of
glycyrrhiza
uralensis)

Male Wistar rat

Single dose of
Gancao (35.6 g

kg−1 body
weight)

- Intragastric
administration

Prevents
increase in

TMAO when
administered

with Fuzi
(processed

lateral root of
Aconitum

carmichaelii)

Does not lower
TMAO levels

when
administered
alone. Study

performed in rats

[132]

Oolong tea
extract and

citrus peel poly-
methoxyflavones

Mouse 1 µg

Injection every
10 days for a
period of 16

weeks

Intravenous
injection

Lowers TMAO
formation and

vascular
inflammation

Study performed
only in mice [133]

Berberine (BBR)
ApoE-/- mouse
on a C57BL/6
background

BBR treatment (50
mg/kg) twice

weekly
84 days Intragastric

administration

Lowers
expression of
hepatic FMO3

and serum
TMAO levels

Study performed
only in mice [134]

Trigonelline C57BL/6 J
mouse

Trigonelline (50 to
100 mg/kg) per

day
14 days Oral

Inhibits
conversion of

TMA to TMAO
by inhibiting

FMO3

Study performed
only in mice [135]

Enalapril Rat 5.3 or 12.6 mg/kg 14 days Oral
Increases
TMAO

excretion in
urine

Unclear
mechanism.

Does not affect
TMA formation or

composition of
gut microbiota

[21,136]

Metformin db/db mice 250 mg/kg/day 8 weeks Oral

2-fold reduction
in TMAO levels

and bacteria
linked to
TMAO

production

Study performed
in only mice [137]

6.1. Targeting TMA and TMAO Formation Process through Enzymatic Inhibition
6.1.1. Targeting TMAO

Some potential therapeutics involve the inhibition of TMAO-forming enzymes. In
mice models, knockdown of FMO3 (the enzyme which converts TMA to TMAO) has been
reported to suppress the expression of FoxO1 (a key protein regulating metabolism), and to
prevent the occurrence and progression of metabolic dysfunction such as hyperglycemia,
hyperlipidemia, and atherosclerosis. Consistent with this finding, FMO3 overexpression in
mice upregulates the levels of lipids in the plasma and liver, suggesting that FMO3 may
be linked to gluconeogenesis and lipogenesis, and may play a major role in glucose and
lipid homeostasis regulation [138]. The drawback of FMO3 inhibition is an accumulation
of TMA, which can lead to trimethylaminuria characterized by a fishy odor, and which
induces inflammation. In addition, if FMO3 overexpression is closely associated with the
upregulation of TMAO formation [23,82,138,139], TMAO is not the only substrate of FMO3.
Hence, the inhibition of this enzyme will also lower the metabolism of other substrates such
as morphine, propranolol, and tyramine [23], potentially leading to co-lateral metabolism
modifications that may not be beneficial.

6.1.2. Targeting TMA

Studies performed in mouse models showed that the 3,3-dimethyl-1-butanol (DMB),
found in balsamic vinegar, olive oil, grape seed oil, and red wines [21], and which inhibits
the choline TMA lyase enzyme [21], reduces macrophage foam cell formation and aortic
root atherosclerotic lesion development in Apo E knockout mice [22,115]. In obese mice fed
with a high-fat western diet, the DMB treatment does not have any effects on body weight
and dyslipidemia, but significantly lowers plasma TMAO levels and prevents cardiac
dysfunction. Moreover, DMB successfully prevents the expression of pro-inflammatory
cytokines (IL-1β and IL-10) and TNFα. However, it is unable to completely prevent TMAO
formation and does not inhibit the formation of TMA from γ-butyrobetaine [115,125].
Prevention of bacterial TMAO formation through competitive inhibition of the bacterial
carnitine palmitoyl transferase-1 (CPT-1) has also been observed to be possible with meldo-
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nium. Meldonium, known for its anti-atherosclerotic and anti-ischemic properties, is an
analogue of carnitine that lowers the generation of TMA from L-carnitine, but not choline,
and improves endothelial function [22,127,140]. Finally, plant sterol esters can reduce
the gut microbiota generation of TMA as well as cholesterol accumulation, and eliminate
atherogenesis in mice [141]. However, the effects remain unclear in humans.

6.2. Reduction in TMAO Generation by Modifying the Gut Microbiota
6.2.1. Prebiotics and Probiotics

Both prebiotics and probiotics can be used to improve the composition of the gut
microbiota and regulate the level of TMAO formation [122]. Prebiotics are inclusive of all
kinds of non-digestible food and are known to trigger the growth and development of
useful bacteria [142], while probiotics involve the administration of living microbes that
can yield beneficial effects on human health when administered in sufficient amounts,
as defined by the Food and Agriculture Organization (FAO) of the United Nations [143].
Conversely, some bioactive food can reduce the generation of bacteria that convert dietary
precursors in TMA. As such, the administration of Lactobacillus paracasei in germ-free mice
colonized with human infant microbiota results in reduced TMA formation, and the use of
Lactobacillus and Bifidobacterium lowers the risk of atherosclerosis [123,144]. Other studies
have reported the possibility of using methanogenic bacteria (e.g., the large group of
Methanobacteriales), such as Methanomassiliicoccus luminyensis B10, to metabolize TMA
and deplete it [145,146]. In addition, probiotics lower inflammation by triggering anti-
inflammatory cytokines and reducing pro-inflammatory cytokines that regulate the NF-κB
pathway [147], which is linked to MAPK, pathogen recognition, and inflammatory signaling
pathways [148]. The toll-like receptor expression has been shown to be downregulated
by probiotics, hence also lowering intestinal inflammation [149]. However, a common
limitation of probiotics used to lower TMAO levels and potentially reduce the risk of
atherosclerosis is that the effect of treatment may change according to the gut microbiota
composition of each specific individual.

6.2.2. Antibiotics

Another strategy to lower or eliminate the conversion of dietary precursors into TMA
is to target the gut microbiome composition via antibiotics. Antibiotics such as ciprofloxacin
and metronidazole effectively suppress TMAO levels in clinical trials [150,151]. However,
after one month of antibiotics withdrawal, TMAO levels are detected again [21,124]. Fur-
thermore, the use of antibiotics may incur bacterial resistance or kill beneficial bacteria in
addition to harmful ones [124].

6.3. Other Therapeutic Alternatives to Lower TMAO Concentration

Oral non-absorbent binders have been used to eliminate TMAO and its precursors.
Clinically used, oral charcoal adsorbent AST-120 eliminates uremic contaminants such
as indoxyl sulfate from end-stage renal disease patients [152]. However, this remains an
uncertain approach as none of these absorbents specifically target TMAO [23,120,121].

Consumption of natural products may also reduce TMAO levels. Specifically, studies
showed that Resveratrol (a polyphenol with antioxidant activities) modifies the compo-
sition of the gut microbiome, reducing the bacteria that promote TMA formation and
increasing the useful bacteria [128,153]. Gynostemma pentaphyllum (an herbaceous climbing
vine) lowers plasma TMAO levels and increases lecithin levels in rat models [131]. Gancao
(the root of Glycyrrhiza uralensis) prevents the rise of TMAO levels when administered
with Fuzi (the processed lateral root of Aconitum carmichaelii). However, it does not lower
plasma TMAO levels when administered alone [60]. Oolong tea extract and citrus peel
polymethoxyflavones target the TMAO formation process and lower vascular inflamma-
tion [154]. Other compounds such as berberine (BBR) [134] and trigonelline [135] are also
natural products known to inhibit the formation of TMAO from TMA by lowering the
expression of the FMO3 enzyme.
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Anti-diabetic medications also have the potential to modify the gut microbiome.
Similarly, the gut microbiota can modify the effectiveness of diabetic medications. The
majority of data indicate that metformin is the most effective drug as compared to all the
other anti-diabetic medications [155]. Interestingly, in db/db mice with type 2 diabetes
mellitus, treatment with metformin results in a twofold reduction in TMAO concentration
and the generation of bacteria associated to TMAO precursors production [137]. In this
study, it was suggested that a reduction in TMAO concentration with the use of metformin
is an effective therapeutic strategy to exert cardiovascular benefits.

In addition, some potential anti-obesity drugs such as capsanthin, as well as the
lycopene, amaranth, and sorghum red pigments obtained from Lycopersicon esculentum (M.),
Amaranthus tricolor, and Sorghum bicolor, respectively, also reduce serum levels of TMAO
and increase microbial diversity in mouse fed with high-fat diet [129,130].

Another drug, Enalapril (ACE [angiotensin converting enzyme] inhibitor), tested in
rats, increases the excretion of TMAO in the urine. However, the mechanism remains
unclear, as it does not target TMAO formation or modification of the gut microbiota [21].

Despite the promising effects of these products to reduce TMAO levels, studies were
only performed in mouse models. Hence, there is insufficient evidence to confirm their
impact in humans.

7. Concluding Remarks and Future Perspective

In conclusion, the gut microbial metabolite TMAO is a significant biomarker of cardio-
metabolic diseases. The molecular mechanisms underlying TMAO-induced endothelial
dysfunction and subsequent development of cardio-metabolic diseases are multi-factorial,
and primarily involve vascular inflammation and oxidative stress via the MAPK and NF-κB
signaling pathways. Through oxidative stress and inflammation, TMAO triggers other
effects such as platelet hyperreactivity and reduction in vascular tone through the impair-
ment of EDH-mediated relaxation and PGI2 production. While other reported factors, such
as cell viability and NO bioavailability remain controversial, the differences observed may
be attributed to distinct metabolic backgrounds of models, as well as study design (cell
types, TMAO concentrations, and treatment durations). Future studies should explore
the molecular signatures and pathways that contribute to endothelial dysfunction and/or
other cardio-metabolic diseases. While most of the current treatment strategies focus on
preventing the formation of TMAO, other plausible treatment strategies could focus on tar-
geting key mechanistic pathways that contribute to disease pathology in the various organs.
Hence, a better understanding of the underlying molecular mechanisms will lead to the
development of new therapeutic agents such as small molecules [156], peptides [157,158] or
natural products [159–161] that have potent vasoprotective effects (e.g., anti-inflammatory
properties) to effectively prevent or reverse TMAO-induced endothelial dysfunction and/or
other cardio-metabolic diseases.
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