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Abstract: Combining two pharmacophores in a molecule can lead to useful synergistic effects.
Herein, we show hybrid systems that combine sterically hindered phenols with dinitrobenzo-
furoxan fragments exhibit a broad range of biological activities. The modular assembly of such
phenol/benzofuroxan hybrids allows variations in the phenol/benzofuroxan ratio. Interestingly,
the antimicrobial activity only appears when at least two benzofuroxan moieties are introduced per
phenol. The most potent of the synthesized compounds exhibit high cytotoxicity against human
duodenal adenocarcinoma (HuTu 80), human breast adenocarcinoma (MCF-7), and human cervical
carcinoma cell lines. This toxicity is associated with the induction of apoptosis via the internal mito-
chondrial pathway and an increase in ROS production. Encouragingly, the index of selectivity relative
to healthy tissues exceeds that for the reference drugs Doxorubicin and Sorafenib. The biostability
of the leading compounds in whole mice blood is sufficiently high for their future quantification in
biological matrices.

Keywords: benzofuroxan; sterically hindered phenol; anti-cancer activity; cytotoxicity; apoptosis;
ROS production

1. Introduction

Cancer continues to be one of the most serious challenges facing modern science and
medicine. Oncological diseases steadily occupy the second place in the list of causes of
human death. According to the World Health Organization, by 2030, 15 million people will
be dying from this pathology in the world every year [1].

In our search for new highly effective antitumor drugs, we chose a molecular design
that can achieve two main goals: (1) to reduce toxicity in a healthy microenvironment
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and to provide a targeted effect on tumor tissues; (2) to enhance the antitumor effect by
combining in one molecule several pharmacophores with different but complementary
mechanisms of action.

The inclusion of a sterically hindered phenol (SHP) fragment helps to address the first
goal. In healthy cells, where there is a redox balance, phenols will behave as antioxidants,
protecting a normal cell from the harmful effects of other pharmacophoric fragments of the
structure. The situation changes in a state of oxidative stress observed in tumor cells when
numerous ROS (Reactive Oxygen Species) are formed and various metals, mainly iron
and copper, accumulate in the unbound state [2–6]. Under these conditions, the phenols
are transformed into highly reactive methylene quinones, which have destructive effects
on lipids, proteins and DNA, thereby leading to the tumor cells death (Figure 1). The
effect of quinones can be multi-fold. Non-hindered quinones are potent electrophiles that
can bind to thiol, amine and hydroxyl groups. More generally, the fast redox cycling
between phenols and quinones can lead to the formation of intermediates that can transfer
an electron to molecular oxygen, transforming it into a superoxide radical anion and, thus,
serving themselves as a potentially catalytic source of ROS.

Such phenol-mediated redox reorientation was shown to be promising for the de-
velopment of targeted antitumor agents, initiating the mitochondrial pathway of cancer
cell apoptosis. The spectrum of biological antitumor activity includes inhibiting metasta-
sis of melanoma and Lewis lung carcinoma [7–9], leukemia, colon, liver, ovarian, breast
cancers [10], sarcoma 37 and carcinoma [11].

The presence of a benzylic phosphonate group is likely to be important based on
the earlier indications [12–14] that the introduction of phosphate ester or bisphosphonate
ester moieties into anticancer agents (e.g., Cisplatin, Camptothecin and Doxorubicin) can
improve drug solubility and antitumor activity. An intriguing possibility is that it can also
assist in the formation of quinone methides and their radical anions by activating the C-H
bond (Figure 1). It is well known that the phosphonate group can increase C-H acidity
by >13 orders of magnitude [15].

Considering the redox activity and ROS generation with SHPs, a logical choice for the
second pharmacophore is provided by the benzofuroxan moiety. Benzofuroxans represent
an important class of lipophilic thiol-dependent NO donors [16,17]. After the discovery
of the key role of nitric oxide as an intracellular regulator of metabolism, benzofuroxans
have been playing an increasingly important role in the development of anticancer agents
that can generate high levels of NO and inhibit tumor growth in vivo [18,19]. Interestingly,
these heterocycles can produce not only nitric oxide (NO•) but also its two redox forms,
nitroxyl (HNO) and nitrosonium ion (NO+). From this point of view, the synergy between
SHP and furoxan moieties in hybrid systems seem to be an attainable goal.

Since the first reports of the antitumor properties of benzofuroxans [20–23], cytotoxicity
against tumor cell lines of many of their derivatives has been tested [24–28]. A number of
benzofuroxan derivatives inhibit the growth of M-HeLa cells in vitro. Furthermore, several
of them showed significant activity against P388 lymphatic leukemia and Ehrlich ascitic
carcinoma in mice [29]. Interestingly, the antitumor effect of these compounds is due to
their dual ability to inhibit DNA synthesis and to cause DNA destruction through a series
of single- and double-strand breaks [26]. It is well known that single DNA damage can
be fairly easily repaired by the numerous intercellular DNA repair systems. In contrast,
multiple damages are much harder to repair and, hence, it is much more likely to lead to
cell death. It is noteworthy that the same study [26] emphasizes the positive contribution
of electron-withdrawing nitro groups in the benzofuroxan core to cytotoxicity.

In addition, NO is a necessary component of a non-specific defense mechanism against
many pathogens, including bacteria, viruses and fungi. A number of publications describe
the high fungicidal activity of the so-called “hybrid” benzofuroxan derivatives, which
include, in addition to the benzofuroxan moiety, known pharmacophore fragments (amino
acids, amino alcohol nitrates, phenols and polyene antibiotics) [30,31]. The activity of a
4,6-dinitro-5,7-dichlorobenzofuroxan derivative against Trichophyton mentagrophytes was
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four times higher than the activity of the antifungal drug Nystatin [32]. Benzofuroxan
derivatives were found to be highly active against phytopathogenic fungi (Rhizoctonia solani,
Sclerotinia sclerotiorum, Fusarium graminearum and Phytophthora capsici) [33] and against
antibiotic-resistant Staphylococcus bacteria [34].
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Figure 1. (A) General approach to the creation of new types of hybrid antitumor agents based on
sterically hindered phenols (SHP) and benzofuroxans. (B) Redox cycling between phenols and
quinone methides creates radical anions that can reduce molecular oxygen to a superoxide anion.
(C) Phosphonate group greatly activates benzylic C-H bonds and facilitates quinone methide radical-
anion formation. (D) Generation of NO and ROS from furoxans. ROS = Reactive Oxygen Species.

In summary, our aim is to develop agents with a broad spectrum of biological action.
Our basic molecular platform is a substituted sterically hindered phenol, which can be
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reversibly oxidized to the corresponding methylene quinone in cancer cells but exhibits
antioxidant activity in healthy cells. The auxiliary components include a diaminopyridine
or diaminophenyl linker for targeted modification, a phosphorus-containing fragment for
increasing bioavailability, and benzofuroxan as an additional pharmacophore with the
potential to be both the NO-donor and apoptosis-inducing agent (Figure 1).

2. Results and Discussion
2.1. Chemistry

Phosphorylated sterically hindered phenols (SHPs) 2 containing diaminopyridine or
diaminophenyl fragments were used as a starting point due to their already identified high
and selective cytotoxicity [35]. The synthesis of the starting SHPs was carried out in accor-
dance with the original method developed by us earlier (Scheme 1, [35]). The main stages of
this method include preparation of the corresponding phosphorylated phenol, its oxidation
to methylene quinone 1, and, as the last step, reaction of the methylene quinone with
C-nucleophile, i.e., 2,6-diaminopyridine or 1,3-diaminobenzene. This sequence produces
the key compounds 2, that possess two amino groups suitable for further modifications
with heterocyclic fragments.
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Scheme 1. The synthesis of the starting SHPs 2 containing diaminopyridine or diaminophenyl fragments.

Finally, the amino groups of the two hindered phosphorylated phenols 2 were used
in reactions with nitrochlorobenzofuroxans. This highly reactive heterocycle is superelec-
trophilic and readily reacts with the appended aniline moieties. The phenol OH group is
unreactive under these conditions due to the steric protection provided by the two tert-
butyl groups. The final products of this synthetic sequence result are previously unknown
“hybrid” phosphorus-containing SHPs containing a nitrobenzofuroxan fragment linked to
the SHP fragment through a (hetero)aromatic “linker” (Scheme 2).

Depending on the initial ratio of reagents, it is possible to vary the composition of the
final products, leading to the formation of compounds with a composition of 2:1 when two
molecules of benzofuroxan interact with one molecule of sterically hindered phenol and
compounds of the composition of 1:1, when one molecule of benzofuroxan reacts with one
molecule of sterically hindered phenol. The excess phosphorus-containing SHP in both
cases was used to neutralize the hydrogen chloride formed during the reaction.
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Scheme 2. Synthesis of SHP/furoxan hybrids of varying composition.

As is known in the literature, benzofuroxan rapidly interconverts in solution between
two non-symmetric bicyclic structures through the open dinitroso form (so-called N-1-
oxide/N-3-oxide tautomerism, Scheme 3) [36,37]. As a result, the NMR 1H and 13C spectra
of benzofuroxan derivatives taken at room temperatures are often broadened as they
correspond to a fast mutual transition of equivalent non-symmetric forms, while the spectra
taken at low temperature are non-symmetric forms [38]. In our study, we also observed
our products in the spectra, not as individual compounds but as a mixture of tautomers.
In some cases, they were separated into the pure form (as in the case of compounds 4e–g).
In other cases, where the content of the second tautomer was insignificant, we limited
ourselves to describing only the main structure.
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The complete assignment of signals in 1H and 13C spectra (Figures S1–S45) was
accomplished by using the 2D NMR techniques (COSY, 1H-13C HSQC and 1H-13C HMBC).
Examples of 2D spectra for compounds 4d and 4e are presented (Figures S12–S14 and
S18–S20). For compounds within the series, the assignment of peaks was conducted by
analogy, taking into account the effects of neighboring substituents. Some difficulty is that
benzofuroxans exist as two tautomers due to oxygen migration. As we showed earlier [39],
the presence of only one proton in the tri-substituted benzofuroxan moiety makes it difficult
to use two-dimensional NMR experiments. At the same time, the chemical shifts of carbons
in these tautomeric forms do not differ significantly. Nevertheless, the difference between
C3a and C7a makes it possible to quite unambiguously attribute the observed shape of the
benzofuroxan ring.

The exception is the interaction of benzofuroxan 3 with diaminophenyl derivative 2f
containing diethylphosphonate fragment. We found that regardless of the ratio of reagents
employed, there is only a formation of a mono-substitution product 4f. The 2:1 product
cannot be obtained, probably because of a sterically hindered environment for the NH2
group located in the ortho-position relative to the methyldiethylphosphonate fragment.
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2.2. Biological Evaluation

For the synthesized compounds, diverse biological properties were studied: anti-
tumor potential with the determination of the mechanisms of action, hemolytic activity,
antibacterial properties and biostability.

2.2.1. Anticancer Activity

To start, a new series of synthesized compounds proposed as potential anticancer
agents were tested for cytotoxicity against cancer and normal cell lines (Table 1). Data
on cytotoxic activity are represented by IC50 values (the concentration of compound that
causes 50% cell death in the test population).

Table 1. In vitro cytotoxic effects for the tested SHP-benzofuroxan hybrids.

C
om

po
un

ds IC50, µM

Cancer Cell Lines Normal Cell Lines

HuTu 80 PC3 PANC-1 MCF-7 M-HeLa T98G A549 A375 WI38 Chang
Liver

3 >100 nd >100 nd 94.1 ± 8.6 nd nd nd nd >100

2a > 100 nd nd 31.0 ± 2.6 16.1 ± 1.3 nd nd nd nd >100

2b 86.6 ± 6.8 nd nd 34.2 ± 3.0 17.1 ± 1.3 nd nd nd nd >100

2c >100 nd nd 21.8 ± 1.7 38.0 ± 2.8 nd nd nd nd >100

2d 63.2 ± 5.6 nd nd 16.0 ± 1.2 7.4 ± 0.7 nd nd nd nd 52 ± 3.5

2e nd nd nd >100 45.3 ± 3.2 nd nd nd nd >100

4a 5.2 ± 0.4 14.0 ± 1.2 20.0 ± 1.7 7.6 ± 0.6 4.2 ± 0.3 12.4 ± 1.2 13.5 ± 1.2 13.5 ± 1.2 7.2 ± 0.6 12.0 ± 1.2

4b 5.4 ± 0.3 11.0 ± 0.8 5.3 ± 0.4 3.1 ± 0.2 2.9 ± 0.2 8.3 ± 0.7 9.3 ± 0.8 11.4 ± 0.9 5.3 ± 0.4 7.0 ± 1.5

4c 0.9 ± 0.07 1.2 ± 1.0 11.2 ± 0.9 1.1 ± 0.1 0.9 ± 0.07 2.2 ± 0.1 0.9 ± 0.08 2.9 ± 0.2 2.0 ± 0.1 2.1 ± 0.7

4d 13.1 ± 1.1 11.3 ± 0.9 11.9 ± 0.9 9.0 ± 0.7 6.3 ± 0.5 7.9 ± 0.7 9.0 ± 0.7 17.0 ± 1.4 11.3 ± 1.1 21.0 ± 2.4

4e 17.1 ± 1.3 12.3 ± 1.1 17.4 ± 1.3 21.5 ± 1.8 12.0 ± 1.0 40.2 ± 3.1 48.3 ± 3.7 53.1 ± 4.1 25.7 ± 2.2 14.3 ± 1.3

5a 11.0 ± 0.9 7.7 ± 0.6 13.5 ± 1.1 12.1 ± 1.1 7.7 ± 0.6 26.8 ± 2.2 48.4 ± 3.5 21.6 ± 1.8 11.4 ± 0.9 15.1 ± 1.7

5c 3.9 ± 0.3 6.8 ± 0.5 5.0 ± 0.3 4.5 ± 0.4 2.4 ± 0.2 7.7 ± 0.6 7.7 ± 0.6 9.0 ± 0.8 5.0 ± 0.4 4.1 ± 0.8

5d 4.9 ± 0.3 5.9 ± 0.4 2.8 ± 0.2
(SI = 3.3)

2.1 ± 0.1
(SI = 4.4)

2.0 ± 0.1
(SI = 4.6) 4.8 ± 0.4 5.2 ± 0.4 5.9 ± 0.5 8.4 ± 0.7 9.2 ± 1.9

DOX 0.2 ± 0.01 1.4 ± 0.1 2.2 ± 0.1 0.4 ± 0.03 2.1 ± 0.2 2.0 ± 0.1 0.7 ± 0.05 0.3 ± 0.02 0.4 ± 0.02 0.5 ± 0.04

SF 6.2 ± 0.5 11.3 ± 0.9 12.0 ± 1.1 27.5 ± 2.3 25.0 ± 1.9 8.6 ± 0.7 25.2 ± 2.2 6.8 ± 0.5 6.6 ± 0.5 21.7 ± 1.7

HuTu-80 is a duodenal adenocarcinoma; PC3 is a human prostate adenocarcinoma; PANC-1 is a human pancreatic
cancer cell line; MCF-7 is a human breast adenocarcinoma (pleural fluid); M-HeLa is a human cervix epitheloid
carcinoma; T98G is a glioblastoma cell line; A549 is an adenocarcinomic human alveolar basal epithelial cell line;
A375 is human amelanotic melanoma cell line; WI 38 is an human embryonic lung; Chang liver is a line of human
liver cells; DOX—doxorubicin, SF—sorafenib. The experiments were repeated three times. SI—selectivity index
values relative to Chang liver; nd—not determined. Cells were incubated with substances for 48 h.

It is interesting to compare the activity of hybrid molecules 4–5 to their building blocks,
SHPs 2 and chlorobenzofuroxan 3. As can be seen from the data given in Table 1, the simple
benzofuroxan 3 does not show cytotoxicity at these concentrations. At the same time, the
initial SHPs 2 have cytotoxic activity, which, as we noted earlier, motivated us to choose
them as a starting point of our design. Gratifying, the hybrid compounds 4–5 showed
relatively high activity against all cancer lines used in the experiments. In addition, the
lead compounds have moderate cytotoxicity against the normal Chang liver cells.

When compared with the starting compounds, the SHP/benzofuroxan hybrid 4c is
40 times more active than SHP 2c with respect to M-HeLa and 20 times more active with
respect to MCF-7. The activity of compound 5d exceeds the activity of compound 2d by
3.7 times with respect to M-HeLa and 7.6 times with respect to MCF-7. However, it should
be noted that the cytotoxicity towards normal cells of these hybrid leader compounds
also increases, which makes these compounds more toxic. These data suggest that finding
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the proper balance between efficacy and selectivity remains a challenge. From these data,
we have identified two lead compounds, 4c and 5d, that show high cytotoxicity against
human duodenal adenocarcinoma (HuTu 80), human breast adenocarcinoma (MCF-7) and
human cervical carcinoma cell lines. The IC50 values of compounds 4c and 5d for these
lines were either comparable to or exceeded the activity of the reference drugs Doxorubicin
and Sorafenib.

The key indicator for evaluating perspective antitumor drugs is the selectivity index
(SI), which was calculated as the ratio between the IC50 value for normal cells and the IC50
value for cancer cells. The selectivity index values for 5d are shown in Table 1. According
to the literature guidelines [40], compounds are considered selective at SI ≥ 3. Therefore,
the lead compound 5d can be considered selective for MCF-7 and M-HeLa cell lines at
SI = 4. Note that the reference drugs Doxorubicin and Sorafenib are significantly inferior in
selectivity compared to the lead compound.

Apoptosis is one of the preferred mechanisms of cytotoxic action for the development
of new anticancer agents. Apoptosis-inducing properties of the leading compounds, 4c and
5d, were evaluated by flow cytometry at IC50/2 and IC50 concentrations on the M-HeLa cell
line (Figure 2a,b). This assay is convenient for detecting apoptosis and for differentiating
its stages. In particular, the viable cells are negative for both PI and Annexin V- Alexa
Fluor 647 binding; non-viable, necrotic cells are negative for Annexin V- Alexa Fluor 647
binding and positive for PI uptake; cells in early apoptosis are Annexin V- Alexa Fluor 647
positive and PI negative; cells in late apoptosis are positive for both Annexin V- Alexa Fluor
647 binding and PI uptake.
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Figure 2. Induction of apoptosis in M-HeLa cancer cells by compounds 4c and 5d, evaluated by Flow
Cytometry Assay, after cell labeling with propidium iodide (PI) and Annexin V- Alexa Fluor 647 (a).
L, D, La and Ea labels in the top right control plot correspond to Live, Dead, Late apoptosis and
Early apoptosis, respectively. Cells were either unlabeled and untreated (Control) or treated with
IC50 and IC50/2 doses of test compounds for 48 h, as indicated. The quantitative analysis of early
and late apoptotic cells after drug exposure is represented in (b). Data are presented as mean ± error
of the mean (n = 3). **** p ≤ 0.0001 compared to control (one-way ANOVA). Concentration for 4c was
(IC50/2- 0.5 µM and IC50—1.0 µM); for 5d (IC50/2—1.0 µM and IC50—2.0 µM).

It can be seen that after 48 h of incubation, the test compounds begin to induce
apoptosis in M-HeLa cells. The apoptotic effects are most prominent in the case of the
leading compound 4c, especially at the stage of late apoptosis (Figure 2b).

The possibility of apoptosis through the mitochondrial pathway was assessed by flow
cytometry using the JC-10 fluorescent dye (in the Mitochondria Membrane Potential Kit).
In normal cells, JC-10 accumulates in the mitochondrial matrix, where it forms aggregates
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identified via their red fluorescence. However, in apoptotic cells, JC-10 diffuses out of
the mitochondria, converts to its monomeric form, and emits green fluorescence, which
is recorded by a flow cytometer. After treatment with compounds 4c and 5d at concen-
trations of IC50/2 and IC50, we observed the dissipation of the mitochondrial membrane
potential of M-HeLa cells, which became more pronounced in the case of compound 4c
(Figure 3a). Figure 3b shows that the intensity of green fluorescence significantly increased
relative to the control. These results suggest that the mechanism of action of the studied
compounds is associated with the induction of apoptosis, which occurs along the internal
mitochondrial pathway.
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Figure 3. (a) Flow cytometry analysis of M-Hela cells treated with compounds 4c and 5d. (b) Quan-
titative determination of % cells with red aggregates and green monomers. Data are presented as
mean ± error of the mean (n = 3). **** p ≤ 0.0001 compared to control (one-way ANOVA). Concentra-
tion for 4c was (IC50/2—0.5 µM and IC50—1.0 µM); for 5d (IC50/2—1.0 µM and IC50—2.0 µM).

Apoptosis can be induced in various ways, including an increase in the production of
reactive oxygen species (ROS) in the cell, with subsequent oxidative stress and destruction
of membrane lipids, proteins and nucleic acids. Thus, chemical compounds that disturb the
redox balance and lead to the production and accumulation of ROS are potential agents for
targeting the transformed cells. To understand the possible synergy between the different
components of these hybrid agents, we compared the ROS production for compounds 4c,
5d, starting phenols 2c, 2d and furoxan 3 at the concentration of IC50 cytotoxicity on M-
HeLa cells (Figure 4). A significant increase in CellROX® Deep Red fluorescence intensity
indicates an increase in ROS production. This increase is especially pronounced in the
presence of compound 4c where ROS production significantly exceeds that for the original
phenol 2c and furoxan 3. Hence, it is reasonable to suggest that activity of compound 4c
benefits from the synergy between the methylene quinones (as producers of superoxide)
and furoxans (as the NO donors).

Thus, the phenol-benzofuroxan hybrids exhibit high cytotoxicity. This biological
activity is primarily associated with the induction of apoptosis, occurring via the internal
mitochondrial pathway and an increase in ROS production.

Additionally, we evaluated the hemolytic activity (i.e., the ability to destroy human
erythrocytes) [41–43]and biostability in whole mice blood for the leader compounds [44].
The tested compounds do not show hemolytic activity (HC50 >100 µM) and are metabolized
relatively slowly (data are presented in supporting information, Figure S46).
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2.2.2. Antimicrobial Activity

The synthesized compounds were also tested for antibacterial activity against a num-
ber of gram-positive Staphylococcus aureus ATCC 6538P FDA 209P (Sa), Bacillus cereus ATCC
10702 (Bc), Enterococcus faecalis ATCC 29212 (Ef ), gram-negative bacteria Escherichia coli
ATCC 25922 (Ec) and Pseudomonas aeruginosa ATCC 9027 (Pa), including against methicillin-
resistant strains of Staphylococcus aureus MRSA-1 and MRSA-2. Methicillin-resistant strains
of S. aureus were provided to us by the Republican Clinical Hospital (Kazan, Russia) from
patients with chronic tonsillitis and sinusitis and were highly resistant: MRSA-1—to β-
lactams and fluoroquinolones and MRSA-2—only to β-lactams. Antifungal activity was
studied on Candida albicans 10231. Neither sterically hindered phenols 2 and benzofuroxan
3 nor their 1:1 hybrids 4 show activity against fungi and bacteria. On the other hand,
the introduction of the second benzofuroxan fragment leads to the rise of antimicrobial
activity (Table 2). Compounds 5a, 5c and 5d display selective antimicrobial activity against
gram-positive bacteria S. aureus, B. cereus, E. faecalis (at the level of the reference drug
Chloramphenicol) and strain MRSA 1. These compounds are less active against MRSA-2.
All studied compounds were inactive toward gram-negative bacteria and the yeast Candida
albicans 10231.

Table 2. Antimicrobial activity of studied compounds.

Compounds
Minimum Inhibitory Concentration (MIC), µg/mL

Sa Bc Ef MRSA-1 MRSA-2

2a - - - - -

2c - - - - -

2d - - - - -

3 - - - - -
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Table 2. Cont.

Compounds
Minimum Inhibitory Concentration (MIC), µg/mL

Sa Bc Ef MRSA-1 MRSA-2

4a - - - - -

4c - - - - -

4d - - - - -

5a 125 ± 11 62.5 ± 5.3 125 ± 10 250 ± 20 250 ± 20

5c 31.3 ± 2.3 31.3 ± 2.5 62.5 ± 5.3 62.5 ± 5.5 250 ± 20

5d 15.6 ± 1.2 62.5 ± 5.4 62.5 ± 5.2 62.5 ± 5.3 250 ± 19

Chloramphenicol 31.3 ± 2.2 62.5 ± 5.4 62.5 ± 5.2 nd nd

Ketoconazole - - - - -

Minimum bactericidal and fungicidal concentrations (MBC), (MFC) µg/ml

5a 250 ± 19 - - 250 ± 21 -

5c - 250 ± 20 - - -

5d 125 ± 10 - - 250 ± 20 250 ± 19

Chloramphenicol - - - - -

Ketoconazole - - - - -
Average of three values measured; ± standard deviation (SD);—means non-active; nd—not determined.

3. Materials and Methods
3.1. Chemistry

IR spectra were recorded on an IR Fourier spectrometer Tensor 37 (Bruker Optik GmbH,
Ettlingen, Germany) in the 400–3600 cm−1 range in KBr. The 1H- and 13C-NMR spectra
were recorded on a Bruker AVANCE 400 spectrometer (Bruker BioSpin, Rheinstetten,
Germany) operating at 400 MHz (for 1H NMR), 101 MHz (for 13C NMR) and 162 MHz (for
31P NMR) and Brucker spectrometers AVANCEIII-500 (Bruker Corporation, Rheinstetten,
Germany) operating at 500 MHz (for 1H NMR) and 126 MHz (for 13C MMR). Chemical
shifts were measured in δ (ppm) with reference to the solvent (δ = 7.27 ppm and 77.00 ppm
for CDCl3; δ = 2.06 ppm and 28.94 ppm for (CD3)2CO, δ = 2.56 ppm and 39.52 ppm for
DMSO-d6 for 1H and 13C NMR, respectively). Elemental analysis was performed on a
CHNS-O Elemental Analyser EuroEA3028-HT-OM (EuroVector S.p.A., Milan, Italy). ESI-
TOF-MS spectra were recorded on a Bruker AmazonX instrument (Bruker Daltonix GmbH,
Bremen, Germany). The melting points were determined on JK-MAM-4 Melting-point
Apparatus with Microscope (JINGKE SCIENTIFIC INSTRUMENT CO, Shanghai, China).
The progress of reactions and the purity of products were monitored by TLC on Sorbfil
UV-254 plates (Sorbpolimer, Krasnodar, Russia); the chromatograms were developed under
UV light.

7-Chloro-4,6-dinitrobenzofuroxan 3 was synthesized according to the literature [45].
Reaction between sterically hindered phenols 2a–g and 7-chloro-4,6-dinitrobenzofuroxan

3. To a solution of 7-chloro-4,6-dinitrobenzofuroxan 3 (0.8 mmol) in 5 mL of CHCl3 at
room temperature was added a solution of sterically hindered phenols 2 (1.6 mmol (for
compounds 4) or 1.2 mmol (for compounds 5)) in 5 mL of CHCl3. The reaction was carried
out at room temperature and under magnetic stirring, and the conversion was monitored
through TLC analysis (eluent: toluene/ethyl acetate, 2:1). The mixture was stirred at room
temperature overnight; the crude mixture was precipitated in hexane (10 mL), the obtained
solid was filtered off, washed with cold water (100 mL) and dried under vacuum (0.06 mm
Hg) at 40 ◦C temperature to constant weight. In any case, a mixture of compounds 4 and
5 was obtained, depending on the conditions, with a high content of one of them. The
crude product was purified by column chromatography (eluent in each case was selected
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individually) to give the target compound (the second product in this case was isolated in
an insignificant amount).
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7-((6-amino-5-((3,5-di-tert-butyl-4-hydroxyphenyl)(dimethoxyphosphoryl)methyl)
pyridin-2-yl)amino)-4,6-dinitrobenzo[c][1,2,5]oxadiazole 1-oxide (4a). Purple powder,
yield 85%. M.p.: 270–271 ◦C. IR (ν, cm–1): 694 (P–C), 1228 (P=O), 1359 (NO2 symm),
1563 (NO2 asymm), 1623 (furoxan ring), 3448 (NH2) and 3621 (OH). 1H NMR (500 MHz,
Acetone-d6): δ 9.10 (s, 1H, H6-Bz1), 8.13 (dd, J = 8.1 Hz, J(PH) = 1.5 Hz, 1H, H4-Ar2),
7.44 (d, J(PH) = 1.8 Hz, 2H, H3-Ar1), 6.73 (brs, 1H, H5-Ar2), 6.11 (s, 1H, OH-Ar1), 4.67 (d,
J(PH) = 26.8 Hz, 1H, H4a-Ar1), 3.70 and 3.61 (d, J = 10.7 Hz, 6H, CH3) and 1.47 (s, 18H,
H2b-Ar1). 13C{1H} NMR (126 MHz, Acetone-d6) δ 156.7 (C2-Ar2), 154.9 (C1-Ar1), 151.2
(C6-Ar2), 148.1 (C4-Bz), 143.7 (C4-Ar2), 139.1 (C2-Ar1), 139.0 (C7a-Bz), 134.4 (C6-Bz), 128.3
(C7-Bz), 127.7 (d, J(PC) = 7.3 Hz, C3-Ar1), 127.4 (C3-Ar2), 125.3 (C5-Bz), 115.0 (C3a-Bz),
114.0 (C4-Ar1), 104.9 (C5-Ar2), 54.5 and 54.2 (d, J(PC) = 7.2 Hz, CH3), 44.9 (d, J(PC) = 138.7
Hz, C4a-Ar1), 36.0 (C2a-Ar1) and 31.4 (C2b-Ar1). 31P NMR (162 MHz, Acetone-d6) δ 27.30.
Found: C, 51.15; H, 5.24; N, 14.83; P, 4.77. Anal. calcd (%) for C28H34N7O10P: C, 50.99;
H, 5.20; N, 14.87; P, 4.70. HRMS (ESI) m/z for C28H34N7O10P: calc. 659.21 [M]+, found
658.15 [M-H]+.
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7-((6-amino-5-((3,5-di-tert-butyl-4-hydroxyphenyl)(diethoxyphosphoryl)methyl) 

pyridin-2-yl)amino)-4,6-dinitrobenzo[c][1,2,5]oxadiazole 1-oxide (4b). Purple powder, 
yield 78%. M.p.: 142–143 °С. IR (ν, cm–1): 703 (P–C), 1226 (P=O), 1365 (NO2 symm), 1563 
(NO2 аsymm), 1620 (furoxan ring) and 3440 (NH2); 3616 (OH). Minor amounts of the 

7-((6-amino-5-((3,5-di-tert-butyl-4-hydroxyphenyl)(diethoxyphosphoryl)methyl)p-
yridin-2-yl)amino)-4,6-dinitrobenzo[c][1,2,5]oxadiazole 1-oxide (4b). Purple powder, yield
78%. M.p.: 142–143 ◦C. IR (ν, cm–1): 703 (P–C), 1226 (P=O), 1365 (NO2 symm), 1563 (NO2
asymm), 1620 (furoxan ring) and 3440 (NH2); 3616 (OH). Minor amounts of the other
tautomer are present in the spectra. 1H NMR (500 MHz, Acetone-d6): δ 9.08 (s, 1H, H6-Bz1),
8.14 (dd, J = 8.1 Hz, J(PH) = 1.5 Hz, 1H, H4-Ar2), 7.44 (d, J(PH) = 1.8 Hz, 2H, H3-Ar1), 6.66
(brs, 1H, H5-Ar2), 4.63 (d, J(PH) = 26.9 Hz, 1H, H4a-Ar1), 4.06 (m, 4H, CH2), 1.47 (s, 18H,
H2b-Ar1), 1.24 and 1.17 (tr, J = 7.2 Hz, 6H, CH3). 13C{1H} NMR (126 MHz, Acetone-d6) δ
156.1 (C2-Ar2), 154.7 (C1-Ar1), 151.8 (C6-Ar2), 148.1 (C4-Bz), 144.1 (C4-Ar2), 140.2 (C7a-Bz),
139.0 (C2/C6-Ar1), 133.9 (C6-Bz), 127.9 (C7-Bz), 127.8 (d, J(PC) = 7.3 Hz, C3-Ar1), 127.4
(C3-Ar2), 124.2 (C5-Bz), 115.0 (C3a-Bz), 114.0 (C4-Ar1), 104.9 (C5-Ar2), 64.2 and 53.9 (m,
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CH2), 45.0 (d, J(PC) = 138.7 Hz, C4a-Ar1), 35.9 (C2a-Ar1), 31.3 (C2b-Ar1) and 17.4 and 17.3
(m, CH3). 31P NMR (162 MHz, Acetone-d6) δ 25.01. Found: C, 52.45; H, 5.52; N, 14.33; P,
4.57. Anal. calcd (%) for C30H38N7O10P: C, 52.40; H, 5.57; N, 14.26; P, 4.50. HRMS (ESI) m/z
for C30H38N7O10P: calc. 687.24 [M]+, found 686.18 [M-H]+.
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7-((6-amino-5-((3,5-di-tert-butyl-4-hydroxyphenyl)(diisopropoxyphosphoryl)meth 

yl)pyridin-2-yl)amino)-4,6-dinitrobenzo[c][1,2,5]oxadiazole 1-oxide (4с). Сlaret 
powder, yield 69%. M.p.: 119–120 °С. IR (ν, cm–1): 705 (P–C), 1206 (P=O), 1364 (NO2 
symm), 1569 (NO2 аsymm), 1621 (furoxan ring) and 3444 (NH2); 3620 (OH). 1H NMR (500 
MHz, Acetone-d6): δ 11.34 (s, 1H, NH- or H4a-Bz), 9.08 (s, 1H, H6-Bz), 8.12 (dd, J = 8.2 Hz, 
J(PH) = 1.7 Hz, 1H, H4-Ar2), 7.46 (d, J(PH) = 1.8 Hz, 2H, H3-Ar1), 6.67 (d, J = 7.9 Hz, 1H, 
H5-Ar2), 6.12 (s, 1H, OH-Ar1), 4.76 (brs, 2H, NH2-Ar2), 4.68 and 4.57 (m, 8H, H1-iPr), 
4.56 (d, J(PH) = 26.9 Hz, 1H, H4a-Ar1), 1.47 (s, 18H, H2b-Ar1), 1.30, 1.29, 1.16 and 0.99 (d, J 
= 6.2 Hz, 12H, H2-iPr). 13C{1H} NMR (126 MHz, Acetone-d6) δ 156.3 (d, J(PC) = 10.1 Hz, 
C2-Ar2), 154.8 (d, J(PC) = 14.3 Hz, C1-Ar1), 151.5 (C6-Ar2), 148.2 (C4-Bz), 143.8 (d, J(PC) = 
6.9 Hz, C4-Ar2), 139.9 (C7a-Bz), 137.0 (d, J(PC) = 15.6 Hz, C2-Ar1), 133.7 (C6-Bz), 128.2 (d, 
J(PC) = 5.6 Hz, C4-Ar1), 128.0 (d, J(PC) = 7.5 Hz, C3-Ar1), 127.7 (C7-Bz), 124.1 (C5-Bz), 
115.5 (C3-Ar2), 113.9 (C3a-Bz), 104.4 (C5-Ar2), 73.0 and 72.5 (d, J(PC) = 7.2 Hz, C1-iPr), 
46.0 (d, J(PC) = 140.4 Hz, C4a-Ar1), 35.9 (C2a-Ar1), 31.3 (C2b-Ar1), 25.2, 25.0 24.6 and 24.4 
(d, J(PC) = 5.4 Hz, C1-iPr). 31P NMR (162 MHz, Acetone-d6) δ 23.69. Found: C, 53.75; H, 
5.86; N, 13.64; P, 4.22. Anal. calcd (%) for C32H42N7O10P: C, 53.70; H, 5.92; N, 13.70; P, 4.33. 
HRMS (ESI) m/z for C32H42N7O10P: calc. 715.27 [M]+, found 716.27 [M+H]+, 714.25 [M-H]+. 

7-((6-amino-5-((3,5-di-tert-butyl-4-hydroxyphenyl)(diisopropoxyphosphoryl)meth-
yl)pyridin-2-yl)amino)-4,6-dinitrobenzo[c][1,2,5]oxadiazole 1-oxide (4c). Claret powder,
yield 69%. M.p.: 119–120 ◦C. IR (ν, cm–1): 705 (P–C), 1206 (P=O), 1364 (NO2 symm), 1569
(NO2 asymm), 1621 (furoxan ring) and 3444 (NH2); 3620 (OH). 1H NMR (500 MHz, Acetone-
d6): δ 11.34 (s, 1H, NH- or H4a-Bz), 9.08 (s, 1H, H6-Bz), 8.12 (dd, J = 8.2 Hz, J(PH) = 1.7 Hz,
1H, H4-Ar2), 7.46 (d, J(PH) = 1.8 Hz, 2H, H3-Ar1), 6.67 (d, J = 7.9 Hz, 1H, H5-Ar2), 6.12 (s, 1H,
OH-Ar1), 4.76 (brs, 2H, NH2-Ar2), 4.68 and 4.57 (m, 8H, H1-iPr), 4.56 (d, J(PH) = 26.9 Hz,
1H, H4a-Ar1), 1.47 (s, 18H, H2b-Ar1), 1.30, 1.29, 1.16 and 0.99 (d, J = 6.2 Hz, 12H, H2-
iPr). 13C{1H} NMR (126 MHz, Acetone-d6) δ 156.3 (d, J(PC) = 10.1 Hz, C2-Ar2), 154.8 (d,
J(PC) = 14.3 Hz, C1-Ar1), 151.5 (C6-Ar2), 148.2 (C4-Bz), 143.8 (d, J(PC) = 6.9 Hz, C4-Ar2),
139.9 (C7a-Bz), 137.0 (d, J(PC) = 15.6 Hz, C2-Ar1), 133.7 (C6-Bz), 128.2 (d, J(PC) = 5.6 Hz,
C4-Ar1), 128.0 (d, J(PC) = 7.5 Hz, C3-Ar1), 127.7 (C7-Bz), 124.1 (C5-Bz), 115.5 (C3-Ar2), 113.9
(C3a-Bz), 104.4 (C5-Ar2), 73.0 and 72.5 (d, J(PC) = 7.2 Hz, C1-iPr), 46.0 (d, J(PC) = 140.4 Hz,
C4a-Ar1), 35.9 (C2a-Ar1), 31.3 (C2b-Ar1), 25.2, 25.0 24.6 and 24.4 (d, J(PC) = 5.4 Hz, C1-
iPr). 31P NMR (162 MHz, Acetone-d6) δ 23.69. Found: C, 53.75; H, 5.86; N, 13.64; P, 4.22.
Anal. calcd (%) for C32H42N7O10P: C, 53.70; H, 5.92; N, 13.70; P, 4.33. HRMS (ESI) m/z for
C32H42N7O10P: calc. 715.27 [M]+, found 716.27 [M+H]+, 714.25 [M-H]+.
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7-((6-amino-5-((3,5-di-tert-butyl-4-hydroxyphenyl)(diphenoxyphosphoryl)methyl

) 
pyridin-2-yl)amino)-4,6-dinitrobenzo[c][1,2,5]oxadiazole 1-oxide (4d). Dark cherry 
powder, yield 76%. M.p.: 156–157 °С. IR (ν, cm–1): 690 (P–C), 1211 (P=O), 1378 (NO2 
symm), 1565 (NO2 аsymm), 1592 (C=Cаrom), 1622 (furoxan ring), 3437 (NH2). 1H NMR (500 
MHz, CDCl3): δ 10.69 (s, 1H, NH- or H4a-Bz), 9.18 (s, 1H, H6-Bz), 8.03 (d, J = 7.9 Hz, 1H, 
H4-Ar2), 7.27 (tr, J = 8.5 Hz, 2H, H3/H5-Ar4), 7.27 (s, 2H, H3-Ar1), 7.21 (tr, J = 8.5 Hz, 2H, 
H3/H5-Ar3), 7.16 (tr, J = 8.5 Hz, 1H, H4-Ar4), 7.10 (tr, J = 8.5 Hz, 1H, H4-Ar3), 6.95 (d, J = 
8.5 Hz, 2H, H2/H6-Ar4 [Ar4 cis- to 4a of Ar1]), 6.80 (d, J = 8.5 Hz, 2H, H2/H6-Ar3), 6.63 (d, 
J = 7.9 Hz, 1H, H5-Ar2), 5.28 (s, 1H, OH-Ar1), 4.84 (s, 2H, NH2-Ar21), 4.61 (d, J(PH) = 26.7 
Hz 1H, H4a-Ar1) and 1.40 (s, 18H, H2b-Ar1). 13C{1H} NMR (126 MHz, CDCl3) δ 156.5 (d, 
J(PC) = 10.1 Hz, C2-Ar2), 154.0 (C1-Ar1), 150.8 (d, J(PC) = 9.7 Hz, C1-Ar3), 150.3 (d, J(PC) = 
9.7 Hz, C1-Ar4 [Ar4 cis- to 4a of Ar1] ), 148.2 (C6-Ar2), 145.8 (C4-Bz), 141.5 (d, J(PC) = 6.9 
Hz, C4-Ar2), 137.0 (C2-Ar1), 136.1 (C7a-Bz), 130.8 (C6-Bz), 129.9 (C3-Ar3), 129.8 (C3-Ar4), 
127.11 (C7-Bz), 126.5 (C5-Bz), 126.7 (d, J(PC) = 7.5 Hz, C3-Ar1), 125.9 (C4-Ar3), 125.3 
(C4-Ar4), 123.3 (d, J(PC) = 5.6 Hz, C4-Ar1), 120.7 (d, J(PC) = 4.1 Hz, C2-Ar3), 120.3 (d, 
J(PC) = 4.1 Hz, C2-Ar4), 114.9 (C3-Ar2), 111.7 (C3a-Bz), 106.1 (C5-Ar2), 46.1 (d, J(PC) = 
140.4 Hz, C4a-Ar1) and 34.6 (C2a-Ar1), 30.4 (C2b-Ar1). 31P NMR (162 MHz, CDCl3) δ 
19.09. Found: C, 58.29; H, 4.81; N, 12.45; P, 3.89. Anal. calcd (%) for C38H38N7O10P: C, 58.24; 
H, 4.89; N, 12.51; P, 3.95. HRMS (ESI) m/z for C38H38N7O10P: calc. 783.24 [M]+, found 782.20 
[M-H]+. 
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7-((3-amino-4-((3,5-di-tert-butyl-4-hydroxyphenyl)(dimethoxyphosphoryl)methyl

) 
phenyl)amino)-4,6-dinitrobenzo[c][1,2,5]oxadiazole 1-oxide (4e). Maroon powder, yield 
72%. M.p.: 138–139 °С. IR (ν, cm–1): 681 (P–C), 1237 (P=O), 1376 (NO2 symm), 1569 (NO2 
аsymm), 1590 (C=Cаrom), 1621 (furoxan ring), 3415 (NH2) and 3625 (OH). Exists in solution 
as two isomers. Major isomer A (85%): 1H NMR (500 MHz, CDCl3): δ 11.17 (brs, NH-Ar2), 

7-((6-amino-5-((3,5-di-tert-butyl-4-hydroxyphenyl)(diphenoxyphosphoryl)methyl)
pyridin-2-yl)amino)-4,6-dinitrobenzo[c][1,2,5]oxadiazole 1-oxide (4d). Dark cherry pow-
der, yield 76%. M.p.: 156–157 ◦C. IR (ν, cm–1): 690 (P–C), 1211 (P=O), 1378 (NO2 symm),
1565 (NO2 asymm), 1592 (C=Carom), 1622 (furoxan ring), 3437 (NH2). 1H NMR (500 MHz,
CDCl3): δ 10.69 (s, 1H, NH- or H4a-Bz), 9.18 (s, 1H, H6-Bz), 8.03 (d, J = 7.9 Hz, 1H, H4-
Ar2), 7.27 (tr, J = 8.5 Hz, 2H, H3/H5-Ar4), 7.27 (s, 2H, H3-Ar1), 7.21 (tr, J = 8.5 Hz, 2H,
H3/H5-Ar3), 7.16 (tr, J = 8.5 Hz, 1H, H4-Ar4), 7.10 (tr, J = 8.5 Hz, 1H, H4-Ar3), 6.95 (d,
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J = 8.5 Hz, 2H, H2/H6-Ar4 [Ar4 cis- to 4a of Ar1]), 6.80 (d, J = 8.5 Hz, 2H, H2/H6-Ar3),
6.63 (d, J = 7.9 Hz, 1H, H5-Ar2), 5.28 (s, 1H, OH-Ar1), 4.84 (s, 2H, NH2-Ar21), 4.61 (d,
J(PH) = 26.7 Hz 1H, H4a-Ar1) and 1.40 (s, 18H, H2b-Ar1). 13C{1H} NMR (126 MHz, CDCl3)
δ 156.5 (d, J(PC) = 10.1 Hz, C2-Ar2), 154.0 (C1-Ar1), 150.8 (d, J(PC) = 9.7 Hz, C1-Ar3), 150.3
(d, J(PC) = 9.7 Hz, C1-Ar4 [Ar4 cis- to 4a of Ar1] ), 148.2 (C6-Ar2), 145.8 (C4-Bz), 141.5
(d, J(PC) = 6.9 Hz, C4-Ar2), 137.0 (C2-Ar1), 136.1 (C7a-Bz), 130.8 (C6-Bz), 129.9 (C3-Ar3),
129.8 (C3-Ar4), 127.11 (C7-Bz), 126.5 (C5-Bz), 126.7 (d, J(PC) = 7.5 Hz, C3-Ar1), 125.9 (C4-
Ar3), 125.3 (C4-Ar4), 123.3 (d, J(PC) = 5.6 Hz, C4-Ar1), 120.7 (d, J(PC) = 4.1 Hz, C2-Ar3),
120.3 (d, J(PC) = 4.1 Hz, C2-Ar4), 114.9 (C3-Ar2), 111.7 (C3a-Bz), 106.1 (C5-Ar2), 46.1 (d,
J(PC) = 140.4 Hz, C4a-Ar1) and 34.6 (C2a-Ar1), 30.4 (C2b-Ar1). 31P NMR (162 MHz, CDCl3)
δ 19.09. Found: C, 58.29; H, 4.81; N, 12.45; P, 3.89. Anal. calcd (%) for C38H38N7O10P: C,
58.24; H, 4.89; N, 12.51; P, 3.95. HRMS (ESI) m/z for C38H38N7O10P: calc. 783.24 [M]+, found
782.20 [M-H]+.
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7-((6-amino-5-((3,5-di-tert-butyl-4-hydroxyphenyl)(diphenoxyphosphoryl)methyl

) 
pyridin-2-yl)amino)-4,6-dinitrobenzo[c][1,2,5]oxadiazole 1-oxide (4d). Dark cherry 
powder, yield 76%. M.p.: 156–157 °С. IR (ν, cm–1): 690 (P–C), 1211 (P=O), 1378 (NO2 
symm), 1565 (NO2 аsymm), 1592 (C=Cаrom), 1622 (furoxan ring), 3437 (NH2). 1H NMR (500 
MHz, CDCl3): δ 10.69 (s, 1H, NH- or H4a-Bz), 9.18 (s, 1H, H6-Bz), 8.03 (d, J = 7.9 Hz, 1H, 
H4-Ar2), 7.27 (tr, J = 8.5 Hz, 2H, H3/H5-Ar4), 7.27 (s, 2H, H3-Ar1), 7.21 (tr, J = 8.5 Hz, 2H, 
H3/H5-Ar3), 7.16 (tr, J = 8.5 Hz, 1H, H4-Ar4), 7.10 (tr, J = 8.5 Hz, 1H, H4-Ar3), 6.95 (d, J = 
8.5 Hz, 2H, H2/H6-Ar4 [Ar4 cis- to 4a of Ar1]), 6.80 (d, J = 8.5 Hz, 2H, H2/H6-Ar3), 6.63 (d, 
J = 7.9 Hz, 1H, H5-Ar2), 5.28 (s, 1H, OH-Ar1), 4.84 (s, 2H, NH2-Ar21), 4.61 (d, J(PH) = 26.7 
Hz 1H, H4a-Ar1) and 1.40 (s, 18H, H2b-Ar1). 13C{1H} NMR (126 MHz, CDCl3) δ 156.5 (d, 
J(PC) = 10.1 Hz, C2-Ar2), 154.0 (C1-Ar1), 150.8 (d, J(PC) = 9.7 Hz, C1-Ar3), 150.3 (d, J(PC) = 
9.7 Hz, C1-Ar4 [Ar4 cis- to 4a of Ar1] ), 148.2 (C6-Ar2), 145.8 (C4-Bz), 141.5 (d, J(PC) = 6.9 
Hz, C4-Ar2), 137.0 (C2-Ar1), 136.1 (C7a-Bz), 130.8 (C6-Bz), 129.9 (C3-Ar3), 129.8 (C3-Ar4), 
127.11 (C7-Bz), 126.5 (C5-Bz), 126.7 (d, J(PC) = 7.5 Hz, C3-Ar1), 125.9 (C4-Ar3), 125.3 
(C4-Ar4), 123.3 (d, J(PC) = 5.6 Hz, C4-Ar1), 120.7 (d, J(PC) = 4.1 Hz, C2-Ar3), 120.3 (d, 
J(PC) = 4.1 Hz, C2-Ar4), 114.9 (C3-Ar2), 111.7 (C3a-Bz), 106.1 (C5-Ar2), 46.1 (d, J(PC) = 
140.4 Hz, C4a-Ar1) and 34.6 (C2a-Ar1), 30.4 (C2b-Ar1). 31P NMR (162 MHz, CDCl3) δ 
19.09. Found: C, 58.29; H, 4.81; N, 12.45; P, 3.89. Anal. calcd (%) for C38H38N7O10P: C, 58.24; 
H, 4.89; N, 12.51; P, 3.95. HRMS (ESI) m/z for C38H38N7O10P: calc. 783.24 [M]+, found 782.20 
[M-H]+. 
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7-((3-amino-4-((3,5-di-tert-butyl-4-hydroxyphenyl)(dimethoxyphosphoryl)methyl

) 
phenyl)amino)-4,6-dinitrobenzo[c][1,2,5]oxadiazole 1-oxide (4e). Maroon powder, yield 
72%. M.p.: 138–139 °С. IR (ν, cm–1): 681 (P–C), 1237 (P=O), 1376 (NO2 symm), 1569 (NO2 
аsymm), 1590 (C=Cаrom), 1621 (furoxan ring), 3415 (NH2) and 3625 (OH). Exists in solution 
as two isomers. Major isomer A (85%): 1H NMR (500 MHz, CDCl3): δ 11.17 (brs, NH-Ar2), 

7-((3-amino-4-((3,5-di-tert-butyl-4-hydroxyphenyl)(dimethoxyphosphoryl)methyl)
phenyl)amino)-4,6-dinitrobenzo[c][1,2,5]oxadiazole 1-oxide (4e). Maroon powder, yield
72%. M.p.: 138–139 ◦C. IR (ν, cm–1): 681 (P–C), 1237 (P=O), 1376 (NO2 symm), 1569 (NO2
asymm), 1590 (C=Carom), 1621 (furoxan ring), 3415 (NH2) and 3625 (OH). Exists in solu-
tion as two isomers. Major isomer A (85%): 1H NMR (500 MHz, CDCl3): δ 11.17 (brs,
NH-Ar2), 9.22 (s, 1H, H6-Bz1), 7.44 (dd, J = 8.2 Hz, J(PH) = 1.6 Hz, 1H, H4-Ar2), 7.22 (d,
J(PH) = 1.5 Hz, 2H, H3-Ar1), 6.54 (d, J = 1.7 Hz, 1H, H1-Ar2), 6.50 (dd, J = 8.2 Hz, J = 1.7
Hz, 1H, H5-Ar2), 5.22 (s, 1H, OH-Ar1), 4.56 (d, J(PH) = 26.5 Hz, 1H, H4a-Ar1), 3.62 and 3.66
(d, J = 10.7 Hz, 6H, CH3) and 1.43 (s, 18H, H2b-Ar1). 13C{1H} NMR (126 MHz, CDCl3) δ
153.5 (C1-Ar1), 146.8 (C2-Ar2), 146.0 (C4-Bz), 138.1 (C7a-Bz), 137.8 (C6-Ar2), 136.4 (C2-Ar1),
132.3 (d, J(PC) = 6.3 Hz, C4-Ar2), 131.4 (C6-Bz), 126.5 (d, J(PC) = 7.6 Hz, C3-Ar1), 125.3
(C7-Bz), 125.0 (d, J(PC) = 5.2 Hz, C4-Ar1), 124.5 (C5-Bz), 123.6 (C3-Ar2), 112.0 (C5-Ar2),
110.2 (C1-Ar2), 109.9 (C3a-Bz), 54.0 and 53.5 (d, J(PC) = 7.1 Hz, CH3), 45.6 (d, J(PC) = 139.2
Hz, C4a-Ar1), 34.6 (C2a-Ar1) and 30.5 (C2b-Ar1). 31P NMR (162 MHz, CDCl3) δ 27.28.
Isomer B (15%), since the concentration is low, only part of the peaks can be correlated:
1H NMR (500 MHz, CDCl3): δ 11.49 (s, NH-Ar2), 8.93 (s, 1H, H6-Bz1), 7.51 (dd, J = 8.2
Hz, J(PH) = 1.6 Hz, 1H, H4-Ar2), 7.25 (d, J(PH) = 1.5 Hz, 2H, H3-Ar1), 6.76 (d, J = 1.7 Hz,
1H, H1-Ar2), 6.73 (dd, J = 8.2 Hz, J = 1.7 Hz, 1H, H5-Ar2), 5.22 (s, 1H, OH-Ar1), 4.61 (d,
J(PH) = 26.5 Hz, 1H, H4a-Ar1), 3.66 and 3.62 (d, J = 10.7 Hz, 6H, CH3) and 1.43 (s, 18H,
H2b-Ar1). 31P NMR (162 MHz, CDCl3) δ 28.27. Found: C, 52.95; H, 5.29; N, 12.68; P, 4.65.
Anal. calcd (%) for C29H35N6O10P: C, 52.89; H, 5.36; N, 12.76; P, 4.70. HRMS (ESI) m/z for
C29H35N6O10P: calc. 658.22 [M]+ and found 657.16 [M-H]+.
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7-((3-amino-4-((3,5-di-tert-butyl-4-hydroxyphenyl)(diethoxyphosphoryl)methyl) 

phenyl)amino)-4,6-dinitrobenzo[c][1,2,5]oxadiazole 1-oxide (4f). Dark cherry powder, 
yield 78%. M.p.: 201–202 °С. IR (ν, cm–1): 695 (P–C), 1239 (P=O), 1376 (NO2 symm), 1570 
(NO2 аsymm), 1621 (furoxan ring), 3250 (NH2) and 3439 (OH). Exists in solution as two 
isomers. Major isomer A (94%): 1H NMR (400 MHz, DMSO-d6): δ 8.91 (s, 1H, H6-Bz1), 
7.54 (dd, J = 8.4 Hz, J(PH) = 1.4 Hz, 1H, H4-Ar2), 7.24 (d, J(PH) = 1.8 Hz, 2H, H3-Ar1), 6.61 
(s, 1H, H1-Ar2), 6.55 (dd, J = 8.3 Hz, J = 1.7 Hz, 1H, H5-Ar2), 4.63 (d, J(PH) = 26.7 Hz, 1H, 
H4a-Ar1), 3.86 (m, 6H, CH3), 1.35 (s, 18H, H2b-Ar1) and 1.09 (m, 4H, CH2). 13C NMR (101 
MHz, DMSO-d6) δ 153.6, 147.9, 139.6, 139.0, 138.3, 133.9, 131.4 (d, J(PC) = 5.5 Hz), 129.9, 
129.2, 127.6 (d, J(PC) = 5.3 Hz), 127.0 (d, J(PC) = 7.0 Hz), 126.4 (d, J(PC) = 13.4 Hz), 121.4, 
112.8, 110.6, 109.8, 62.9 (dd, J(PC) = 20.3, 6.8 Hz), 35.6, 31.4, 22.0 and 17.1 (d, J(PC) = 3.5 
Hz). 31P NMR (162 MHz, DMSO-d6) δ 27.89. Found: C, 53.62; H, 5.49; N, 12.45; P, 4.69. 
Anal. calcd (%) for C30H37N6O10P: C, 53.57; H, 5.54; N, 12.49; P, 4.60. 

7-((3-amino-4-((3,5-di-tert-butyl-4-hydroxyphenyl)(diethoxyphosphoryl)methyl)p-
henyl)amino)-4,6-dinitrobenzo[c][1,2,5]oxadiazole 1-oxide (4f). Dark cherry powder, yield
78%. M.p.: 201–202 ◦C. IR (ν, cm–1): 695 (P–C), 1239 (P=O), 1376 (NO2 symm), 1570 (NO2
asymm), 1621 (furoxan ring), 3250 (NH2) and 3439 (OH). Exists in solution as two isomers.
Major isomer A (94%): 1H NMR (400 MHz, DMSO-d6): δ 8.91 (s, 1H, H6-Bz1), 7.54 (dd,
J = 8.4 Hz, J(PH) = 1.4 Hz, 1H, H4-Ar2), 7.24 (d, J(PH) = 1.8 Hz, 2H, H3-Ar1), 6.61 (s,
1H, H1-Ar2), 6.55 (dd, J = 8.3 Hz, J = 1.7 Hz, 1H, H5-Ar2), 4.63 (d, J(PH) = 26.7 Hz, 1H,
H4a-Ar1), 3.86 (m, 6H, CH3), 1.35 (s, 18H, H2b-Ar1) and 1.09 (m, 4H, CH2). 13C NMR (101
MHz, DMSO-d6) δ 153.6, 147.9, 139.6, 139.0, 138.3, 133.9, 131.4 (d, J(PC) = 5.5 Hz), 129.9,
129.2, 127.6 (d, J(PC) = 5.3 Hz), 127.0 (d, J(PC) = 7.0 Hz), 126.4 (d, J(PC) = 13.4 Hz), 121.4,
112.8, 110.6, 109.8, 62.9 (dd, J(PC) = 20.3, 6.8 Hz), 35.6, 31.4, 22.0 and 17.1 (d, J(PC) = 3.5 Hz).
31P NMR (162 MHz, DMSO-d6) δ 27.89. Found: C, 53.62; H, 5.49; N, 12.45; P, 4.69. Anal.
calcd (%) for C30H37N6O10P: C, 53.57; H, 5.54; N, 12.49; P, 4.60.
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Isomer B

-O  
7-((3-amino-4-((3,5-di-tert-butyl-4-hydroxyphenyl)(diphenoxyphosphoryl)methyl

) 
phenyl)amino)-4,6-dinitrobenzo[c][1,2,5]oxadiazole 1-oxide (4g). Purple powder, yield 
81%. M.p.: 139–140 °С. IR (ν, cm–1): 689 (P–C), 1238 (P=O), 1377 (NO2 symm), 1567 (NO2 
аsymm), 1590 (C=Cаrom), 1620 (furoxan ring), 3437 (NH2) and 3625 (OH). Exists in solution 
as two isomers. Isomer A (80%): 1H NMR (500 MHz, CDCl3): δ 11.12 (br.s, NH-Ar2), 9.22 
(s, 1H, H6-Bz1), 7.67 (dd, J = 8.2 Hz, J(PH) = 1.6 Hz, 1H, H4-Ar2), 7.31 (d, J(PH) = 1.5 Hz, 
2H, H3-Ar1), 7.26 and 7.22 (tr, J = 8.0 Hz, 4H, H3/H5 -Ar3 and Ar4), 7.10 and 7.15 (tr, J = 
8.0 Hz, 2H, H2/H6-Ar3 and Ar4), 6.92 and 6.82 (d, J = 8.0 Hz, 4H, H2/H6-Ar3 and Ar4), 
6.54 (d, J = 1.7 Hz, 1H, H1-Ar2), 6.53 (dd, J = 8.2 Hz, J = 1.7 Hz, 1H, H5-Ar2), 5.25 (s, 1H, 
OH-Ar1), 4.84 (d, J(PH) = 26.4 Hz, 1H, H4a-Ar1), 1.40 (s, 18H, H2b-Ar1). 13C{1H} NMR 
(126 MHz, CDCl3) δ 153.8 (C1-Ar1), 150.7 and 150.4 (d, J(PC) = 9.7 Hz, C4c1 -Ar3 and Ar4), 
147.1 (C2-Ar2), 146.0 (C4-Bz), 138.0 (C7a-Bz), 138.0 (C6-Ar2), 136.7 (C2-Ar1), 132.2 (d, 
J(PC) = 6.4 Hz, C4-Ar2), 131.4 (C6-Bz), 129.9 and 129.8 (C4c3/C4c5 -Ar3 and Ar4), 127.1 (d, 
J(PC) = 9.5 Hz, C3-Ar1), 125.5 and 125.2 (C4c4 -Ar3 and Ar4), 125.3 (C7-Bz), 125.0 
(C5-Bz),124.1 (d, J(PC) = 5.2 Hz, C4-Ar1), 122.9 (C3-Ar2), 120.8 and 120.4 (d, J(PC) = 4.2 
Hz, C4c2/C4c6 -Ar3 and Ar4), 112.0 (C5-Ar2), 110.2 (C1-Ar2), 110.0 (C3a-Bz), 45.9 (d, 
J(PC) = 139.2 Hz, C4a-Ar1), 34.6 (C2a-Ar1) and 30.4 (C2b-Ar1). 31P NMR (162 MHz, 
CDCl3) δ 18.50. Isomer B (20%), since the concentration is low, only part of the peaks can 
be correlated: 1H NMR (500 MHz, CDCl3): δ 11.48 (brs, NH-Ar2), 8.93 (s, 1H, H6-Bz1), 
7.76 (dd, J = 8.2 Hz, J(PH) = 1.6 Hz, 1H, H4-Ar2), 7.33 (d, J(PH) = 1.5 Hz, 2H, H3-Ar1), 7.26 
and 7.22 (tr, J = 8.0 Hz, 4H, H3/H5 -Ar3 and Ar4), 7.15 and 7.10 (tr, J = 8.0 Hz, 2H, 
H2/H6-Ar3 and Ar4), 6.92 and 6.82 (d, J = 8.0 Hz, 4H, H2/H6-Ar3 and Ar4), 6.79 (dd, J = 
8.2 Hz, J = 1.7 Hz, 1H, H5-Ar2), 6.74 (d, J = 1.7 Hz, 1H, H1-Ar2), 5.19 (s, 1H, OH-Ar1), 4.88 
(d, J(PH) = 26.4 Hz, 1H, H4a-Ar1) and 1.40 (s, 18H, H2b-Ar1). 31P NMR (162 MHz, CDCl3) 
δ 20.09. Found: C, 59.91; H, 4.95; N, 10.69; P, 4.01. Anal. calcd (%) for C39H39N6O10P: C, 
59.84; H, 5.02; N, 10.74; P, 3.96. HRMS (ESI) m/z for C39H39N6O10P: calc. 782.25 [M]+ and 
found 781.21 [M-H]+. 

7-((3-amino-4-((3,5-di-tert-butyl-4-hydroxyphenyl)(diphenoxyphosphoryl)methyl)
phenyl)amino)-4,6-dinitrobenzo[c][1,2,5]oxadiazole 1-oxide (4g). Purple powder, yield
81%. M.p.: 139–140 ◦C. IR (ν, cm–1): 689 (P–C), 1238 (P=O), 1377 (NO2 symm), 1567 (NO2
asymm), 1590 (C=Carom), 1620 (furoxan ring), 3437 (NH2) and 3625 (OH). Exists in solution
as two isomers. Isomer A (80%): 1H NMR (500 MHz, CDCl3): δ 11.12 (br.s, NH-Ar2), 9.22 (s,
1H, H6-Bz1), 7.67 (dd, J = 8.2 Hz, J(PH) = 1.6 Hz, 1H, H4-Ar2), 7.31 (d, J(PH) = 1.5 Hz, 2H,
H3-Ar1), 7.26 and 7.22 (tr, J = 8.0 Hz, 4H, H3/H5 -Ar3 and Ar4), 7.10 and 7.15 (tr, J = 8.0 Hz,
2H, H2/H6-Ar3 and Ar4), 6.92 and 6.82 (d, J = 8.0 Hz, 4H, H2/H6-Ar3 and Ar4), 6.54 (d,
J = 1.7 Hz, 1H, H1-Ar2), 6.53 (dd, J = 8.2 Hz, J = 1.7 Hz, 1H, H5-Ar2), 5.25 (s, 1H, OH-Ar1),
4.84 (d, J(PH) = 26.4 Hz, 1H, H4a-Ar1), 1.40 (s, 18H, H2b-Ar1). 13C{1H} NMR (126 MHz,
CDCl3) δ 153.8 (C1-Ar1), 150.7 and 150.4 (d, J(PC) = 9.7 Hz, C4c1 -Ar3 and Ar4), 147.1 (C2-
Ar2), 146.0 (C4-Bz), 138.0 (C7a-Bz), 138.0 (C6-Ar2), 136.7 (C2-Ar1), 132.2 (d, J(PC) = 6.4 Hz,
C4-Ar2), 131.4 (C6-Bz), 129.9 and 129.8 (C4c3/C4c5 -Ar3 and Ar4), 127.1 (d, J(PC) = 9.5
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Hz, C3-Ar1), 125.5 and 125.2 (C4c4 -Ar3 and Ar4), 125.3 (C7-Bz), 125.0 (C5-Bz),124.1 (d,
J(PC) = 5.2 Hz, C4-Ar1), 122.9 (C3-Ar2), 120.8 and 120.4 (d, J(PC) = 4.2 Hz, C4c2/C4c6 -Ar3
and Ar4), 112.0 (C5-Ar2), 110.2 (C1-Ar2), 110.0 (C3a-Bz), 45.9 (d, J(PC) = 139.2 Hz, C4a-Ar1),
34.6 (C2a-Ar1) and 30.4 (C2b-Ar1). 31P NMR (162 MHz, CDCl3) δ 18.50. Isomer B (20%),
since the concentration is low, only part of the peaks can be correlated: 1H NMR (500 MHz,
CDCl3): δ 11.48 (brs, NH-Ar2), 8.93 (s, 1H, H6-Bz1), 7.76 (dd, J = 8.2 Hz, J(PH) = 1.6 Hz, 1H,
H4-Ar2), 7.33 (d, J(PH) = 1.5 Hz, 2H, H3-Ar1), 7.26 and 7.22 (tr, J = 8.0 Hz, 4H, H3/H5 -Ar3
and Ar4), 7.15 and 7.10 (tr, J = 8.0 Hz, 2H, H2/H6-Ar3 and Ar4), 6.92 and 6.82 (d, J = 8.0 Hz,
4H, H2/H6-Ar3 and Ar4), 6.79 (dd, J = 8.2 Hz, J = 1.7 Hz, 1H, H5-Ar2), 6.74 (d, J = 1.7 Hz,
1H, H1-Ar2), 5.19 (s, 1H, OH-Ar1), 4.88 (d, J(PH) = 26.4 Hz, 1H, H4a-Ar1) and 1.40 (s, 18H,
H2b-Ar1). 31P NMR (162 MHz, CDCl3) δ 20.09. Found: C, 59.91; H, 4.95; N, 10.69; P, 4.01.
Anal. calcd (%) for C39H39N6O10P: C, 59.84; H, 5.02; N, 10.74; P, 3.96. HRMS (ESI) m/z for
C39H39N6O10P: calc. 782.25 [M]+ and found 781.21 [M-H]+.
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7,7’-((3-((3,5-di-tert-butyl-4-hydroxyphenyl)(dimethoxyphosphoryl)methyl)pyrid 

ine-2,6-diyl)bis(azanediyl))bis(4,6-dinitrobenzo[c][1,2,5]oxadiazole 1-oxide) (5a). 
Bright red powder, yield 91%. M.p.: 160–161 °С. IR (ν, cm–1): 689 (P–C), 1213 (P=O), 1378 
(NO2 symm), 1575 (NO2 аsymm), 1594 (C=Cаrom), 1626 (furoxan ring), 3437 (NH2), 3632 
(OH). 1H NMR (500 MHz, Acetone-d6): δ 11.05 (s, 2H, NH or H4a -Bz1 and -Bz2), 9.08 (s, 
1H, H6-Bz2), 8.61 (s, 1H, H6-Bz1), 8.36 (d, J = 8.4 Hz, 1H, H4-Ar2), 7.58 (2H, H3-Ar1), 7.10 
(brs, 1H, H5-Ar2), 5.94 (s, 1H, OH-Ar1), 5.65 (d, J(PH) = 12.4 Hz, 1H, H4a-Ar1), 3.66 and 
3.61 (d, J = 10.3 Hz, 6H, CH3), 1.46 (s, 18H, H2b-Ar1). 13C{1H} NMR (Acetone-d6, 126 MHz) 
δ 157.4 (C2-Ar2), 157.3 (C6-Ar2), 154.5 (C1-Ar1), 149.5 (C4-Bz2), 148.1 (C4-Bz1), 141.6 
(C4-Ar2), 141.5 (C7a-Bz1), 138.8 (C2-Ar1), 138.7 (C7a-Bz1), 134.4 (C6-Bz1), 132.8 (C6-Bz2), 
130.0 (C5-Bz1), 129.8 (C4-Ar1), 129.5 (C5-Bz2), 128.6 (C7-Bz1), 128.0 (C7-Bz2), 127.9 (d, 
J(PC) = 7.5 Hz, C3-Ar1), 115.7 (C5-Ar2), 114.4 (C3a-Bz1), 113.7 (C3a-Bz2), 111.0 (C3-Ar2), 
54.4 (CH3), 43.2 (d, J(PC) = 140.0 Hz, C4a-Ar1), 35.9 (C2a-Ar1), 31.4 (C2b-Ar1). 31P NMR 
(162 MHz, CDCl3) δ 27.44. Found: C, 46.27; H, 3.84; N, 17.48; P, 3.49. Anal. calcd (%) for 
C34H34N11O16P: C, 46.21; H, 3.88; N, 17.44; P, 3.51. HRMS (ESI) m/z for C34H34N11O16P: calc. 
883.19 [M]+, found 882.12 [M-H]+. 

OH

P

O

Et-O
O

N

HN

HN

5b

N

O

N+

NO2

NO2
4

6
712

3
3a

7a

5
5a

7'

4a

Bz1

Ar2

Ar1

1
2
3

4
5
6

4a

1
2
3

4

2a
2b

4a

4b
4c

N

O
N+

NO2

O2N
4

6 7

12
33a

7a
55a Bz2

-O

-O

4d

 
7,7’-((3-((3,5-di-tert-butyl-4-hydroxyphenyl)(diethoxyphosphoryl)methyl)pyridin

e 
-2,6-diyl)bis(azanediyl))bis(4,6-dinitrobenzo[c][1,2,5]oxadiazole 1-oxide) (5b). Red 
powder, yield 88%. M.p.: >250 °С. IR (ν, cm–1): 696 (P–C), 1211 (P=O), 1378 (NO2 symm), 
1571 (NO2 аsymm), 1624 (furoxan ring) and 3436 (OH). Minor amounts of the other 
tautomer are present in the spectra. 1H NMR (500 MHz, Acetone-d6): δ 9.05 (s, 1H, 
H6-Bz2), 8.63 (brs, 1H, H6-Bz1), 8.40 (m, 1H, H4-Ar2), 7.54 (d, J(PH) = 0.6 Hz, 2H, 
H3-Ar1), 7.07 (d, J = 8.4 Hz, 1H, H5-Ar2), 5.95 (s, 1H, OH-Ar1), 5.53 (d, J(PH) = 25.3 Hz, 
1H, H4a-Ar1), 4.02 (m, 4H, H4c-Ar1), 1.45 (s, 18H, H2b-Ar1) and 1.33 and 1.20 (d, J = 6.6 
Hz, 6H, СH3 or H4d-Ar1). 13C{1H} NMR (Acetone-d6, 126 MHz) δ 154.9 (C1-Ar1), 149.6 
(C2-Ar2), 149.5 (C6-Ar2), 148.2 (C4-Bz2 and C4-Bz1), 142.5 (d, J(PC) = 4.7 Hz, C4-Ar2), 

7,7’-((3-((3,5-di-tert-butyl-4-hydroxyphenyl)(dimethoxyphosphoryl)methyl)pyridi-
ne-2,6-diyl)bis(azanediyl))bis(4,6-dinitrobenzo[c][1,2,5]oxadiazole 1-oxide) (5a). Bright
red powder, yield 91%. M.p.: 160–161 ◦C. IR (ν, cm–1): 689 (P–C), 1213 (P=O), 1378 (NO2
symm), 1575 (NO2 asymm), 1594 (C=Carom), 1626 (furoxan ring), 3437 (NH2), 3632 (OH).
1H NMR (500 MHz, Acetone-d6): δ 11.05 (s, 2H, NH or H4a -Bz1 and -Bz2), 9.08 (s, 1H,
H6-Bz2), 8.61 (s, 1H, H6-Bz1), 8.36 (d, J = 8.4 Hz, 1H, H4-Ar2), 7.58 (2H, H3-Ar1), 7.10 (brs,
1H, H5-Ar2), 5.94 (s, 1H, OH-Ar1), 5.65 (d, J(PH) = 12.4 Hz, 1H, H4a-Ar1), 3.66 and 3.61 (d,
J = 10.3 Hz, 6H, CH3), 1.46 (s, 18H, H2b-Ar1). 13C{1H} NMR (Acetone-d6, 126 MHz) δ 157.4
(C2-Ar2), 157.3 (C6-Ar2), 154.5 (C1-Ar1), 149.5 (C4-Bz2), 148.1 (C4-Bz1), 141.6 (C4-Ar2),
141.5 (C7a-Bz1), 138.8 (C2-Ar1), 138.7 (C7a-Bz1), 134.4 (C6-Bz1), 132.8 (C6-Bz2), 130.0 (C5-
Bz1), 129.8 (C4-Ar1), 129.5 (C5-Bz2), 128.6 (C7-Bz1), 128.0 (C7-Bz2), 127.9 (d, J(PC) = 7.5 Hz,
C3-Ar1), 115.7 (C5-Ar2), 114.4 (C3a-Bz1), 113.7 (C3a-Bz2), 111.0 (C3-Ar2), 54.4 (CH3), 43.2
(d, J(PC) = 140.0 Hz, C4a-Ar1), 35.9 (C2a-Ar1), 31.4 (C2b-Ar1). 31P NMR (162 MHz, CDCl3)
δ 27.44. Found: C, 46.27; H, 3.84; N, 17.48; P, 3.49. Anal. calcd (%) for C34H34N11O16P:
C, 46.21; H, 3.88; N, 17.44; P, 3.51. HRMS (ESI) m/z for C34H34N11O16P: calc. 883.19 [M]+,
found 882.12 [M-H]+.
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7,7’-((3-((3,5-di-tert-butyl-4-hydroxyphenyl)(dimethoxyphosphoryl)methyl)pyrid 

ine-2,6-diyl)bis(azanediyl))bis(4,6-dinitrobenzo[c][1,2,5]oxadiazole 1-oxide) (5a). 
Bright red powder, yield 91%. M.p.: 160–161 °С. IR (ν, cm–1): 689 (P–C), 1213 (P=O), 1378 
(NO2 symm), 1575 (NO2 аsymm), 1594 (C=Cаrom), 1626 (furoxan ring), 3437 (NH2), 3632 
(OH). 1H NMR (500 MHz, Acetone-d6): δ 11.05 (s, 2H, NH or H4a -Bz1 and -Bz2), 9.08 (s, 
1H, H6-Bz2), 8.61 (s, 1H, H6-Bz1), 8.36 (d, J = 8.4 Hz, 1H, H4-Ar2), 7.58 (2H, H3-Ar1), 7.10 
(brs, 1H, H5-Ar2), 5.94 (s, 1H, OH-Ar1), 5.65 (d, J(PH) = 12.4 Hz, 1H, H4a-Ar1), 3.66 and 
3.61 (d, J = 10.3 Hz, 6H, CH3), 1.46 (s, 18H, H2b-Ar1). 13C{1H} NMR (Acetone-d6, 126 MHz) 
δ 157.4 (C2-Ar2), 157.3 (C6-Ar2), 154.5 (C1-Ar1), 149.5 (C4-Bz2), 148.1 (C4-Bz1), 141.6 
(C4-Ar2), 141.5 (C7a-Bz1), 138.8 (C2-Ar1), 138.7 (C7a-Bz1), 134.4 (C6-Bz1), 132.8 (C6-Bz2), 
130.0 (C5-Bz1), 129.8 (C4-Ar1), 129.5 (C5-Bz2), 128.6 (C7-Bz1), 128.0 (C7-Bz2), 127.9 (d, 
J(PC) = 7.5 Hz, C3-Ar1), 115.7 (C5-Ar2), 114.4 (C3a-Bz1), 113.7 (C3a-Bz2), 111.0 (C3-Ar2), 
54.4 (CH3), 43.2 (d, J(PC) = 140.0 Hz, C4a-Ar1), 35.9 (C2a-Ar1), 31.4 (C2b-Ar1). 31P NMR 
(162 MHz, CDCl3) δ 27.44. Found: C, 46.27; H, 3.84; N, 17.48; P, 3.49. Anal. calcd (%) for 
C34H34N11O16P: C, 46.21; H, 3.88; N, 17.44; P, 3.51. HRMS (ESI) m/z for C34H34N11O16P: calc. 
883.19 [M]+, found 882.12 [M-H]+. 
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7,7’-((3-((3,5-di-tert-butyl-4-hydroxyphenyl)(diethoxyphosphoryl)methyl)pyridin

e 
-2,6-diyl)bis(azanediyl))bis(4,6-dinitrobenzo[c][1,2,5]oxadiazole 1-oxide) (5b). Red 
powder, yield 88%. M.p.: >250 °С. IR (ν, cm–1): 696 (P–C), 1211 (P=O), 1378 (NO2 symm), 
1571 (NO2 аsymm), 1624 (furoxan ring) and 3436 (OH). Minor amounts of the other 
tautomer are present in the spectra. 1H NMR (500 MHz, Acetone-d6): δ 9.05 (s, 1H, 
H6-Bz2), 8.63 (brs, 1H, H6-Bz1), 8.40 (m, 1H, H4-Ar2), 7.54 (d, J(PH) = 0.6 Hz, 2H, 
H3-Ar1), 7.07 (d, J = 8.4 Hz, 1H, H5-Ar2), 5.95 (s, 1H, OH-Ar1), 5.53 (d, J(PH) = 25.3 Hz, 
1H, H4a-Ar1), 4.02 (m, 4H, H4c-Ar1), 1.45 (s, 18H, H2b-Ar1) and 1.33 and 1.20 (d, J = 6.6 
Hz, 6H, СH3 or H4d-Ar1). 13C{1H} NMR (Acetone-d6, 126 MHz) δ 154.9 (C1-Ar1), 149.6 
(C2-Ar2), 149.5 (C6-Ar2), 148.2 (C4-Bz2 and C4-Bz1), 142.5 (d, J(PC) = 4.7 Hz, C4-Ar2), 
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7,7’-((3-((3,5-di-tert-butyl-4-hydroxyphenyl)(diethoxyphosphoryl)methyl)pyridine-
2,6-diyl)bis(azanediyl))bis(4,6-dinitrobenzo[c][1,2,5]oxadiazole 1-oxide) (5b). Red pow-
der, yield 88%. M.p.: >250 ◦C. IR (ν, cm–1): 696 (P–C), 1211 (P=O), 1378 (NO2 symm), 1571
(NO2 asymm), 1624 (furoxan ring) and 3436 (OH). Minor amounts of the other tautomer
are present in the spectra. 1H NMR (500 MHz, Acetone-d6): δ 9.05 (s, 1H, H6-Bz2), 8.63 (brs,
1H, H6-Bz1), 8.40 (m, 1H, H4-Ar2), 7.54 (d, J(PH) = 0.6 Hz, 2H, H3-Ar1), 7.07 (d, J = 8.4
Hz, 1H, H5-Ar2), 5.95 (s, 1H, OH-Ar1), 5.53 (d, J(PH) = 25.3 Hz, 1H, H4a-Ar1), 4.02 (m, 4H,
H4c-Ar1), 1.45 (s, 18H, H2b-Ar1) and 1.33 and 1.20 (d, J = 6.6 Hz, 6H, CH3 or H4d-Ar1).
13C{1H} NMR (Acetone-d6, 126 MHz) δ 154.9 (C1-Ar1), 149.6 (C2-Ar2), 149.5 (C6-Ar2), 148.2
(C4-Bz2 and C4-Bz1), 142.5 (d, J(PC) = 4.7 Hz, C4-Ar2), 141.8 (C7a-Bz1), 138.7 (C2-Ar1),
138.6 (C7a-Bz1), 134.5 (C6-Bz2), 1330 (C6-Bz1), 129.4 (C5-Bz1), 128.4 (C5-Bz2), 128.3 (C7-
Bz1), 128.2 (C7-Bz2), 128.0 (d, J(PC) = 8.0 Hz, C3-Ar1), 127.1 (d, J(PC) = 4.3 Hz, C4-Ar1),
115.7 (d, J(PC) = 5.7 Hz, C3-Ar2), 114.3 (C3a-Bz1), 113.6 (C3a-Bz2), 111.0 (C5-Ar2), 63.7 (m,
C4c-Ar1), 44.0 (d, J(PC) = 140.3 Hz, C4a-Ar1), 35.9 (C2a-Ar1), 31.4 (C2b-Ar1) and 17.3 (m,
C4d-Ar1). 31P NMR (162 MHz, Acetone-d6) δ 25.97. Found: C, 47.48; H, 4.27; N, 16.88; P,
3.45. Anal. calcd (%) for C36H38N11O16P: C, 47.43; H, 4.20; N, 16.90; P, 3.40. HRMS (ESI)
m/z for C36H38N11O16P: calc. 911.22 [M]+ and found 910.16 [M-H]+.
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7,7’-((3-((3,5-di-tert-butyl-4-hydroxyphenyl)(diisopropoxyphosphoryl)methyl)pyr

i 
dine-2,6-diyl)bis(azanediyl))bis(4,6-dinitrobenzo[c][1,2,5]oxadiazole 1-oxide) (5c). 
Brick red powder, yield 78%. M.p.: >250 °С. IR (ν, cm–1): 695 (P–C), 1210 (P=O), 1360 (NO2 
symm), 1565 (NO2 аsymm), 1625 (furoxan ring) and 3444 (OH). 1H NMR (500 MHz, 
Acetone-d6): δ 11.30 (s, 1H, NH- or H4a-Bz2), 10.64 (s, 1H, NH- or H4a-Bz1), 9.07 (s, 1H, 
H6-Bz2), 8.90 (s, 1H, H6-Bz1), 8.15 (dd, J = 8.4 Hz, J(PH) = 1.0 Hz, 1H, H4-Ar2), 7.56 (d, 
J(PH) = 0.6 Hz, 2H, H3-Ar1), 7.53 (d, J = 8.4 Hz, 1H, H5-Ar2), 6.22 (s, 1H, OH-Ar1), 4.98 (d, 
J(PH) = 25.3 Hz, 1H, H4a-Ar1), 4.83 and 4.68 (sept, J(PH) = 6.3 Hz, 8H, H1-iPr), 1.49 (s, 
18H, H2b-Ar1), 1.40, 1.38, 1.18 and 1.09 (d, J = 6.2 Hz, 12H, H2-iPr). 13C{1H} NMR (126 
MHz, Acetone-d6,) δ 155.0 (C1-Ar1), 149.9 (C2-Ar2), 149.8 (C6-Ar2), 147.4 (C4-Bz2), 147.3 
(C4-Bz1), 144.0 (d, J(PC) = 4.7 Hz, C4-Ar2), 139.5 (C7a-Bz1), 139.3 (C2-Ar1), 138.3 
(C7a-Bz1), 132.1 (C6-Bz2), 132.0 (C6-Bz1), 130.9 (C5-Bz1), 130.0 (C5-Bz2), 129.7 (C7-Bz1), 
128.4 (d, J(PC) = 8.0 Hz, C3-Ar1), 128.2 (C7-Bz2), 127.1 (d, J(PC) = 4.3 Hz, C4-Ar1), 125.9 (d, 
J(PC) = 5.7 Hz, C3-Ar2), 115.2 (C5-Ar2), 114.2 (C3a-Bz1), 113.6 (C3a-Bz2), 73.5 and 73.0 (d, 
J(PC) = 7.0 Hz, C1-iPr), 46.5 (d, J(PC) = 140.2 Hz, C4a-Ar1), 36.0 (C2a-Ar1), 31.3 (C2b-Ar1), 
25.2, 25.0, 24.7 and 24.4 (d, J(PC) = 5.3 Hz, C1-iPr). 31P NMR (162 MHz, Acetone-d6) δ 24.34. 
Found: 48.54; H, 4.54; N, 16.32; P, 3.35. Anal. calcd (%) for C38H42N11O16P: C, 48.57; H, 4.50; 
N, 16.39; P, 3.30. HRMS (ESI) m/z for C38H42N11O16P: calc. 939.25 [M]+ and found 938.24 
[M-H]+. 

7,7’-((3-((3,5-di-tert-butyl-4-hydroxyphenyl)(diisopropoxyphosphoryl)methyl)pyr-
idine-2,6-diyl)bis(azanediyl))bis(4,6-dinitrobenzo[c][1,2,5]oxadiazole 1-oxide) (5c). Brick
red powder, yield 78%. M.p.: >250 ◦C. IR (ν, cm–1): 695 (P–C), 1210 (P=O), 1360 (NO2
symm), 1565 (NO2 asymm), 1625 (furoxan ring) and 3444 (OH). 1H NMR (500 MHz,
Acetone-d6): δ 11.30 (s, 1H, NH- or H4a-Bz2), 10.64 (s, 1H, NH- or H4a-Bz1), 9.07 (s, 1H,
H6-Bz2), 8.90 (s, 1H, H6-Bz1), 8.15 (dd, J = 8.4 Hz, J(PH) = 1.0 Hz, 1H, H4-Ar2), 7.56 (d,
J(PH) = 0.6 Hz, 2H, H3-Ar1), 7.53 (d, J = 8.4 Hz, 1H, H5-Ar2), 6.22 (s, 1H, OH-Ar1), 4.98
(d, J(PH) = 25.3 Hz, 1H, H4a-Ar1), 4.83 and 4.68 (sept, J(PH) = 6.3 Hz, 8H, H1-iPr), 1.49
(s, 18H, H2b-Ar1), 1.40, 1.38, 1.18 and 1.09 (d, J = 6.2 Hz, 12H, H2-iPr). 13C{1H} NMR
(126 MHz, Acetone-d6,) δ 155.0 (C1-Ar1), 149.9 (C2-Ar2), 149.8 (C6-Ar2), 147.4 (C4-Bz2),
147.3 (C4-Bz1), 144.0 (d, J(PC) = 4.7 Hz, C4-Ar2), 139.5 (C7a-Bz1), 139.3 (C2-Ar1), 138.3
(C7a-Bz1), 132.1 (C6-Bz2), 132.0 (C6-Bz1), 130.9 (C5-Bz1), 130.0 (C5-Bz2), 129.7 (C7-Bz1),
128.4 (d, J(PC) = 8.0 Hz, C3-Ar1), 128.2 (C7-Bz2), 127.1 (d, J(PC) = 4.3 Hz, C4-Ar1), 125.9 (d,
J(PC) = 5.7 Hz, C3-Ar2), 115.2 (C5-Ar2), 114.2 (C3a-Bz1), 113.6 (C3a-Bz2), 73.5 and 73.0 (d,
J(PC) = 7.0 Hz, C1-iPr), 46.5 (d, J(PC) = 140.2 Hz, C4a-Ar1), 36.0 (C2a-Ar1), 31.3 (C2b-Ar1),
25.2, 25.0, 24.7 and 24.4 (d, J(PC) = 5.3 Hz, C1-iPr). 31P NMR (162 MHz, Acetone-d6) δ 24.34.
Found: 48.54; H, 4.54; N, 16.32; P, 3.35. Anal. calcd (%) for C38H42N11O16P: C, 48.57; H,
4.50; N, 16.39; P, 3.30. HRMS (ESI) m/z for C38H42N11O16P: calc. 939.25 [M]+ and found
938.24 [M-H]+.
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7,7’-((3-((3,5-di-tert-butyl-4-hydroxyphenyl)(diphenoxyphosphoryl)methyl)pyrid 

ine-2,6-diyl)bis(azanediyl))bis(4,6-dinitrobenzo[c][1,2,5]oxadiazole 1-oxide) (5d). Brick 
red powder, yield 75%. M.p.: >250 °С. IR (ν, cm–1): 695 (P–C), 1209 (P=O), 1378 (NO2 
symm), 1569 (NO2 аsymm), 1622 (furoxan ring) and 3444 (OH). 1H NMR (400 MHz, 
DMSO-d6) δ 8.87 (s, 1H), 8.67 (s, 1H), 8.34 (d, J = 8.4 Hz, 1H), 8.28 (s, 1H), 7.30 (d, J = 8.1 Hz, 
2H), 7.17 (m, 5H), 7.07 (m, 1H), 6.99 (d, J = 8.3 Hz, 2H), 6.87 (br.s, 1H), 6.64 (d, J = 8.2 Hz, 
2H), 5.26 (m, 1H) and 1.24 (s, 18H). 13C NMR (126 MHz, DMSO-d6) δ 162.8, 161.7, 153.8, 
150.4, 148.4, 147.7, 139.6, 135.2, 134.6, 130.4, 130.2, 130.2, 130.1, 129.9, 129.8, 127.6, 126.6, 
125.6, 125.3, 120.9, 120.8, 120.4, 115.1, 111.9, 111.4, 36.2, 34.9 and 30.5.31P NMR (162 MHz, 
DMSO-d6) δ 18.80. Found: %: C, 52.49; H, 3.77; N, 15.35; P, 3.01. Anal. calcd (%) for 
C44H38N11O16P: C, 52.44; H, 3.80; N, 15.29; P, 3.07. 
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7,7’-((4-((3,5-di-tert-butyl-4-hydroxyphenyl)(dimethoxyphosphoryl)methyl)-1,3-p

henylene)bis(azanediyl))bis(4,6-dinitrobenzo[c][1,2,5]oxadiazole 1-oxide) (5e). Red 
powder, yield 68%. M.p.: >250 °С. IR (ν, cm–1): 689 (P–C), 1212 (P=O), 1378 (NO2 symm), 
1578 (NO2 аsymm), 1597 (C=Cаrom), 1624 (furoxan ring) and 3449 (OH). 1H NMR (400 
MHz, DMSO-d6) δ 9.00 (s, 1H, H6-Bz2), 8.91 (s, 1H, H6-Bz1), 7.32 (s, 2H, H3-Ar1), 7.18 (s, 
1H, Ar2), 7.09 (s, 1H, Ar2), 6.90 (s, 1H, Ar2), 5.07 (d, J(PH) = 24.4 Hz, 1H, H4a-Ar1), 3.62 
and 3.58 (d, J = 10.4 Hz, 6H, CH3) and 1.35 (s, 18H, H2b-Ar1). 13C{1H} NMR (DMSO-d6, 
126 MHz) δ 161.8, 153.6, 153.3, 148.5, 147.3, 147.3, 139.7, 139.5, 139.4 (d, J(PC) = 7.7 Hz), 
138.1, 135.3, 132.9, 131.1, 127.7, 126.9, 126.9, 126.8, 126.6, 126.4, 115.2, 112.6, 111.5, 53.5 (d, 
J(PC) = 35.4 Hz), 35.1, 30.9 (d, J(PC) = 8.1 Hz) and 30.6. 31P NMR (162 MHz, DMSO-d6) δ 
28.65. Found: C, 47.69; H, 4.07; N, 15.82; P, 3.56. Anal. calcd (%) for C35H35N10O16P: C, 
47.63; H, 4.00; N, 15.87; P, 3.51. HRMS (ESI) m/z for C35H35N10O16P: calc. 882.20 [M]+ and 
found 881.12 [M-H]+. 

7,7’-((3-((3,5-di-tert-butyl-4-hydroxyphenyl)(diphenoxyphosphoryl)methyl)pyridi-
ne-2,6-diyl)bis(azanediyl))bis(4,6-dinitrobenzo[c][1,2,5]oxadiazole 1-oxide) (5d). Brick
red powder, yield 75%. M.p.: >250 ◦C. IR (ν, cm–1): 695 (P–C), 1209 (P=O), 1378 (NO2
symm), 1569 (NO2 asymm), 1622 (furoxan ring) and 3444 (OH). 1H NMR (400 MHz, DMSO-
d6) δ 8.87 (s, 1H), 8.67 (s, 1H), 8.34 (d, J = 8.4 Hz, 1H), 8.28 (s, 1H), 7.30 (d, J = 8.1 Hz, 2H),
7.17 (m, 5H), 7.07 (m, 1H), 6.99 (d, J = 8.3 Hz, 2H), 6.87 (br.s, 1H), 6.64 (d, J = 8.2 Hz, 2H), 5.26
(m, 1H) and 1.24 (s, 18H). 13C NMR (126 MHz, DMSO-d6) δ 162.8, 161.7, 153.8, 150.4, 148.4,
147.7, 139.6, 135.2, 134.6, 130.4, 130.2, 130.2, 130.1, 129.9, 129.8, 127.6, 126.6, 125.6, 125.3,
120.9, 120.8, 120.4, 115.1, 111.9, 111.4, 36.2, 34.9 and 30.5.31P NMR (162 MHz, DMSO-d6) δ
18.80. Found: %: C, 52.49; H, 3.77; N, 15.35; P, 3.01. Anal. calcd (%) for C44H38N11O16P: C,
52.44; H, 3.80; N, 15.29; P, 3.07.
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7,7’-((4-((3,5-di-tert-butyl-4-hydroxyphenyl)(dimethoxyphosphoryl)methyl)-1,3-p
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47.63; H, 4.00; N, 15.87; P, 3.51. HRMS (ESI) m/z for C35H35N10O16P: calc. 882.20 [M]+ and 
found 881.12 [M-H]+. 

7,7’-((4-((3,5-di-tert-butyl-4-hydroxyphenyl)(dimethoxyphosphoryl)methyl)-1,3-p-
henylene)bis(azanediyl))bis(4,6-dinitrobenzo[c][1,2,5]oxadiazole 1-oxide) (5e). Red pow-
der, yield 68%. M.p.: >250 ◦C. IR (ν, cm–1): 689 (P–C), 1212 (P=O), 1378 (NO2 symm), 1578
(NO2 asymm), 1597 (C=Carom), 1624 (furoxan ring) and 3449 (OH). 1H NMR (400 MHz,
DMSO-d6) δ 9.00 (s, 1H, H6-Bz2), 8.91 (s, 1H, H6-Bz1), 7.32 (s, 2H, H3-Ar1), 7.18 (s, 1H,
Ar2), 7.09 (s, 1H, Ar2), 6.90 (s, 1H, Ar2), 5.07 (d, J(PH) = 24.4 Hz, 1H, H4a-Ar1), 3.62
and 3.58 (d, J = 10.4 Hz, 6H, CH3) and 1.35 (s, 18H, H2b-Ar1). 13C{1H} NMR (DMSO-d6,
126 MHz) δ 161.8, 153.6, 153.3, 148.5, 147.3, 147.3, 139.7, 139.5, 139.4 (d, J(PC) = 7.7 Hz),
138.1, 135.3, 132.9, 131.1, 127.7, 126.9, 126.9, 126.8, 126.6, 126.4, 115.2, 112.6, 111.5, 53.5 (d,
J(PC) = 35.4 Hz), 35.1, 30.9 (d, J(PC) = 8.1 Hz) and 30.6. 31P NMR (162 MHz, DMSO-d6) δ
28.65. Found: C, 47.69; H, 4.07; N, 15.82; P, 3.56. Anal. calcd (%) for C35H35N10O16P: C,
47.63; H, 4.00; N, 15.87; P, 3.51. HRMS (ESI) m/z for C35H35N10O16P: calc. 882.20 [M]+ and
found 881.12 [M-H]+.
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3.05. Anal. calcd (%) for C45H39N10O16P: C, 53.68; H, 3.90; N, 13.91; P, 3.08. HRMS (ESI) m/z 
for C45H39N10O16P: calc. 1006.23 [M]+ and found 1005.19 [M-H]+. 
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MCF7—human breast adenocarcinoma (pleural fluid); A549, human lung carcinoma; 
WI38, VA 13 subline 2RA, human embryonic lung from the collection of the Institute of 
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serum (Biosera, France) and 1% nonessential amino acids (PanEco company, Russia). 
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process of cell monolayer formation took 24 h. Then, the nutrient medium was removed, 
and 100 µL of solutions of the test drug in the given dilutions were added to the wells, 

7,7’-((4-((3,5-di-tert-butyl-4-hydroxyphenyl)(diphenoxyphosphoryl)methyl)-1,3-p-
henylene)bis(azanediyl))bis(4,6-dinitrobenzo[c]([1,2,5]oxadiazole 1-oxide) (5g). Red pow-
der, yield 55%. M.p.: 196–197 ◦C. Minor amounts of the other tautomer are present in the
spectra. 1H NMR (600 MHz, DMSO-d6) δ 9.06 (s, 2H), 7.83 (dd, J = 8.3, J (PH) = 1.5 Hz, 1H),
7.39 (s, 2H), 7.32 (m, 2H), 7.19 (m, 4H), 7.10 (m, 1H), 6.93 (d, J = 8.5 Hz, 2H), 6.63 (m, 2H),
6.59 (d, J = 8.3 Hz, 1H), 5.18 (d, J(PH) = 27.9 Hz, 1H) and 1.31 (s, 18H). 13C NMR (101 MHz,
DMSO-d6) δ 162.2, 154.3, 151.3 (d, J = 9.7 Hz), 150.9 (d, J = 10.3 Hz), 148.9, 140.1, 135.8, 131.8
(d, J = 5.2 Hz), 130.7, 130.5, 130.4, 130.3, 128.1, 127.3 (d, J = 7.8 Hz), 126.2, 126.1, 125.8, 121.4
(d, J = 3.7 Hz), 121.3, 121.1 (d, J = 3.7 Hz), 120.5, 116.2, 115.7, 111.9, 111.5, 110.4, 35.5 and
31.2. 31P NMR (162 MHz, DMSO-d6) δ 20.38. Found: C, 53.59; H, 3.88; N, 13.90; P, 3.05.
Anal. calcd (%) for C45H39N10O16P: C, 53.68; H, 3.90; N, 13.91; P, 3.08. HRMS (ESI) m/z for
C45H39N10O16P: calc. 1006.23 [M]+ and found 1005.19 [M-H]+.

3.2. Biology
3.2.1. Cells and Materials

For the experiments, we used tumor cell cultures: M-HeLa clone 11 (epithelioid carci-
noma of the cervix, subline HeLa., clone M-HeLa); T 98G—human glioblastoma; PANC-1,
human pancreatic carcinoma; HuTu 80, human duodenal adenocarcinoma; MCF7—human
breast adenocarcinoma (pleural fluid); A549, human lung carcinoma; WI38, VA 13 subline
2RA, human embryonic lung from the collection of the Institute of Cytology, Russian
Academy of Sciences (St. Petersburg); PC3—prostate adenocarcinoma cell line from ATCC
(American Type Cell Collection, USA; CRL 1435; human liver cells (Chang liver) from
the collection and the Research Institute of Virology of the Russian Academy of Medi-
cal Sciences (Moscow). The cells were cultured in a standard Eagle’s nutrient medium
manufactured at the Chumakov Institute of Poliomyelitis and Virus Encephalitis (PanEco
company, Moscow, Russia), and supplemented with 10% fetal calf serum (Biosera, France)
and 1% nonessential amino acids (PanEco company, Russia).

3.2.2. Cytotoxicity Assay

The cytotoxic effect on cells was determined using the colorimetric method of cell
proliferation—the MTT test. NADP-H-dependent cellular oxidoreductase enzymes can,
under certain conditions, reflect the number of viable cells. These enzymes are able to
reduce the tetrazolium dye, (MTT)—3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium
bromide, to insoluble blue-violet formazan, which crystallizes inside the cell. The amount
of formazan formed is proportional to the number of cells with active metabolism [46]. Cells
were seeded on a 96-well Nunc plate at a concentration of 5 × 103 cells per well in a volume
of 100 µL of medium and cultured in a CO2 incubator at 37 ◦C until a monolayer was
formed. The process of cell monolayer formation took 24 h. Then, the nutrient medium was
removed, and 100 µL of solutions of the test drug in the given dilutions were added to the
wells, which were prepared directly in the nutrient medium with the addition of 5% DMSO
to improve solubility. After 48 h of incubation of the cells with the tested compounds, the
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nutrient medium was removed from the plates, and 100 µL of the nutrient medium without
serum with MTT at a concentration of 0.5 mg/mL was added and incubated for 4 h at
37 ◦C. Formazan crystals were added 100 µL of DMSO to each well. Optical density was
recorded at 540 nm on an Invitrologic microplate reader (Russia). The experiments for all
compounds were repeated three times.

3.2.3. Flow Cytometry Assay

Cell Culture. M-HeLa cells at 1 × 106 cells/well in a final volume of 2 mL were seeded
into six-well plates. After 48 h of incubation, various concentrations of compounds 4c and
5d were added to wells.

Cell Apoptosis Analysis. The cells were harvested at 2000 rpm for 5 min and, then
washed twice with ice-cold PBS, followed by resuspension in binding buffer. Next, the
samples were incubated with 5 µL of annexin V- Alexa Fluor 647 (Sigma-Aldrich, St. Louis,
MO, USA) and 5 µL of propidium iodide for 15 min at room temperature in the dark.
Finally, the cells were analyzed by flow cytometry (Guava easy Cyte, Merck, Rahway, NJ,
USA) within 1 h. The experiments were repeated three times.

Mitochondrial Membrane Potential. Cells were harvested at 2000 rpm for 5 min and
then washed twice with ice-cold PBS, followed by resuspension in JC-10 (10 µg/mL) and
incubation at 37 ◦C for 10 min. After the cells were rinsed three times and suspended in
PBS, the JC-10 fluorescence was observed by flow cytometry (Guava easy Cyte, Merck,
Rahway, NJ, USA).

Detection of Intracellular ROS. M-HeLa cells were incubated with compounds at
concentrations of IC50 for 48 h. ROS generation was investigated using flow cytometry
assay and CellROX® Deep Red flow cytometry kit. For this M-HeLa cells were harvested at
2000 rpm for 5 min and then washed twice with ice-cold PBS, followed by resuspension in
0.1 mL of medium without FBS, to which was added 0.2 µL of CellROX® Deep Red and
incubated at 37 ◦C for 30 min. After three times washing the cells and suspending them in
PBS, the production of ROS in the cells was immediately monitored using flow cytometer
(Guava easy Cyte, Merck, Rahway, NJ, USA).

3.2.4. Antimicrobial Activity

Antimicrobial activity of test compounds was determined by serial micro dilutions
in 96-well plates using Mueller-Hinton broth for bacterial culture and Sabouraud broth
for yeast culture [47]. Cultures of gram-positive bacteria were used in the experiment:
Staphylococcus aureus ATCC 6538 P FDA 209P, Bacillus cereus ATCC 10702 NCTC 8035,
Enterococcus faecalis ATCC 29212; Gram-negative bacteria: Escherichia coli ATCC 25922, Pseu-
domonas aeruginosa ATCC 9027 and yeast: Candida albicans ATCC 10231, purchased from
the State Collection of Pathogenic Microorganisms and Cell Cultures “SCPM-Obolensk”.
Methicillin-resistant strains of S. aureus (MRSA) were isolated from patients with chronic
tonsillitis (MRSA-1) and sinusitis (MRSA-2) in the bacteriological laboratory of the Republi-
can Clinical Hospital (Kazan, Russia). The experiments were carried out in triplicate.

3.2.5. Statistical Analysis

IC50 values were estimated using the Quest Graph IC50 Calculator (AAT Bioquest,
Inc., Sunnyvale, CA, USA) (Version 2022) (accessed on 25 June 2022) [48].

3.3. Biostability Studies
3.3.1. Preparation of Spikes and Samples

A substance of 1 mg was dissolved in methanol to achieve the solution of 1 mg/mL.
By a series of further dilutions, a sample containing 5000 ng/mL in the same solvent was
prepared. A total of 50 µL of the prepared solution was added to 450 µL of whole blood,
resulting in a spike containing 500 ng/mL of the compound in the matrix.

Aliquot of 10 µL was taken from the spike and added to a 100 µL of the precipitation
solution consisting of a mixture of 0.2 M ZnSO4 in water and methanol (2:8, v/v). The
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sample was then vortex mixed for 20–30 s, incubated for 10–15 min, vortex mixed again
and centrifuged for 10 min at 13,400 rpm (Eppendorf MiniSpin). Supernatant (100 µL) was
transferred into a vial and analyzed.

3.3.2. Apparatus and LC-MS/MS Conditions

Analyses were carried out using a Shimadzu LC-20AD Prominence chromatograph
(Shimadzu, Tokyo, Japan) equipped with a binary gradient pump, cooled autosampler
SIL-20AC and column oven. A column packed with a reversed-phase sorbent ProntoSil
120-AQC18 (2 × 75 mm, 5 µm, EcoNova, Novosibirsk, Russia) was used for chromato-
graphic separations. Mobile phase was water (eluent A) and MeOH (eluent B). The fol-
lowing gradient was used: 0 min—10% B; 1 min—90% B; 4.6 min—90%; 4.7 min—100% B;
6.0 min—100% B, followed by the equilibration of the column. Flow rate was 330 µL/min;
injection volume was 10 µL. Mass spectrometric detection was performed on an ABSCIEX
6500 QTRAP mass spectrometer (AB SCIEX, Framingham, MA, USA) using negative electro-
spray ionization. The following parameters were set for the detection: scan mode—MRM,
curtain gas (CUR) = 30 psi, collision-induced dissociation gas (CAD) = Medium, ion source
voltage (IS) = 5500 V, gas drier temperature (TEM) = 250 ◦C, sprayer gas (GS1) = 15 psi,
drier gas (GS2) = 20 psi, entrance potential (EP) = 10 V and dwell time = 80 msec. Detection
parameters for agents 4c and 5d are shown in Table S1 (Supporting Information). The
instruments were controlled, and the data were collected using Analyst 1.6.3 software (AB
SCIEX); data processing was performed using MultiQuant 2.1 software (AB SCIEX).

3.4. Computations

Computations were calculated using Gaussian16 [49] with a M06-2X/6-311++G** level
of theory [50]. Grimme’s dispersion correction (D3) was included [51]. Solvation was
modeled using the solvation model based on density (SMD = H2O) [52].

4. Conclusions

The synthesis of novel sterically hindered phenols containing benzofuroxan fragments
obtained via aromatic nucleophilic substitution reaction of 7-chloro-4,6-dinitrobenzofuroxan
is presented. Depending on the initial ratio of reagents, it is possible to vary the compo-
sition of the final products, leading to the formation of compounds with a composition
of 2:1 or compounds 1:1. Antimicrobial activity and antitumor potential were studied
for the phenols/benzofuroxan hybrids. Most substances exhibit high cytotoxicity against
human duodenal adenocarcinoma (HuTu 80), human breast adenocarcinoma (MCF-7) and
human cervical carcinoma cell lines. The IC50 values of compounds 4c and 5d for these
lines ranged from 0.9 to 5.9 µM and were either comparable to or exceeded the activity
of Doxorubicin and Sorafenib. Moreover, the selectivity indices for healthy cells for the
compound 5d also exceed those for the reference drugs. A study of the mechanisms of
cytotoxicity suggests that the latter can be associated with the induction of apoptosis along
the internal mitochondrial pathway and an increase in ROS production. Encouragingly,
all tested compounds do not show hemolytic activity (HC50 >100 µM). The biostability of
the leading compounds was evaluated in the whole blood of mice, where the substances
remained unchanged for two h. This is a positive sign for their future quantitative determi-
nation in biological matrices. When studying antimicrobial activity, we note an interesting
trend that the effect only appears when at least two benzofuroxan moieties are introduced
per phenol.

Overall, the combination of sterically hindered phenol and benzofuroxan in one
molecule leads to a number of positive effects, including increased ROS production and
greater cytotoxicity. Compounds 4c and 5d can be considered a promising basis for the
development of antitumor drugs.



Pharmaceuticals 2023, 16, 499 21 of 23

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/ph16040499/s1, Figures S1–S45 (p. 2–46)—copies of NMR spectra of all syn-
thesized compounds; Figure S46 Dependence of substances 4c and 5d peak area on the chromatograms
of the initial value (5 min); Table S1 (p. 47–48)—biostability studies; p. 49–51—computational data.
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