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Abstract: Heparan sulfate is a crucial extracellular matrix component that organizes structural
features and functional protein processes. This occurs through the formation of protein–heparan
sulfate assemblies around cell surfaces, which allow for the deliberate local and temporal control of
cellular signaling. As such, heparin-mimicking drugs can directly affect these processes by competing
with naturally occurring heparan sulfate and heparin chains that then disturb protein assemblies and
decrease regulatory capacities. The high number of heparan-sulfate-binding proteins that are present
in the extracellular matrix can cause obscure pathological effects that should be considered and
examined in more detail, especially when developing novel mimetics for clinical use. The objective of
this article is to investigate recent studies that present heparan-sulfate-mediated protein assemblies
and the impact of heparin mimetics on the assembly and function of these protein complexes.

Keywords: heparan-sulfate-binding proteins; extracellular matrix organization; protein multimers;
protein aggregation; heparin mimetics; protein–ligand interactions; clinical drug development

1. Introduction

Intercellular signaling and correct structural organization are largely mediated by the
extracellular matrix, which functions to organize macromolecules in a local and temporal
manner. This is necessary for multicellular life [1,2], and as such, alterations to the extracellular
matrix structures and functions can cause an abundance of diseases [3]. Key components
that assemble macromolecules such as proteins are the polysaccharides heparan sulfate and
heparin. Heparan sulfates are a class of sulfated glycosaminoglycans (GAGs) that form large
structural networks around cellular surfaces that can bind to heparan-sulfate-binding motifs
on proteins [4]. These interactions are mostly mediated by the sulfation pattern of the ligand [5],
which can vary depending on the cell type and state [6]. The unique combination of chemical
and physical properties of heparan sulfates and heparins, such as the presence of negative
charges and the flexibility of the sugar chains, allows them to bind to different molecules and
therefore mediate various physiological processes. These include blood coagulation [7] and
cellular signaling for inflammation, proliferation, differentiation and apoptosis [8–11]. Due to
the large impact of these ligands on cellular homeostasis, it is important to understand the
mechanisms underlying interaction with other molecules to allow for the development of
targeted therapies for a wide range of diseases.

For this purpose, heparin-based drugs including heparin-mimicking drugs are actively
being developed [12–14]. Heparin-mimicking drugs are chemicals that mimic the structure
and possibly the function of naturally occurring heparan sulfate chains. These mimetics
offer additional advantages over heparin drugs isolated from crude extracts, and research
developments have recently been focused to expand our repertoire [15]. However, it is
important to note that these drugs can disrupt the organization and function of larger
protein complexes that depend on heparan sulfates for stability [16,17]. In addition, soluble
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heparin can cause artificial aggregation of proteins [18,19] that limit their function as drugs.
These disruptions could lead to unexpected and potentially harmful side effects, especially
in cases where the targeted protein complexes play a vital role in maintaining normal
cellular physiology. Therefore, it is important to understand the role of heparin drugs in the
context of protein multimer formation in order to limit negative side effects and effectively
develop therapeutic alternatives for clinical settings.

2. The Role of Heparan Sulfates in Cellular Signaling and Organization

Heparan sulfate molecules are important components of multicellular organisms that
allow for the correct structural and functional organization of the extracellular matrix.
Heparan sulfates interact with various proteins through both electrostatic and hydrogen-
bonding interactions [6]. These are characterized by negatively charged sulfate groups on
the ligand molecule that are able to interact with positively charged amino acid residues,
such as lysine and arginine, creating a strong electrostatic attraction [4]. Additionally,
hydrogen-bonding networks can form, which further stabilize the protein–ligand interac-
tion. Heparan sulfate molecules bind to specific sequences of basic amino acids known as
Cardin–Weintraub or heparan sulfate/heparin-binding motifs, which are arranged in an
appropriate structural conformation [20] and supplemented with other polar residues to
improve complex stability [21]. To allow for proper binding, the flexibility, conformation
and sulfation patterns of the heparan sulfate molecule are important physicochemical
characteristics that determine the specificity and affinity of the ligand (Figure 1). These
interactions tend to be very stable, and although the variability of heparan sulfate molecules
is very high, binding affinities are in the nanomolar range [22–24]. The structural variability
of naturally occurring heparan sulfate molecules allows them to mediate the formation and
stability of various protein complexes and heterogeneous multimers. As such, heparan
sulfates and heparins have been found to interact with growth factors and cell surface
receptors, promoting the formation of signaling transduction [25,26]. Furthermore, heparan
sulfate and heparin chains also interact with proteins to regulate overall integrity and sta-
bility through large protein assemblies [27–29]. Over 2800 heparan sulfate binding proteins
have been identified as part of the human interactome to date [9]. These proteins form
complex protein assemblies in the extracellular matrix that do not necessarily have to serve
a function; however, chemical mediation allows for local and temporal regulation of protein
content in the extracellular matrix. Thus, the direct and indirect functions of heparan sulfate
across the extracellular matrix represent a crucial contribution to the maintenance of tissue
integrity and normal physiology [30,31].

One of the key ways in which heparan sulfates directly regulate cellular processes
is by modulating the activity of growth factors. Growth factors are signaling molecules
that are involved in cell proliferation, differentiation and migration. Heparan sulfates are
able to interact with these molecules, promoting the formation of signaling complexes that
activate downstream signaling pathways. This is evidenced by the complex formation of
FGFR1 and its ligand, which stabilizes the formation of a protein–protein complex [25].
Structural examinations highlight the importance of the heparan sulfate sulfation patterns,
as the 6-O-sulfate groups are needed to mediate multiple interactions between the two
proteins. Beyond the direct functional aspects, heparan sulfates bind to the heparan sul-
fate/heparin binding motifs of proteins such as matrix metalloproteinases, interferons and
chemokines [35–38]. These proteins form large multimer assemblies of varying proteins that
may not serve a direct function but rather assemble to create specific microenvironments.
The assemblies mainly serve a structural purpose that allows the proteins to remain in their
proper location upon cell secretion and then form an appropriate and stable extracellular
environment around the cell, which can result in the establishment of protein–ligand con-
centration gradients between cells, which are crucial for homeostasis [39–41]. Interestingly,
varying ligand concentrations may even result in the activation of opposing signaling cas-
cades; this has been demonstrated for dependence receptors and their appropriate protein
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ligands [42]. Heparan sulfate molecules take part in these processes, as they restrict free
diffusion in the extracellular matrix for proteins containing these binding motifs.
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Figure 1. Structural examination of heparan-sulfate-based ligands and their respective protein binding
sites. Protein–ligand interactions mostly occur over arginine and lysine residues, which form various
protein surface interfaces. Some other contributing residues include histidine and glutamine, which
stabilize the complexes through additional electrostatic or hydrogen-bonding interactions. This results
in amino acid variations, which have drastic effects on the affinity and specificity of heparan sulfate or
heparin ligands. (A) Schematic of the XBBXBX Cardin–Weintraub motif and its potential interactions
with a heparin ligand. Protein–ligand interaction mostly occurs through electrostatic forces between
positively charged (blue) amino acid side chains and negatively charged (red) sulfate groups on heparin.
(B) Fibroblast growth factor 2 (FGF2) in complex with fibroblast growth factor receptor 1 (FGFR1), which
is mediated by a long-chain heparin ligand (PDB ID: 1FQ9) [25]. (C) Netrin-1 (Net-1) in complex with
sucrose octasulfate (SOS) (PDB ID: 7LRF) [32]. (D) Platelet factor 4 (PF4) in complex with the heparin
mimetic fondaparinux (PDB ID: 4R9W) [33]. (E) Stromal-cell-derived factor 1 (CXCL12) bound to a heparin
disaccharide (PDB ID: 2NWG) [34].
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The indirect functional role of heparan sulfate on cellular signaling brings up two
possible sources for a wide range of physiological diseases related to uncontrolled signaling.
The first is mutations in the direct binding interfaces of proteins that affect ligand binding
and subsequent protein diffusion [43]. The crucial amino acids that are associated with
the respective Cardin–Weintraub motif in an extracellular matrix protein, such as basic
residues for electrostatic attraction, are often associated with disease variants [44]. An
example of this is the chemokine Noggin, which has been found to form larger multimer
assemblies around heparin chains [18,39]. Mutations in the heparan sulfate/heparin-
binding site have been associated with proximal symphalangism [45] and an increase in
cell differentiation due to a loss of bone morphogenetic protein (BMP) signaling inhibi-
tion [46]. A decrease in heparan sulfate association has been hypothesized to allow for free
diffusion of noggin away from the cell surface, which abolishes the control of signaling
inhibition [47,48]. Similarly, mutations of the heparan sulfate/heparin-binding sites in the
chemokines C-C motif chemokine 2 (CCL2) and CXCL12 were reported to reduce dimer
formation and regular chemotactic activity, which impaired downstream signaling events
and cell homeostasis [41,49,50].

The second potential cause of disease is irregularities in enzymes that release heparan-
sulfate-associated proteins from their structural supports, resulting in free ligand diffusion
across the extracellular matrix. Heparanase is an extracellular matrix enzyme that functions
to cleave heparan sulfate chains, where abnormal expression and function has been shown
to cause uncontrolled cell signaling and remodeling of the extracellular matrix [51,52]. It
was demonstrated that upon induced overexpression of Heparanase, human myeloma cells
increased in number and size. Interestingly, this effect was reversible upon the addition
of C-X-C motif chemokine ligand 10 (CXCL10) [53]. Likewise, increased Heparanase
concentrations have been shown to promote tumor growth for glioma, mesothelioma
and gastric carcinoma cells [54–56]. Although underlying mechanisms are currently not
well understood, it is hypothesized that the remodeling of the extracellular matrix and its
subsequent inability to regulate heparan-sulfate-bound cytokines and chemokines for cell
homeostasis play a key role in disease progression.

In general, heparan-sulfate-mediated protein complex formation plays a critical role
in regulating various cellular processes, including cell proliferation, differentiation and
migration, by modulating the activity and localization of signaling proteins. Accordingly,
the binding and retaining of proteins by heparan sulfates in the extracellular matrix adds
a level of complexity to intercellular signaling that is often unaccounted for. As such,
the precise mechanisms by which heparan sulfates interact with different proteins to
control cellular processes are still not fully understood. Still, our current knowledge of
irregularities in the structural integrity of GAG-mediated protein assemblies caused by
intrinsic or extrinsic forces emphasizes the significance of heparan sulfate as a structural
component. Prospective studies on protein systems in the extracellular matrix should
consider possible effects of GAG ligands and the formation of larger protein assemblies
that might affect cellular signaling and matrix organization.

3. Heparin Mimetics Influence Extracellular Matrix Organization

Heparan sulfate is a crucial component for multicellular life, and it interacts with
many different signaling proteins and systems. Although heparan sulfate is a very unspe-
cific ligand due to its overall strong negative charge, various heparin mimetics have been
developed that constitute different classes, from basic small saccharides to polysulfated
oligosaccharides and non-carbohydrate mimetics [11,57]. Generally, these molecules mimic
the structure and function of heparan sulfate or heparin molecules and target the heparan
sulfate/heparin-binding motifs or allosteric binding sites of proteins for therapeutic de-
velopment. Heparin-based drugs are frequently thought of as exclusive anticoagulants;
however, recent studies have shown their therapeutic potential in decreasing inflammation
and fibrosis, as well as inhibiting cancer progression [11,16,58–60].
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As heparan sulfates take part in the structurally organization of the extracellular ma-
trix, inflammatory and fibrotic events are highly dependent on the present heparan sulfate
composition and function. This includes the careful control of heparan sulfate modeling by
enzymes and subsequent formation of protein assemblies that regulate proinflammatory
and anti-inflammatory cytokines [49]. This balance can be disrupted by stressors that can
then induce disease. For that reason, enzymes that affect matrix remodeling and repair
such as Heparanase and human neutrophil elastase (HNE) have been focused on for drug
development [12]. The recent design of non-carbohydrate heparin mimetics produced a
selective non-competitive inhibitor for HNE and other inflammatory serine proteases that
prevent degradation of various extracellular proteins including proteoglycans for structural
heparan sulfate support. Inhibition of these pathways would then reduce inflammatory
responses. This was confirmed in another study in which the inhibition of Heparanase was
linked to inflammation reduction and eventual reduction in cytokine expression levels [61].
Although inhibiting remodeling enzymes is a more indirect approach to regulating protein
assemblies, the design of direct heparan sulfate/heparin-binding site inhibitors to alter pro-
tein concentration gradients raises other difficulties due to the unspecific binding behaviors
of the ligands. However, disruption of protein–heparan sulfate binding could prove to
be promising for physiological diseases in which signaling proteins are overexpressed or
retained in elevated concentrations around the cell. An example of this is osteoarthritis, in
which the extracellular matrix is abnormally remodeled. In a recent study, the GAG content
in osteoarthritis patient tissues was examined; results showed that although the total GAG
sulfation decreased, heparan sulfate sulfation and overall protein content increased as
compared to healthy tissue. Interestingly, binding affinities for influential growth factor
proteins decreased by eightfold, which suggests that the sulfation patterns were altered
as part of the abnormal extracellular matrix remodeling [62]. These results point into
an interesting direction for heparin mimetic drug development, as release of the various
proteins and aggregates from the extracellular matrix in osteoarthritis-affected tissues could
potentially alleviate irregular cell signaling for effective therapies.

Furthermore, cancer progression is often associated with abnormal remodeling of the
immediate extracellular matrix, which allows for elevated cell proliferation and differentia-
tion based on compromised control mechanisms. Synthetic heparin mimetics have recently
been produced that show antithrombotic and inhibitory activity of various enzymes such
as Heparanase, P-selectin and the integrin VLA-4 to drastically reduce metastatic activity;
the heparin mimetic efficiently blocked melanoma cell binding to endothelial cells under
blood flowing conditions [16]. This was supplemented by a study that showed successful
inhibition of tumor cell migration, invasion and adhesion by a polymer-based heparin
molecule via inhibition of Heparanase activity [59]. However, a recent clinical study of
the heparin drug tinzaparin presents conflicting results; no significant impact on cancer
progression or patient survival was achieved upon drug administration. Although there
were some limitations such as heparin-induced thrombocytopenia, results suggest limited
effects of tinzaparin on early-stage cancer growth [63]. Still, as heparin-mimetic drug
developments have mainly focused on the metastatic repression of cancers [15,64,65], this
study provides valuable information on the limitations of low-molecular-weight heparins
as clinical drugs. The recent advancements of more complex synthetic heparin mimetics
demonstrate compelling non-anticoagulant abilities for disease treatments. Hence, the
direct inhibition of enzyme activity and cellular signaling by heparin mimetics are still a
promising avenue for antimetastatic drug development.

Beyond the direct effects of heparin mimetics on enzymes and signaling proteins,
changes that affect general protein–heparan sulfate interactions and protein assemblies
can alter signaling behavior. An example of this is the antagonist removal from the imme-
diate surroundings of a cell surface [41,66], which can be induced by free heparin-based
molecules that outcompete regular heparan sulfate binding [67,68]. This would result in
free diffusion of the signaling protein and dissolve concentration gradients, resulting in
serious consequences, as biochemical regulation mechanisms would be lost. Nonetheless,
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increased stability of heparan sulfate-bound proteins has also been shown to affect signal-
ing; biomaterials that contained heparin were able to induce osteogenesis by stabilizing
BMP signaling proteins around cellular surfaces [69]. Studies such as these illustrate the
importance of appropriate heparan sulfate modeling, which regulates the structural stabil-
ity and integrity of protein assemblies. On one hand, the disruption of protein assemblies
in the extracellular matrix has significant consequences on localized ligand concentrations
for cell signaling, while excessive protein assemblies and stability cause overstimulation of
signaling pathways. Heparin mimetics in combination with nanomaterials therefore offer a
wide therapeutic range for various diseases.
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Figure 2. Heparin mimetics affect various biochemical mechanisms in the extracellular matrix.
Heparin mimetics inhibit extracellular remodeling enzymes such as Heparanase and impact reg-
ular remodeling pathways and structural integrity. Heparin mimetics can also bind to heparan
sulfate binding proteins and change protein concentration levels near the cell surface. Both of these
mechanisms cause an eventual change in intracellular signaling, which might affect cell homeostasis.

In any case, the underlying disease mechanisms in relation to heparan sulfate or hep-
arin dependence have to be examined in order for appropriate drug development to occur.
Heparin mimetics can function as inhibitors against extracellular matrix deconstruction
and remodeling (Figure 2) [16], as well as directly disrupting the structural organization
of protein assemblies [8,60]. Depending on the desired outcome, different biochemical
systems have to be targeted, which requires an adequate understanding of the interacting
components in a given signaling system. This would also support more effective structural
based drug design for improved heparin mimetics that precisely target specific protein
interaction surfaces. Novel drug candidates should aim to reduce anticoagulant activity to
minimize negative side effects by improving specificity. Here, a more specific drug would
have features that match the target’s natural binding to heparan sulfate; these include
appropriate sulfation patterns, shape, length and flexibility, as well as functional groups for
hydrogen bond formation. Although we have a general understanding of how heparan
sulfates interact with proteins, the specific structural details for individual proteins and
the overall functional contexts of cellular signaling are currently under-represented. To
improve our understanding of the extracellular matrix and the development of heparin
mimetics for therapeutic approaches, heparan sulfate binding should be part of regular
investigations, especially in studies that examine extracellular protein signaling systems.
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