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Abstract: Triptolide (TP), a bioactive compound extracted the from traditional Chinese medicine
Tripterygium wilfordii Hook F (TwHF), has been shown to be effective in treating several autoimmune
diseases, and has suppressive effects in several key immune cells such as dendritic cells, T cells,
and macrophages. However, it is unknown whether TP has an impact on natural killer (NK) cells.
Here, we report that TP has suppressive effects on human NK cell activity and effector functions.
The suppressive effects were observed in human peripheral blood mononuclear cell cultures and
purified NK cells from healthy donors, as well as in purified NK cells from patients with rheumatoid
arthritis. TP treatment induced downregulation of NK-activating receptor (CD54, CD69) expression
and IFN-gamma secretion, in a dose-dependent manner. When exposed to K562 target cells, TP
treatment induced inhibition of surface expression of CD107a and IFN-gamma synthesis in NK cells.
Furthermore, TP treatment induced activation of inhibitory signaling (SHIP, JNK) and inhibition of
MAPK signaling (p38). Thus, our findings demonstrate a previously unknown role for TP in NK cell
functional suppression and reveal several key intracellular signaling that can be regulated by TP. Our
findings also offer new insight into mechanisms of TP therapeutic treatment in autoimmune disease.

Keywords: TwHF; rheumatoid arthritis; CD107a; intracellular signaling; NK-activating receptor

1. Introduction

Triptolide (TP), the immunosuppressive compound derived from Tripterygium wilfordii
Hook F (TwHF), has reportedly been successful in treating a number of autoimmune
diseases, such as rheumatoid arthritis (RA) [1]. However, the mechanism of action of TP
in autoimmune disease therapy remains elusive. Previous studies have shown that TP
can suppress the production of pro-inflammatory cytokines and chemokines, [i.e., tumor
necrosis factor-alpha (TNF-α), interleukin-2 (IL-2), IL-6, IL-8, and interferon (IFN)-γ], and
regulate multiple immune cell functions [2]. T cell proliferation, activation, and immune
regulation are all affected by TP [3]. It can also inhibit the IL-17 mRNA transcription and IL-
6-triggered phosphorylation of signal transducers and activators of transcription 3, which
are the crucial signaling molecule participating in Th17 cell development [3]. Research has
shown that TP inhibits phenotypic changes and the maturation [4,5] and differentiation
of dendritic cells (DCs) by suppressing CD1a, CD40, CD80, and CD86 expression while
upregulating the expression of CD14 [3]. In addition, TP has been shown to impair the
DCs’ capacity in eliciting allogeneic T cell responses [6], and downregulate the synthesis
of C3, CD40, and B7h in renal tubular epithelial cells (non-classical antigen-presenting
cell) were significantly downregulated in response to TP treatment [7,8]. In a murine
model of adjuvant-induced arthritis (AA), TP reduced neutrophil recruitment, inhibited
the pro-inflammatory cytokines’ expression status in neutrophils, and promoted neutrophil
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apoptosis [9]. TP can also induce the apoptosis of synoviocytes in RA [2]. Nevertheless, TP’s
impact on NK cell functioning and the underlying mechanism has not been studied.

Natural killer (NK) cells are crucial for bridging the gap between innate and adaptive
immunity. NK cells, as the innate immune system-related substantial effector cells, can
destroy tumor or virus-infected cells without prior antigen exposure. Simultaneously,
NK cells can regulate acquired immunity and are remarkably linked to the onset and
progression of various immune diseases [10]. NK cells can sense different external stimuli
and regulate their activity to play the corresponding immune function [11] by balancing
signals received from inhibitory receptors and activating receptors on their surface. NK
cells, for example, can spontaneously kill cells lacking self-antigen markers by secreting
granulin and perforin, and regulate the functions of other important immune cells by
secreting cytokines [12]. Evidence from recent research has indicated that abundant NK
cells are present in inflammatory joints of patients with RA or other arthritic diseases [13],
which play a pathogenic role in autoimmune diseases. Reportedly, NK cells isolated from
the synovial fluid of patients with RA can induce the differentiation of CD14+ monocytes
into osteoclasts [14,15]. Using anti-asialoGM1, the NK cell depletion in the model reduced
both bone erosion and joint inflammation [14]. According to recent research, chemokine
receptors (i.e., CCR1, CCR5, and CXCR3) are expressed by synovial NK cells, which can
facilitate the recruitment of inflammatory cells (driven by their respective chemokines) into
the RA synovium [16], prime effector myeloid cells, and aggravate arthritis by producing
inflammatory mediators such as granulocyte-macrophage colony-stimulating factor (GM-
CSF), macrophage (M)-CSF, and receptor activator of nuclear factor (NF)-kappaB ligand
(RANKL) [17,18].

Scientific studies have shown that TP has negative regulatory effects on multiple
immune cells such as dendritic cells, T cells and neutrophils [19]. However, it is unknow
whether TP has significant effects on NK cells. Given the NK cells are an important player in
various autoimmune diseases [14], determining the effects of TP on NK cells would improve
our understanding of NK cell functional regulation and TP therapeutic mechanisms. In the
present study, we investigated the role of TP in regulating human NK cell function and its
relevance to RA.

2. Results
2.1. TP Did Not Influence the Proportion of Peripheral Blood NK Cells in Normal Human PBMCs

In order to determine whether TP has an impact on the distribution of NK cells in
normal human PBMCs, PBMCs were freshly isolated from peripheral blood and stimulated
with TP in various concentrations (i.e., 0, 0.4, 2, and 5 ng/mL) for 24 h. The percentage
of CD56+CD3− NK cells was measured in the TP-treated PBMCs (Figure 1A). Our data
indicated that no significant difference in NK cell proportion was observed in PBMCs
exposed to different concentrations of TP (Figure 1).
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gating strategy of CD56+CD3−cells (NK cells). (B) The percentage of CD56+CD3−cells was detected 

by flow cytometry in PBMCs. Data were analyzed by one-way analysis of variance with a multiple 

comparisons test (n = 6). 
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Figure 1. Effect of TP on the proportion and the viability of peripheral blood NK cells in normal
human PBMCs. Human PBMCs isolated from health donors were incubated with different concen-
trations of TP (i.e., 0, 0.4, 2, and 5 ng/mL) for 24 h. (A) Representative FACS analysis shows the
gating strategy of CD56+CD3−cells (NK cells). (B) The percentage of CD56+CD3−cells was detected
by flow cytometry in PBMCs. Data were analyzed by one-way analysis of variance with a multiple
comparisons test (n = 6).

2.2. TP Inhibited the Activity and Function of NK Cells in Normal Human PBMCs

To assess the effects of TP on activity and subsequent immune reaction of NK cells,
in vitro, freshly prepared human PBMCs were incubated with TP at various concentrations
(i.e., 0, 0.4, 2, and 5 ng/mL) for 24 h. We first assessed surface phenotype activity of
NK cells in PBMCs. The results of flow cytometry showed that expression of the activat-
ing receptors CD69 was downregulated in a concentration-dependent manner, whereas
the inhibitory receptor CD158a became up-regulated on NK cells in PBMCs, in a TP
concentration-dependent manner, compared with untreated cells (Figure 2A,B). Expression
of the activating receptors NKp46, CD54, and the inhibitory receptor CD158b was not
significantly altered during TP treatment (The following supporting information can be
downloaded at: www.mdpi.com/xxx/s1, Figure S1: Effects of TP on the phenotype of NK
cells in human PBMCs). Accordingly, we found a marked reduction in the expression of
CD107a, an NK cell functional marker, on NK cells in PBMCs by incubation with TP, follow-
ing the stimulation with K562 tumor cells (Figure 2C). Likewise, we observed that IFN-γ
expression was also significantly attenuated in TP-treated PBMCs, at 5 ng/mL concentra-
tion, which decreased IFN-γ expression by approximately fourfold (Figure 2D). Collectively,
these findings suggest that TP negatively regulates NK cell activity and function in PBMCs.

www.mdpi.com/xxx/s1
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(A,B) The expression of CD69 (A) and CD158a (B) were detected by flow cytometry in 
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Figure 2. Effects of TP on the phenotype and function of NK cells in human PBMCs. Human
PBMCs from health donors were treated with TP as shown (i.e., 0, 0.4, 2, and 5 ng/mL) for 24 h.
(A,B) The expression of CD69 (A) and CD158a (B) were detected by flow cytometry in
CD56+CD3−cells. (C) PBMCs were further co-cultured with K562 cells at a ratio of
2:1 (PBMC:K562 = 2:1), flow cytometry analysis of CD107a expression was carried out on
CD56+CD3−cells. (D) The IFN-γ expression in CD56+CD3−cells was measured by intracellu-
lar staining and flow cytometry. Data were analyzed by one-way analysis of variance with a multiple
comparisons test (n = 4), * p < 0.05, ** p < 0.01.
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2.3. TP Had Negative Effects on Human Purified NK Cell Activity and Function

In addition to NK cells, there are many other immune cells in the peripheral blood
PBMCs, the immune cells interact with each other. Therefore, in order to further verify the
effects of TP on human NK cell activity and function, we isolated the NK cells from human
PBMCs by immunomagnetic negative sorting (Figure 3A). After different concentrations
of TP (i.e., 0.4, 2, and 5 ng/mL) treatment for 24 h, we examined the NK cell activity
and function by flow cytometry. Our results showed that TP remarkably lowered the
expression of activating receptors CD54 and CD69, but did not influence the levels of the
inhibitory receptors CD158a and CD158b (Figure 3B,C). Similar to our PBMCs findings,
following the co-incubation with K562 tumor cells, expression of NK cell functional markers
(i.e., CD107a, IFN-γ, granzyme B, perforin) was significantly inhibited on the NK cells by
stimulation with TP in a concentration-dependent manner (Figure 4A–C). Furthermore,
we measured the IFN-γ level in supernatant of different groups of TP-treated purified
NK cells by ELISA. As shown in Figure 4D, TP effectively decreased the production of
this cytokine. Together, these results demonstrate that TP plays a crucial role in NK cell
functional activity suppression.
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Figure 3. Effects of TP on the phenotype of human purified NK cell. (A) Human purified NK cells
were isolated from human peripheral blood mononuclear cells by immunomagnetic negative sorting.
(B,C) Purified NK cells were stimulated with TP as indicated (i.e., 0, 0.4, 2, and 5 ng/mL) for 24 h, the
expression of the activating receptors CD54, CD69 (B) and the inhibitory receptors CD158a, CD158b
(C) were measured by flow cytometry. Data were analyzed by one-way analysis of variance with a
multiple comparisons test (n = 4), * p < 0.05, ** p < 0.01.
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Figure 4. Effects of TP on the function of human purified NK cells. Purified human NK cells were
treated with TP as indicated. Supernatants were collected after 24 h, and NK cells were further
co-cultured with K562 at a ratio of 2:1 (NK:K562 = 2:1). (A,B) Flow cytometric analysis of CD107a
was carried out on NK cells. The IFN-γ expression was tested by flow cytometry after cells were
fixed and permeabilized. The results including percentage of positive cells and fluorescence intensity
(MFI) are shown. (C) Granzyme B and Perforin expressions were measured by intracellular staining
and flow cytometry. (D) The amounts of IFN-γ in supernatants was determined by ELISA. Data
were analyzed by one-way analysis of variance with a multiple comparisons test (n = 4), * p < 0.05,
** p < 0.01, *** p < 0.001, **** p < 0.0001.
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2.4. Effects of TP on Intracellular Signalling in NK Cells

Previous studies have suggested that Src homology 2 (SH2) domain-containing inositol-
5-phosphatase-1 (SHIP-1), c-Jun N-terminal kinase (JNK), and mitogen-activated protein
kinase (MAPK) intracellular pathways have an important role in modulating the im-
munologic state and cellular interaction in many kind of cells, including NK cell [20]. To
investigate the underlying molecular mechanisms of TP suppressing the activation and
function of NK cells, we explored the effect of TP on the activation of SHIP-1, P38, JNK,
ERK1/2, and AKT. NK cells were stimulated with TP for different times and the changes
of phosphorylation of the above mentioned intracellular pathways were examined. We
observed that TP treatment enhanced phosphorylation of SHIP-1 and JNK, but significantly
suppressed the phosphorylated p38 in a time-dependent manner, as measured by flow
cytometry (Figure 5A) and western blot (Figure 5B–D). There were no significant changes in
the activity of ERK1/2 and AKT by TP stimulation (The following supporting information
can be downloaded at: www.mdpi.com/xxx/s1, Figure S2: TP stimulation does not affect
ERK and AKT signalling in NK cells). In addition, the results of TP treatment for 24 h in
NK cells were similar with TP stimulating for 2 h on the activation of signaling pathways
(Figure 5E).Pharmaceuticals 2023, 16, x FOR PEER REVIEW 9 of 15 
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Figure 5. Effects of TP on intracellular signaling in NK cells. (A) Human NK cells were stimulated
with TP (5 ng/mL) for 0/15/30/60/120 min, and then the expression of p-SHIP1, P-P38, and p-JNK
were measured by flow cytometry. (B–D) Human NK cells were treated with TP (5 ng/mL) for
indicated time periods. Cells were lysed and protein was extracted, the expression of p-SHIP1, p-P38
and p-JNK were tested by western blot. (E) Human NK cells were treated with TP (5 ng/mL) for 24 h,
flow cytometric analysis of p-SHIP1, p-JNK, p-ERK1/2, p-P38 and p-Akt were carried out on NK
cells. Data were analyzed by one-way analysis ((B–D), n = 3) and two-way analysis of variance with
a multiple comparisons test ((E), n = 5), * p < 0.05, ** p < 0.01.
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2.5. TP Impaired NK Cell Function of Rheumatoid Arthritis (RA) Patients without Treatment

NK cell is thought to play a critical role in the occurrence and development of RA.
To explore the activity and function of NK cells in RA patients, we first evaluated surface
phenotype activity and functional markers of NK cells in PBMCs from RA patients (without
received any treatment) and healthy donors. Flow cytometry analysis showed that the
expression of activating receptors CD69 and function marker CD107a was significantly
increased on NK cells from RA patients, compared with control healthy donors (Figure 6A).
To further verify the role of TP in regulating the activity and function of RA NK cells, we
co-cultured RA PBMCs with TP as indicated (i.e., 0, 0.4, 2, and 5 ng/mL) for 24 h and
measured NK cell activity and function markers by flow cytometry. We found that RA
NK cells that had been co-cultured with TP, especially at high concentration (5 ng/mL),
exhibited significantly lower expression of activating receptor CD69 and function markers
(CD107a, IFN-γ) than that control (untreated) cells (Figure 6B). Collectively, these findings
demonstrated that TP is a potent negative regulator of RA NK cell activity and function.
This conclusion might explain, in part, the therapeutic effect of TP on RA.
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Figure 6. TP impairs NK cell function of rheumatoid arthritis patients without treatment. (A) From
healthy donors and rheumatoid arthritis patients without any treatments, human PBMCs were
isolated, respectively. The expression of CD69 was detected by flow cytometry in CD56+CD3−cells.
PBMCs were further co-cultured with K562 cells at a ratio of 2:1 (PBMC:K562 = 2:1), flow cytometric
analysis of CD107a expression was carried out on CD56+CD3−cells. (B) PBMCs from rheumatoid
arthritis patients were treated with TP as indicated (i.e., 0, 0.4, 2, 5 ng/mL) for 24 h, the expression
of CD69, CD107a and IFN-γ were measured by flow cytometry in CD56+CD3−cells. Data were
analyzed by unpaired t-test ((A), n = 8) and one-way analysis of variance with a multiple comparisons
test ((B), n = 4), * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.
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3. Discussion

TwHF has been used in folk medicine for hundreds of years as a treatment for various
autoimmune diseases. However, the primary molecular mechanisms and cellular targets
remain elusive. TP is a bioactive compound extracted from TwHF. Despite that the sup-
pressive effects of TP have been documented in several key immune cells, it is unknown
whether TP has an impact on NK cells. This study demonstrates that TP has a negative
impact on human NK cell activity and function in vitro settings. The suppressive effect
was observed in the NK cells from healthy donors as well as patients with RA.

NK cells have developed a tolerance for the self while differentiating into fully com-
petent killers. The NK cells’ capacity of expressing a variety of activating receptors that
bind to endogenous ligands can be attenuated through various rapidly evolving inhibitory
receptor–ligand pairs. However, certain combinations of these pairs may be highly variable
between individuals, the genetic polymorphism can provide a hypothetical possibility for
NK cell-mediated auto-reactivity [21,22]. NK cell activation is accompanied by cytotoxic
activity and pro-inflammatory cytokines secretion. These functions play important roles
in immune surveillance. On the other hand, excessive NK functions could lead to clinical
disorders such as autoimmune disease. It has been reported that in type I diabetes, NK
cells can destroy pancreatic β cells in a manner dependent on NKp46 and promote islet
destruction [23]. NK cells in the RA patients’ inflamed joints and psoriatic skin lesions may
contribute to disease progression by increasing local inflammation [24,25]. Controlling NK
cell induction and proliferation is therefore necessary to prevent them from developing
into the contributor involved in autoimmune responses.

In this study, normal human PBMCs and purified NK cells were treated with TP at
varying concentrations. Our data indicated that TP did not influence the proportion of
peripheral blood NK cells in PBMCs (Figure 1B). However, TP inhibited NK cell activation
and function in a concentration-dependent manner. This phenomenon was observed
in both PBMC-NK cells and purified NK cells, with the effect being more significant in
purified NK cells. Previous studies have demonstrated that, in addition to killing target
cells by releasing cytotoxic granules (perforin and granzyme), activated NK cells can secrete
pro-inflammatory cytokines. In this way, NK cells can induce inflammation, shape, and
control other immune cells’ activities in the local microenvironment, and influence adaptive
immune response formation by transmitting and amplifying these crucial cytokine signals,
such as IFN-γ. Furthermore, TP was also observed to inhibit NK cell activation, killing
function, and secretion of IFN-γ in PBMCs of patients with RA. These findings support the
notion that TP-mediated NK cell suppression may contribute to the therapeutic effect of TP
on autoimmune diseases such as RA.

In the present study, we identified several key intracellular signals which are important
for NK cell activation/function that were regulated by TP. As a negative regulator of
immune cells, SHIP (also known as SHIP1) has been reported to be phosphorylated after
activating a variety of membrane receptors (e.g., B-cell receptor, Fc receptor, and T cell
receptor) [20]. Many other intracellular signaling pathways (e.g., MAPK), can be modulated
by SHIP via catalytic or non-catalytic activation [20]. Our results showed that TP stimulation
induced an enhancement of SHIP-related phosphorylation, which was associated to a
reduction of P38 phosphorylation. These observations are in line with earlier findings on
the role of SHIP in inhibiting MAPK’s downstream signaling [26]. We observed that TP
stimulation enhanced the JNK’s phosphorylation in NK cells, indicating that TP modulation
of JNK is not dependent on SHIP. Therefore, our signaling study revealed the effects of TP
on signaling transduction pathways; namely, activation of SHIP and JNK and suppression
of P38.

There are limitations to this study. Our study was focused on determining the role of
TP in NK cell activation/function regulation, and did not compare its effectiveness with
those of recognized immunosuppressants such as cyclosporine A (CsA) in our in vitro
model. In addition, our study did not address the effectiveness of TP on NK cell acti-
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vation/function in vivo model (e.g., murine model of collagen-induced arthritis), which
warrants further investigation.

4. Materials and Methods
4.1. Preparation of Human PBMCs and NK Cells

From a panel of eight patients diagnosed with RA and ten healthy donors, human
peripheral blood samples were obtained. Before the procedure, all the participants aged
between 25 and 53 years provided informed consent. The Second Affiliated Hospital of
Xi’an Jiaotong University’s Ethics Committee Board granted its approval for this research.
By Ficoll-Hypaque gradient centrifugation method, the peripheral blood samples were
mixed with PBS in equal volume, which was slowly added into the appropriate amount
of lymphocyte separation solution (Pancoll human, P40-60500, Pan-Biotech/Pan-Seratech,
Aidenbach, Germany), after density gradient centrifugation, the mixture was stratified,
and PBMCs were obtained by gently drawing the white membranous cell layer in the
middle with a Pasteur pipette. From PBMCs, the isolation of total NK cells was performed
utilizing a NK Cell Isolation Kit (human) (130-092-657, Myltenyi Biotec, Bergisch Gladbach,
Germany) following the guidelines of the manufacturer. In accordance with flow cytometry,
the CD56+CD3- NK cell preparation’s purity after isolation was >90% routinely [27].

4.2. Cell Culture

Human PBMCs or purified NK cells (at a concentration of 106/mL) were incubated in
complete Rosewell Park Memorial Institute Medium-1640 (10% heat-inactivated fetal calf
serum, 50 µg/mL streptomycin, 2 mM glutamine, 50 µM 2-mercaptoethanol and 50 U/mL
penicillin) for 24 h containing 50 pg/mL recombinant human IL-2 (200-02-50UG, PeproTech,
Cranbury, USA) in a humidified environment comprising 5% CO2 at a temperature of
37 ◦C [27,28]. In several trials, PBMCs or NK cells were cultured with a TP-containing
medium for a predetermined period of time. TP (T3652, Sigma-Aldrich, Saint Louis, MO,
USA) was dissolved in dimethyl sulfoxide, after reconstitution, stock solution was stored
at −80 ◦C, avoiding repeated freeze–thaw cycles, and additional dilution was done with
the culture medium to the indicated concentration during the experiments.

4.3. Human NK Cells Phenotypic and Functional Analyses

For NK cells phenotypic analysis, cultured PBMCs or purified NK cells were washed,
and staining was performed for 30 min on ice utilizing a cocktail of directly conjugated
antibodies against surface molecules, comprising APC anti-human CD56 (BioLegend,
San Diego, CA, USA), FITC Mouse Anti-Human CD3 (BD Biosciences, San Diego, CA,
USA), PE anti-human CD335 (NKp46), -CD54, -CD69, -CD158a, -CD158b (all are from
BioLegend, San Diego, CA, USA). In some experiments that require analysis of NK cell
function, cultured PBMCs or purified NK cells were washed and co-cultured with K562
cells at a 2:1 effector-target (E/T) ratio for 40 min. Fluorescent directly-labeled antibodies
[i.e., anti-CD56 (APC), -CD3 (FITC), -CD107a (PE, BioLegend, San Diego, CA, USA)] were
added and incubated on ice for 30min, then cells were further washed and fixed in a 2%
formaldehyde solution, followed by flow cytometry analysis. For detection of granzyme
B and perforin, the co-cultured cells were first performed membrane staining with anti-
CD56 and anti-CD3 antibodies. After staining, the cells were fixed and permeabilised
with a Fixation/Permeabilization Kit (BD Biosciences, San Diego, CA, USA) following
the manufacturer’s instructions, intracellular staining was performed with fluorochrome-
conjugated antibodies, PE Mouse Anti-Human Granzyme B (BD Biosciences, San Diego,
CA, USA) or PE anti-human Perforin (BioLegend, San Diego, CA, USA), to investigate NK
cell function under stimulation with target cells [20].

4.4. Interferon-γ (IFN-γ) Synthesis in NK Cells

To assess intracellular IFN-γ synthesis, cultured PBMCs or purified NK cells were
co-cultured for 40 min with K562 cells before adding BD GolgiStop™ Protein Transport
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Inhibitor (comprises monensin, BD Biosciences, San Diego, CA, USA) and incubating
for another 4 h [27]. Cells were used for detecting IFN-γ producing by intracellular
staining. Supernatants of purified NK cells were used for measuring cytokine secretion by
enzyme-linked immunosorbent assay (ELISA). PE Mouse Anti-Human IFN-γ antibody (BD
Biosciences, San Diego, CA, USA) was then used to stain the cells intracellularly. Employing
Fluorescence-Activated Cell Sorting Calibur (Becton Dickinson, San Jose, CA, USA), a flow
cytometric examination was conducted. Utilizing FlowJo software (version 7.6.2, Tree Star,
Ashland, OR, USA), data analysis was done. The positive cells’ percentage and mean
fluorescence intensity were obtained. Employing Human IFN-γ ELISA Set (BD Biosciences,
San Diego, CA, USA), IFN-γ concentrations in cell culture supernatants were obtained.
According to the guidelines of manufacturers, the assays were performed.

4.5. Western Blot

After incubation with TP, NK cells were lysed at a predetermined period of time.
Identical amounts of proteins were treated by sodium dodecyl sulfate-polyacrylamide
gel electrophoresis and placed onto polyvinylidene difluoride membranes. An overnight
incubation of membranes was performed at 4 ◦C with the primary antibody [i.e., anti-
phospho-SHIP1 (Tyr1020), -phospho-SAPK/JNK (Thr183/Tyr185), -phospho-p38 MAPK
(Thr180/Tyr182), -phospho-p44/42 MAPK (Erk1/2), -phospho-Akt (Ser473) antibodies,
and anti-SHIP1 (D1163), -SAPK/JNK, -p38 MAPK, -p44/42 MAPK (Erk1/2), -Akt anti-
bodies, all are from Cell Signaling Technology, Danvers, MA, USA], and then incubation
with horseradish peroxidase-conjugated secondary antibody was conducted. Employing
Amersham ECL Select™ detection reagent (GE Healthcare Life Sciences, Marlborough, MA,
USA), visualization of protein bands was done. Protein bands on the gel were quantified by
measuring the strength of individual bands using ImageJ software (version 1.47t, National
Institutes of Health, Bethesda, MD, USA).

4.6. Statistical Analysis

Graphpad Prism software (version 8.0.1, LaJolla, CA, USA) was employed to perform
the statistical analyses. Data were presented as mean ± standard error of the mean.
Unpaired t-test was employed for the comparison between two groups with unmatched
data. Multiple comparison test, either One-way or Two-way, was used to compare the
means of >2 independent groups [29]. p < 0.05 indicated a statistical significance level.

5. Conclusions

In summary, our findings demonstrate that TP has inhibitory effects on human NK cell
activity/function in freshly isolated NK cells, in a TP dose-dependent (0–5 ng/mL) manner.
Our findings also reveal that TP can activate SHIP-1 and JNK signaling and inhibit p38
signaling, which is in line with TP-mediated NK cell functional suppression. Furthermore,
the finding that TP has inhibitory effects on RA patients’ NK cell activation/function
provides new insight into mechanisms of TP therapeutic treatment in autoimmune disease.

Supplementary Materials: The followings are available online at https://www.mdpi.com/article/
10.3390/ph16030458/s1, Figure S1. Effect of TP on the viability, phenotype and function of NK cells
in normal human PBMCs. Figure S2. TP stimulation does not affect ERK and AKT signalling in
NK cells.
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