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Abstract: Pulmonary hypertension (PH) frequently complicates chronic lung disease and is associ-
ated with high morbidity and poor outcomes. Individuals with interstitial lung disease and chronic
obstructive pulmonary disease develop PH due to structural changes associated with the destruction
of lung parenchyma and vasculature with concurrent vasoconstriction and pulmonary vascular re-
modeling similar to what is observed in idiopathic pulmonary arterial hypertension (PAH). Treatment
for PH due to chronic lung disease is largely supportive and therapies specific to PAH have had
minimal success in this population with exception of the recently FDA-approved inhaled prostacyclin
analogue treprostinil. Given the significant disease burden of PH due to chronic lung diseases and
its associated mortality, a great need exists for improved understanding of molecular mechanisms
leading to vascular remodeling in this population. This review will discuss the current understanding
of pathophysiology and emerging therapeutic targets and potential pharmaceuticals.

Keywords: pulmonary hypertension; interstitial lung disease; chronic obstructive pulmonary disease;
vascular remodeling; hypoxia

1. Introduction

Pulmonary hypertension (PH) is a progressive disease characterized by increased
pulmonary vascular resistance and high pulmonary artery pressures that ultimately leads
to right heart failure and is associated with high morbidity. PH can occur de novo as either
idiopathic or hereditary PAH, but often complicates other chronic conditions including
chronic lung diseases. This entity of PH belongs to the Group 3 classification and is one of
the highest leading causes of PH worldwide, second to PH associated with left-sided heart
disease (Group 2) [1]. Of the several chronic lung diseases, PH is most likely to develop
as a complication of interstitial lung disease (ILD) and chronic obstructive pulmonary
disease (COPD). Amongst these individuals, the development of PH is associated with
increased mortality, reduced functional capacity, and poor quality of life [2–6]. Despite the
increased prevalence and associated morbidity, treatment for Group 3 PH is limited and
largely supportive with guidelines recommending targeting of the underlying pulmonary
disease as the mainstay of treatment [7]. Specific targeted therapies for Group 3 PH in
clinical trials has been largely influenced by successful therapies in Group 1 PAH, however
when expanded to this group, results have largely been disappointing until the INCREASE
trial in 2021, which resulted in the first Food and Drug Administration (FDA)-approved
medication for PH associated with ILD [8]. The high disease burden and poor outcomes
advocate the need for more targeted therapies in this patient population. This article
will review the pathogenesis, current treatment options, and future directions based on
ongoing research.

2. Classification

Group 3 PH is defined similarly to Group 1 PAH and formal diagnosis is made by right
heart catheterization (RHC) with measurements of mean pulmonary artery pressure (PAP)
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> 20 mm Hg, pulmonary capillary wedge pressure (PCWP) < 15 mm Hg, and pulmonary
vascular resistance (PVR) ≥ 3 wood units. These findings must be in conjunction with the
presence of underlying lung disease. Group 3 PH encompasses several diseases including
obstructive, restrictive, or mixed lung disease, developmental lung diseases, and includes
states of chronic hypoxia such as sleep-disordered breathing, alveolar hypoventilation
disorders, and chronic exposure to high altitude. This review will focus on chronic lung
diseases, specifically ILDs with emphasis on idiopathic pulmonary fibrosis (IPF) and COPD.
Epidemiology is difficult to define in this patient population due to differing definitions of
PH and the use of transthoracic echocardiography over RHC for diagnosis. In IPF patients,
evidence of PH as defined by mean PAP > 25 mm Hg ranges between 8 and 15% at initial
work-up, with a higher incidence of 30–50% in severe disease, and greater than 60% in
patients at end-stage disease [9–14]. Approximately 90% of severe COPD patients classified
as stage IV by the GOLD criteria will have a mean PAP > 20 mmHg, yet less than 5% of
patients will have a mean PAP > 35 mmHg, suggesting that severe PH occurs less frequently
in COPD and that the severity of disease does not consistently correlate with the degree of
PH [5,15].

3. Pathogenesis

The mechanisms leading to the development of Group 3 PH is not completely under-
stood, but likely multifactorial with large contributions from the mechanisms that led to
the development of underlying lung disease. Evaluations of explanted lungs of individuals
with Group 3 PH demonstrate significant overlap with Group 1 PAH, suggesting a similar
mechanistic process: injury to the pulmonary vascular endothelium leading to endothelial
dysfunction and vascular remodeling, which in combination with sustained vasoconstric-
tion leads to changes in pulmonary hemodynamics causing development and progression
of PH.

3.1. Pulmonary Vascular Remodeling

Vascular remodeling refers to the structural changes in the pulmonary circulation
that increases vessel wall thickness, reduces vessel lumen diameter, and thus increases
PVR. The pulmonary arterial circulation is composed of the endothelial-cell-lined intima,
smooth muscle cell media, and fibroblast-composed adventitia. In PAH, intermediate and
large vessels demonstrate hyperplasia and hypertrophy of all three layers which occur as
a result of endothelial dysfunction, characterized by disorganized hyperproliferation of
pulmonary artery endothelial cells [16]. Similar changes occur in the small arterioles with
the addition of plexiform vasculopathy characterized by concentric lesions consisting of
endothelial and smooth muscle cells that obliterate the vessel lumen, which is a typical
characteristic of PAH [17]. In patients with Group 3 PH, explanted lungs demonstrate
muscularization of the microvasculature, intimal and medial proliferation, and evidence of
inflammation and thrombosis. Additionally, explanted lungs demonstrate destruction of
the alveoli and septa, which leads to a reduction in capillaries, contributing to increased
vascular resistance [16,18,19].

3.2. Hypoxia

Hypoxia contributes greatly to the development of PH in this population through the
alteration of pulmonary hemodynamics, inciting endothelial dysfunction, and thus giving
rise to pulmonary vascular remodeling. The structural changes of the lung parenchyma
and concomitant vasculature lead to aberrant gas exchange in chronic lung diseases and
often results in alveolar hypoxia. Alveolar hypoxia causes a depolarization of pulmonary
smooth muscle cells and an influx of cytoplasmic calcium leading to contraction and
sustained pulmonary vasoconstriction. This phenomenon is specific to the lungs, as reduced
oxygen delivery in the systemic circulation leads to vasodilatation. Brief hypoxia exposures
lead to prolonged increases in pulmonary vascular resistance with long-term exposure
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leading to structural changes of the pulmonary arterioles predominantly defined as medial
hypertrophy [20].

3.3. Interstitial Lung Disease (ILD)

ILD is a disease of progressive scarring of the lung parenchyma leading to reduced
gas exchange. The structural changes as well as pathophysiologic changes associated with
ILD are thought to contribute to PH development as well (Figure 1). Pulmonary fibrosis
(PF) is the result of fibroblast proliferation leading to extracellular matrix deposition and
obliteration of the alveoli. Fibrosis also results in damage of the pulmonary vascular bed,
with decreased blood vessel density in areas of fibrosis and increased vascularization in
non-fibrotic areas [21]. Fibrosis may also act to compress vessels or lead to direct remodel-
ing, ultimately causing increased PVR. Fibrotic regions contain increased endothelial cell
apoptosis, and these endothelial cells are thought to release vascular smooth muscle growth
factors that lead to smooth muscle cell and fibroblast proliferation in conjunction with
inflammatory mediators and oxidative stress [22,23]. Inflammation is thought to play an
influential role in pathogenesis, with IPF patients having an upregulation of inflammatory
mediators and gene expression demonstrating an overexpression of inflammation and
hyperproliferation [24,25]. The culmination of alveolar hypoxia, endothelial dysfunction,
increased oxidative stress, and inflammation all contribute to the development of PH
in ILD.
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Figure 1. Schematic representation of pathogenesis of pulmonary hypertension in interstitial lung
disease. Axial computed tomography image of a patient with fibrotic lung disease with significant
traction bronchiectasis, subpleural honeycombing, and fibrosis (upper left image). Frontal chest
radiograph demonstrating bilateral lower lobe fibrosis (lower left image). Red arrows indicate
increase. PVR indicates pulmonary vascular remodeling; PAP, pulmonary artery pressure.

3.4. Chronic Obstructive Pulmonary Disease (COPD) and Emphysema

COPD is a disease of airflow limitation that results in structural changes of the lung
parenchyma and concomitant vasculature that leads to aberrant gas exchange. The de-
velopment of PH in COPD is a result of both structural and functional causes that are
inherent to chronic lung disease (Figure 2). Alveolar hypoxia contributes to pulmonary
vasoconstriction, a lung-specific phenomenon. Hypoxia leads to pulmonary artery smooth
muscle cell contraction, and even brief hypoxia exposures lead to prolonged increases in
pulmonary vascular resistance with long-term exposure leading to structural changes of the
pulmonary arterioles [20]. Individuals with COPD are not only prone to hypoxic pulmonary
vasoconstriction, but also experience hemodynamic effects from prolonged hypercapnia.
Severe airway obstruction in these individuals leads to alveolar hypoventilation and resul-
tant hypercapnia. Prior studies have demonstrated a direct relationship between partial
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pressure of carbon dioxide (PaCO2) and mean PAP in COPD patients [26]. There is also a
relationship between hypercapnia leading to increased cardiac output and this relationship
can be explained through a few mechanisms [27]. Increased CO2 at the renal tubules
leads to retained sodium and fluid through the sodium–hydrogen exchange. Additional
fluid retention may occur through the vasodilatory effects of hypercapnia in the systemic
circulation leading to neurohormonal activation of salt and water retention [28,29]. Fluid
retention and edema increases pulmonary venous return, increasing stroke volume and
ultimately cardiac output. Although this would lead to increased flow in the pulmonary
circulation, this is also complicated by acidemia-induced pulmonary vasoconstriction [30].
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Figure 2. Schematic representation of pathogenesis of pulmonary hypertension in chronic obstructive
pulmonary disease. Axial computed tomography image of a patient with bilateral upper lobe
emphysema (upper left image). Frontal chest radiograph demonstrating lung hyperinflation (lower
left image). Red arrows indicate increase. PVR indicates pulmonary vascular resistance; PAP,
pulmonary arterial pressure.

The structural changes that occur due to COPD also contribute to altered pulmonary
hemodynamics. Emphysema is characterized by destruction of the alveoli and associated
pulmonary microvasculature; the reduction in overall vascular cross-sectional area leads
to increases in pulmonary vascular pressure [16]. Additionally, the gas-trapping that
occurs due to airway obstruction results in lung hyperinflation which can theoretically lead
to compression of pulmonary vessels and increase pulmonary vascular pressure. These
structural changes altering the pulmonary hemodynamics contribute to the development
of pulmonary artery muscularization and hypertrophy contributing to further elevations
in PVR [17]. Lastly, chronic smoke exposure and airway inflammation leads to medial
hypertrophy; evidence of vascular remodeling is seen in smokers before the development
of COPD or PH [31].

4. Group 3 Pulmonary Hypertension Therapies

Approach to treatment of Group 3 PH patients is centered around guideline-directed
therapy of the underlying lung disease and treatment of comorbid conditions that may also
exacerbate PH, such as left-sided heart disease, sleep disordered breathing, and pulmonary
thromboembolism [7,32]. Patients with hypoxemia should also receive long-term oxygen
therapy (LTOT). A prospective study of LTOT in COPD patients improved mean PAP and
prevented worsening of PH. This recommendation is applied to other chronic lung diseases;
however, no studies have addressed the benefit beyond COPD [33]. Supportive therapies
such as pulmonary rehabilitation should be a part of standard therapy as well as the use of
diuretics in patients that have evidence of hypervolemia and heart failure. All preventative
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measures should be taken to avoid exacerbations of underlying lung disease including
vaccination to prevent respiratory infections and assistance in smoking cessation. Patients
with advanced lung disease should be referred for transplantation when appropriate.

4.1. Pulmonary-Arterial-Hypertension-Specific Therapies

Treatment of PAH has largely been established by targeting vasodilator pathways of
prostacyclin, endothelin-1, and nitric oxide (NO). All classes of PAH medications have been
tested in patients with PH associated with ILD and COPD, yet with varying degrees of
success (Table 1).

4.1.1. Nitric Oxide (NO) Pathway

NO is a potent vasodilator that is synthesized in pulmonary vascular endothelial cells
and functions in conjunction with other vasodilators and constrictors to maintain vascular
tone in response to stress or oxygen levels [34]. In individuals with IPF, COPD, or other
diseases of the pulmonary vasculature, NO production is decreased, ultimately resulting
in a vasoconstrictive phenotype and impaired gas exchange [35,36]. Phosphodiesterase-5
(PDE-5) degrades cyclic guanosine monophosphate (cGMP), which is the product of NO
production that acts directly on smooth muscle cells to induce vasodilatation. Inhibitors
of PDE-5, such as sildenafil and tadalafil, stabilize and increase cGMP levels, favoring a
vasodilatory phenotype.

Sildenafil treatment in IPF patients demonstrated preferential vasodilatation in well-
ventilated areas of the lung, improving gas exchange [37]. These favorable findings led to
the STEP-IPF study which ultimately did not meet the primary outcome of improvement
in six-minute walk distance (6MWD) in patients with advanced IPF but did have some
positive secondary outcomes with improvement in perceived dyspnea and quality of
life [38]. Another randomized control trial evaluated the effect of sildenafil in addition
to the anti-fibrotic medication pirfenidone in patients with advanced IPF and increased
risk of PH, defined as mPAP ≥ 20 mm Hg with PCWP < 15 mm Hg or evidence of
intermediate/high probability PH on echocardiogram. The authors hoped that earlier
targeted PH therapy in patients with advanced IPF would be an ideal approach as vascular
changes exist prior to definitive development of PH. The addition of sildenafil compared
to pirfenidone monotherapy did not meet the primary endpoint of disease progression
measured by 6MWD, respiratory-associated hospitalization, or all-cause mortality [39].

Riociguat is a soluble guanylate cyclase stimulator that acts similarly through the
NO pathway to increase production of cGMP and has been identified as a successful
therapy in both primary PAH and CTEPH [40,41]. Preclinical models have demonstrated
antifibrotic effects, supporting its role as a potential therapeutic for ILD-related PH [42,43].
The RISE-IIP study evaluated riociguat treatment in idiopathic interstitial pneumonia
with precapillary PH and failed to show improvement in 6MWD, but was also associated
with serious adverse events, increased mortality, and therefore the study was terminated
early [44]. Pulse inhaled NO is currently being evaluated as a potential therapeutic, and
early clinical studies suggest that IPF patients at risk of PH have improved physical activity
with this therapy [45]. The REBUILD study is currently underway to further evaluate pulse
inhaled NO in PH associated with IPF patients who are on LTOT [46].

There have been more studies evaluating NO-targeted therapy in COPD patients,
however results are inconclusive across trials. In patients with COPD and without PH,
two studies of sildenafil showed opposing results, one with improvement in exercise ca-
pacity while sildenafil was associated with increased harm in the other [47,48]. Blanco
et al. conducted a study that demonstrated improvement in hemodynamics with silde-
nafil in COPD-associated PH, however decreased arterial oxygenation at rest was found
and attributed to sildenafil inhibiting pulmonary vasoconstriction that may occur in re-
sponse to hypoxia, leading to worsening gas exchange from ventilation/perfusion (V/Q)
mismatching [49]. Subsequent randomized controlled trials have not demonstrated any
significant worsening of oxygenation from PDE-5 inhibitor use in this population. Silde-
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nafil, in addition to pulmonary rehabilitation in patients with severe COPD and moderate
PH, did not improve exercise capacity and neither did tadalafil in patients with COPD
and mild PH [50,51]. Lastly, in a pilot study of patients with severe PH and COPD, silde-
nafil treatment improved PVR and other secondary endpoints including the BODE (body
mass, airflow obstruction, dyspnea, exercise capacity) index [52]. The differing results
and the inconsistent study population across severity of PH and COPD make the data
difficult to interpret and therefore PDE-5 inhibitors are not recommended in Group 3 PH
guidelines [32,53].

4.1.2. Endothelin (ET) Pathway

Endothelin-1 (ET-1) is a potent vasoconstrictor peptide produced predominately by
endothelial cells. ET-1 acts via both autocrine and paracrine signaling on vascular en-
dothelial and smooth muscle cells, mediated by ETA and ETB receptors to execute its
vasoconstrictive and mitogenic functions. ET-1 activation of ETA and ETB receptors on
smooth muscle cells leads to vasoconstriction, whereas activation of ETB receptors on
endothelial cells stimulates production of vasodilatory compounds, NO and prostaglandin,
and aids in pulmonary clearance of ET-1, thus the receptors are thought to function in
mediating vasomotor tone [54]. ET-1 concentration in healthy individuals is low, but ele-
vated in patients with PAH, IPF, and COPD, suggesting that activation of the ET pathway
greatly contributes to disease [55,56]. ET receptors are also present in fibroblasts, leading
to increased collagen and fibrosis formation, making this an ideal treatment target for
pulmonary vascular disease. Ambristentan is a selective ETA receptor antagonist, whereas
bosentan is a dual ETA and ETB receptor antagonist; they are both approved treatments for
Group 1 PAH.

As ET-1 influences fibroblast proliferation and inflammation, ET receptor antagonists
have been tested in patients with IPF and PH. Ambistentan treatment in this population
was not effective in treating disease progression, led to harm causing early termination of
the ARTEMIS-IPF study, and is contraindicated in this patient population [57]. Bosentan,
the dual receptor antagonist, similarly did not show improvement in hemodynamics or
functional capacity in patients with PH and fibrotic idiopathic interstitial pneumonia [58].

Table 1. Randomized, controlled trials in pulmonary hypertension associated with chronic lung disease.

Trial Study Therapy Target Outcome Ref
Pulmonary Fibrosis-Associated Pulmonary Hypertension (PF-PH)
STEP-IPF
Zisman et al., 2010 Sildenafil NO No improvement in 6MWD [38]

Behr et al., 2021 Sildenafil and
Pirfenidone NO No improvement in 6MWD, respiratory

hospitalization, or mortality [39]

RISE-IIP
Nathan et al., 2019 Riociguat NO No improvement in 6MWD; increased

adverse events and mortality [44]

iNO-PF
Nathan et al., 2020 Pulsed inhaled NO NO Increased moderate/vigorous

physical activity [45]

ARTEMIS-IPF
Raghu et al., 2013 Ambrisentan ET-1

No improvement in lung function,
respiratory hospitalization, or death;
Increased harm

[57]

BPHIT
Corte et al., 2014 Bosentan ET-1 No decrease to PVR index of 20% or more [58]

INCREASE
Waxman et al., 2021 Inhaled Treprostinil Prostacyclin Improvement in 6MWD [8]
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Table 1. Cont.

Trial Study Therapy Target Outcome Ref
Chronic Obstructive Pulmonary Disease-Associated Pulmonary Hypertension (COPD-PH)
Blanco et al., 2010 Sildenafil NO Reduced mean PAP [49]

Blanco et al., 2013
Sildenafil and

pulmonary
rehabilitation

NO No improvement in cycle endurance time [50]

Goudie et al., 2014 Tadalafil NO No improvement in 6MWD [51]

SPHERIC-1
Vitulo et al., 2017 Sildenafil NO Reduced PVR [52]

Stolz et al., 2008 Bosentan ET-1 No improvement in 6MWD [59]

Valerio et al., 2009 Bosentan ET-1 Reduced mean PAP and PVR, Increased
6MWD, and reduced BODE index [60]

Ref indicates reference; NO, nitric oxide; 6MWD, six-minute walk distance; ET-1, endothelin-1; PVR, pulmonary
vascular resistance; PAP, pulmonary artery pressure; BODE, body mass index, airflow obstruction, dyspnea, and
exercise performance measure.

Bosentan treatment in severe COPD without severe PH did not improve pulmonary
hemodynamics or lung function, but also worsened hypoxemia and functional status in
this patient population [59]. Another study looking at bosentan in COPD-PH showed
improvement in hemodynamics and BODE index [60]. Conflicting results, small sample
sizes, and concern for harm suggest that endothelin receptor antagonists should not be
used for patients with Group 3 PH.

4.1.3. Prostacyclin Pathway

Prostacyclin is an endogenous vasodilator produced by vascular endothelial cells.
Prostacyclin binds to a G-protein-coupled receptor and results in downstream production
of cyclic adenosine monophosphate (cAMP), leading to vasodilatation of vascular smooth
muscle cells [61]. Through an increase in intracellular cAMP, prostacyclin also functions to
inhibit platelet aggregation.

Synthetic prostacyclin analogues have been developed in several formulations and
function to cause direct vasodilatation of vascular beds and are approved for treatment
of PAH. The INCREASE trial recently demonstrated that inhaled Treprostinil led to im-
provement in exercise capacity measured by 6MWD and reduced NT-pro-BNP levels
and disease-related exacerbations in individuals with IPF and PH. Investigators note that
inhaled administration allows for preferential blood flow to well-ventilated alveoli and
minimizes V/Q mismatching from vasodilators in Group 3 patients [8]. Subsequent analy-
sis also demonstrated significant improvement in forced vital capacity (FVC), leading to the
TETON trial which is evaluating the effect of inhaled Treprostinil in IPF on FVC. Inhaled
Treprostinil is the only FDA-approved PAH therapy for treatment of Group 3 PH associated
with ILD. Trials are also currently underway on patients with PH related to COPD [62].

4.2. Emerging Molecular Targets for Pulmonary Hypertension Related to Chronic Lung Disease

As discussed previously, clinical trials for chronic lung disease have largely been
undertaken to repurpose therapies that are efficacious in PAH by targeting one of the
vasodilator pathways: prostacyclin, endothelin-1, and NO. In PAH, these therapies slow
progression of disease, but were largely ineffective in patients with Group 3 PH until the
recent INCREASE trial [8,38,39,44,48–51,59,63]. Since the development of PH is a large
predictor of mortality in individuals with chronic lung disease, effective therapeutics
that target and reverse vascular remodeling are needed. The following section discusses
emerging molecular targets that have demonstrated consistent success in preclinical and
early clinical models of Group 3 PH (Figure 3). Larger bodies of research have been
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established in the ILD model of Group 3 PH as this likely reflects the higher burden of PH
incidence within this group and the well-established bleomycin murine model of IPF and
secondary PH (Table 2). Molecular targets for both ILD and COPD will be addressed jointly.
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Figure 3. Molecular mechanisms associated with Group 3 pulmonary hypertension. This schematic
figure summarizes the molecular mechanisms associated with emerging therapies in preclinical
and early clinical development for Group 3 pulmonary hypertension. At the bottom of the figure
the pathobiologic changes associated with each molecular mechanism are listed. MR indicates
mineralocorticoid receptor; AT1R, angiotensin 1 receptor; O2, oxygen; AR, adenosine receptor; DPP-4,
dipeptidyl peptidase type 4; VEGFR, vascular endothelial growth factor receptor; VEGF, vascular
endothelial growth factor; BMPR2, bone morphogenetic protein receptor 2; NFκB, nuclear factor-
kappa b; HIF-α, hypoxia-inducible factor alpha; PPARγ, peroxisome proliferator-activated receptor
gamma; RAS, renin-angiotensin system.

4.2.1. Bone Morphogenic Protein Receptor Type II (BMPR2)

Heterozygous BMPR2 mutations are implicated in 70–80% of heritable PAH cases and
10–20% of idiopathic PAH cases [64]. This mutation results in reduced function of BMPR2,
a member of the transforming growth factor-beta (TGF-β) superfamily, and subsequent
loss of downstream signaling. BMPR2 aids in the regulation and suppression of TGF-β
which functions across several cell types modulating cell growth and differentiation [65].
BMPR2 mutations have been associated with the pulmonary-artery-hyperproliferative
and apoptosis-resistant phenotype that leads to vascular remodeling; however, there is
also a reduction in BMPR2 expression in other forms of PAH not associated with clear
mutations [66]. Chen and colleagues found that BMPR2 expression and signaling are
decreased in lung tissue of IPF patients with and without PH, which also correlates with
the severity of PH. Reduced BMPR2 expression is also seen in macrophages of bleomycin-
treated mice with the development of vascular remodeling and PH that is mediated by
interleukin-6 (IL-6) and microRNAs targeting BMPR2 degradation [67]. In another study
evaluating mice expressing mutant BMPR2, bleomycin exposure resulted in more severe
PH with increased HIF1-α expression [68]. Additionally, treatment with recombinant BMP9
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reverses bleomycin-induced PH by restoring BMPR2 and SMAD signaling pathways [69].
Targeting BMPR2 and TGF-β has preliminarily been a promising therapeutic approach in
recent clinical trials for PAH patients. Sotatercept is a ligand trap that is specific for the
TGF-β family and allows for a rebalancing of proliferative and anti-proliferative signaling
that is offset by reduced BMPR2 function [70]. In a Phase 2 clinical trial, sotatercept was
well tolerated and demonstrated a significant reduction in PVR in PAH patients [71]. The
improvement in PVR is attributed to a reduction in mean PAP without a change in cardiac
output or PCWP, suggesting that the therapeutic effect is likely a result of reduced vascular
remodeling as opposed to a vasodilatory effect. As pulmonary vasodilators have a limited
role in PH associated with chronic lung disease and preclinical models support a role of
BMPR2 signaling in PH and fibrosis pathobiology, this therapeutic warrants expanded
exploration in Group 3 patients.

4.2.2. Angiogenesis and Vascular Endothelial Growth Factor (VEGF)

Pulmonary fibrosis not only causes obliteration of the alveoli, but also damages
the pulmonary vasculature. Angiogenesis is the process of new vessel formation from
existing vasculature and is an important mechanism after tissue damage to facilitate healing.
The abundance or lack of pulmonary capillaries is thought to influence the development
of PH in PF. In explanted lungs of IPF, vessel density is decreased in areas of fibrosis
and increased in non-fibrotic areas, but overall results in reduced vessel density [21].
Additionally, VEGF levels are reduced in explanted IPF lungs with an upregulation of
angiostatic molecule pigment epithelium-derived factor, suggesting that an imbalance of
angiogenic factors may be contributing to pathology [72,73]. VEGF is abundant in the lungs
and important for maintenance of the pulmonary endothelium, contributing to both NO
and prostacyclin production. Animal models of chronic hypoxia express increased VEGF
levels and development of vascular remodeling and PH [74–76]. However, the frequently
studied Sugen-hypoxia animal model that closely mimics PAH with the development of
vascular remodeling and plexiform lesions uses a VEGF receptor (VEGFR2) antagonist in
conjunction with hypoxia, which is known to upregulate VEGF levels, demonstrating that
VEGF signaling is important for the development of PH. A PF rat model of adenoviral
delivery of TGF-β1 led to the development of PH with increased vascular apoptosis and
increased VEGF expression in highly fibrotic regions [77]. VEGF treatment attenuated these
findings but did lead to a worsening of fibrosis. VEGFR2 modulates a survival pathway
and downregulation leads to increased PF and decreased vascular density, contributing
to PH development in PF. Taken together, this suggests that VEGF is important to the
development of PH and the modulation of VEGF balance at certain time points in the
disease process could be an important therapeutic target.

4.2.3. Nuclear Factor-Kappa B (NF-κB) Signaling and Oxidative Stress

Inflammatory responses to environmental triggers are mediated by NF-κB signaling
and thus activation of NF-κB is thought to play a role in the pathogenesis of asthma,
COPD, and autoimmune diseases [78–81]. NF-κB signaling is involved in angiogenesis
and vascular cell proliferation, upregulated in lung tissue from IPAH patients, and its
inhibition attenuates PAH development in monocrotaline mouse models [82–84]. Patients
with COPD-associated PH have increased serum TLR-4, an NF-κB upstream activator,
and NF-κB expression correlates with PH severity [85]. Additionally, reduction in NF-
κB signaling in a COPD-PH mouse model (intratracheal-elastase-induced emphysema)
through budesonide/glycopyrronium/formoterol fumarate triple therapy prevented PH
development and decreased COPD progression [86].

Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that regu-
lates NF-κB signaling, reactive oxygen species, and overall generation of oxidative stress.
Treatment with Nrf2 induction in a chronic hypoxia PAH murine model decreased vascular
remodeling and RV hypertrophy [87]. Bardoxolone methyl is an Nrf2 activator that de-
creases pro-inflammatory NF-κB and reduces oxidative stress. The LARIAT phase 2 clinical
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trial used bardoxolone methyl as treatment in both PAH and PH related to chronic lung
disease and demonstrated improvements in exercise capacity, specifically in connective-
tissue-disease-associated PAH. These findings prompted the CATALYST and RANGER
phase 3 clinical trials, which were delayed due to the COVID-19 pandemic, but ultimately
are halted as data suggested that the primary endpoint, improved 6MWD, would not be
reached [88]. The combination of NF-κB signaling and reduction in ROS makes this an
ideal potential therapy for PH related to chronic lung disease, as preclinical models have
also suggested ROS reduction as an attenuator of vascular remodeling and PH in models
of chronic hypoxia and pulmonary fibrosis [89–91].

4.2.4. Pulmonary Renin–Angiotensin System (RAS)

RAS is a group of ligands and receptors that regulate several organ systems and has
been a well-established therapeutic target for several disease processes. Activation of
angiotensin II (Ang II), a potent vasoconstrictor, stimulates lung fibroblast growth, upregu-
lates TGF-β, and stimulates pulmonary artery smooth muscle cell growth contributing to
pathophysiology seen in both PF and PH [92–94]. These detrimental processes are stimu-
lated by angiotensin-converting enzyme (ACE). ACE2 is a homolog of ACE that provides
an alternative pathway for pulmonary RAS regulation with the vasodilatory end-product
angiotensin-(1-7) that counteracts the negative effects of Ang-II and leads to its degradation.
ACE2 treatment has been effective in improving PH and reducing vascular remodeling in
bleomycin murine models of IPF and monocrotaline model of PAH [95–97]. Additionally,
the Ang-(1-7) pathway has increased expression of the angisotensin type 2 (AT2) receptor
and stimulation of this also improved lung fibrosis and vascular remodeling in a preclinical
PF-PH murine model [97,98]. Patients with PAH have reduced ACE2 expression and a pilot
study demonstrated that recombinant protein infusion improved PVR and cardiac output
and reduced oxidative stress and inflammatory mediators; a phase-2 trial is currently
recruiting for PAH patients [99,100].

4.2.5. Peroxisome Proliferator-Activated Receptors (PPAR)

Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription
factors belonging to the nuclear receptor family that regulates inflammation and lipid
and carbohydrate metabolism. These receptors are ubiquitous across many cell types and
PPARγ is present predominantly in adipose tissue, but also found in lung parenchyma
and immune cells with several pulmonary diseases, including PH demonstrating reduced
PPARγ expression [101–104]. PPARγ regulates cytokines involved in PH and vasocon-
strictors including endothelin-1, and overall contributes to key PH mechanisms including
proliferation, inflammation, apoptosis, and angiogenesis of pulmonary vascular cells [105].
Further studies have supported a role for PPARγ in reversing vascular remodeling in pre-
clinical PAH models [106] and suggest that this mediation occurs via inhibition of TGF-β1
signaling [107].

In pulmonary fibrosis, tissue injury through proinflammatory and abnormal growth
factor production leads to the transition of mesenchymal cells to myofibroblasts which
produce collagen and extracellular matrix proteins. PPARs are shown to have anti-fibrotic
effects and decrease lung fibrosis in preclinical models [108–110]. Lanifibranor (IVA337)
is a pan-PPAR agonist and has shown success in the treatment of liver fibrosis [111].
Lanifibranor has demonstrated success with pulmonary fibrosis in preclinical murine
models of IPF, non-specific interstitial pneumonia (NSIP), and systemic sclerosis, with some
improvement in secondary PH development [112,113]. Furthermore, lanifibranor inhibited
human fibroblast to myofibroblast transition and proliferation mediated by TGF-β [112].

Taken together, PPAR activation has demonstrated promising pre-clinical results and
its synthetic ligands are well-studied therapeutics for a wide range of disease processes.
Additionally, PPARγ’s therapeutic benefit has significant overlap with several of the previ-
ously discussed targets in this section, including BMPR2 and TGF-β signaling [105,114,115]
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and the RAS system as Ang II inhibition increased PPARγ expression in murine models of
renal fibrosis [116].

4.2.6. Endothelial to Mesenchymal Transition (EndoMT)

EndoMT is a process of cellular transdifferentiation where endothelial cells lose their
barrier protective functions and gain mesenchymal characteristics such as contractility [117].
EndoMT has been implicated in pulmonary artery intima proliferation and remodeling in
PAH models [118] and evidence of EndoMT has been found in patients with PAH and PH
associated with IPF and systemic sclerosis [119,120]. EndoMT in the pathophysiology of
vascular remodeling in PH is induced by several signaling pathways and mediators. Specif-
ically, in preclinical murine models of PH associated with PF, PH and vascular remodeling
have been improved by inhibition of JAK2/SMAD3, a known regulator of endothelial cell
injury, and ERK 1/2 signaling through sildenafil treatment and direct inhibition of JAK2 or
interleukin-11 (IL-11) [120–122]. The activation of myofibroblasts is integral to the pathobi-
ology of lung fibrosis and may also contribute to vascular remodeling. These preclinical
studies also identify EndoMT as a source of myofibroblasts and pulmonary artery smooth
muscle cell transition to a myofibroblast phenotype as a contributing process [120,122,123].

Dipeptidyl peptidase IV (DPP-4) is a serine protease that cleaves N-terminal dipeptides
from substrates and is increased in inflammatory disease states. DPP-4 inhibition (DPP-4i)
has been used in the treatment of diabetes and cardiovascular complications. It also has
been shown to regulate endothelial and smooth muscle vascular cells. DPP4i attenuated
pulmonary fibrosis in a sepsis lung murine model by decreasing the EndoMT process [124].
DPP-4i treatment inhibits EndoMT and pulmonary vascular remodeling in a monocrotaline
PAH model and reduced PH in bleomycin and chronic hypoxia mouse models [125]. DPP-
4i is a well-established therapeutic approach and shows promise in the treatment of PH
and vascular remodeling through its protective effects on the pulmonary endothelium
from EndoMT.

4.2.7. Hypoxia–Adrenergic Axis

In response to cellular injury, adenosine acts via extracellular signaling to regulate
tissue repair. In chronic lung disease, elevated levels of adenosine are thought to contribute
to remodeling and progression of disease, with findings of increased adenosine 2B receptor
expression in patients with COPD and IPF [126,127]. Nucleotide adenosine has been
upregulated in lung tissue remodeling and known fibroproliferative mediators, such as IL-
6, ET-1, and reactive oxygen species, are regulated through the adenosine signaling system.
Karmouty-Quintana and colleagues found that selective antagonism (GS-6201) or deletion
of the adenosine 2B receptor prevented vascular remodeling and PH, reduced lung fibrosis,
and downregulated IL-6 and ET-1 in mice exposed to bleomycin [128]. Upregulation
of inflammatory cells, specifically activated macrophages, is known to play a role in PF
and PH. The same group evaluated adenosine receptors in myeloid cells, and findings
suggested that the adenosine receptor ADORA2B is increased in macrophages from IPF
patients and preclinical models, and ADORA2B antagonism improves fibrosis and PH
in mouse models. In bleomycin-treated mice, deletion of myeloid cell ADORA2B led to
alteration in macrophages and decreased lung fibrosis and fibrotic mediators in addition to
reduced pulmonary remodeling and PH [129]. Hypoxia-inducible factor (HIF) is stabilized
in hypoxic conditions and is known to play a role in several chronic lung disease processes
in addition to development of PH. HIF1α is known to activate adenosine signaling, noted
by increased expression of enzymes that aid in the synthesis of adenosine and increased
expression of adenosine receptor 2B. In patients with IPF and PH, HIF1α is stabilized
by decreased mitochondrial metabolism leading to impaired succinate metabolism when
compared to IPF patients alone. This stabilization of HIF1α leads to the enhancement of
adenosine signaling and increased use of adenosine receptors [130].

In the realm of COPD, a mouse model of airspace enlargement as seen in emphy-
sema, is generated by adenosine deaminase (ADA) deficiency. ADA is an enzyme that
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metabolizes adenosine, and ADA is reduced in patients with COPD. Genetic deficiencies
of ADA in mice leads to increased adenosine expression, airspace enlargement, and de-
velopment of vascular remodeling and PH. Patients with COPD and PH have remodeled
pulmonary vessels with smooth muscle and collagen deposition, and increased levels of
ADORA2B correlate with PAP. Treatment of ADORA2B antagonist in this ADA-deficient
COPD mouse model led to the attenuation of PH through a regulation of hyaluranon and
hyaluranon synthase-2, suggesting that adenosine signaling influences lung extracellular
matrix composition which leads to remodeling [128].

4.2.8. Hypoxia-Inducible Factor

Hypoxia-inducible factor signaling is known to be important in the development of
PAH. HIF is a transcription factor that degrades in normoxia, but in response to low oxygen
levels translocates to the nucleus and augments gene transcription. Although the mecha-
nisms that result in fibrosis and lead to vascular remodeling are unclear, stabilization of
HIF1α under hypoxic conditions could play a crucial role as hypoxia is an important feature
of the disease. Studies have also suggested a potential dysregulation in oxygen sensing
as HIF is often upregulated in normoxic conditions. Additionally, individuals exposed to
hypoxia demonstrate a wide change in mean PAP, suggesting additional influencing factors
in the development of PH related to hypoxia [131]. Interestingly endothelial-HIF-deficient
mice exposed to bleomycin do not show significant differences in lung fibrosis, but do show
protection against the development of PH and vascular remodeling, suggesting that HIF
may have an independent role from PF in PH pathobiology [72,132].

Table 2. Emerging therapies in pulmonary hypertension associated with chronic lung disease.

Intervention Target Model Studied Outcome Ref
Pulmonary Fibrosis-Associated Pulmonary Hypertension (PF-PH)

IL-6 -/- or soluble
GP130 (IL-6 inhibitor) BMPR2 Bleomycin mice

Increased BMPR2 expression;
abrogated development of PH;
reduced development of PF

[67]

Recombinant BMP9 BMPR2 Bleomycin rat
Restored BMPR2 signaling;
prevents bleomycin-induced PH
and PF

[69]

Adenoviral delivery
of VEGF VEGF Adenoviral delivery of

TGFβ-1 in rats

Reduced PAP and pulmonary
vascular remodeling;
worsened PF

[77]

Ang-(1-7) or ACE2
overexpression RAS Bleomycin rat

Monocrotaline rat Prevented PH and PF [95]

Recombinant ACE2 RAS Bleomycin mice Attenuated pulmonary
vascular remodeling [96]

Compound 21
(AT2 receptor agonist) RAS Bleomycin rat

Reduced progression of PF, PH,
and muscularization of
pulmonary vessels

[98]

IVA337
(pan-PPAR agonist) PPAR Bleomycin mice

Fra-2 transgenic mice

Prevented PF development;
improves PH and vascular
remodeling in Fra-2
transgenic mice

[112]

siRNA IL-11 EndoMT Bleomycin mice
IL-11 treated mice

Attenuated PF, PH, and vascular
remodeling; reduces evidence of
EndoMT

[122]
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Table 2. Cont.

Intervention Target Model Studied Outcome Ref

Sitagliptin
(DPP4 inhibitor) EndoMT

MCT rat
Bleomycin rat

Chronic hypoxia rat

Attenuated PH, RV and
pulmonary vascular remodeling,
and EndoMT in MCT rats;
prevented PH in bleomycin and
chronic hypoxia rats

[125]

ADORA2B myeloid
cell KO

Hypoxia-adrenergic
axis Bleomycin mice Attenuated PF, improved lung

function, and prevented PH [129]

Endothelial HIF
deficiency HIF Bleomycin mice Prevented PH and RV and

vascular remodeling [132]

Chronic Obstructive Pulmonary Disease-Associated Pulmonary Hypertension (COPD-PH)
Budesonide
glycopyrronium
formoterol fumarate
therapy

NF-κB Intratracheal elastase
induced emphysema

Prevented PH development and
COPD progression [86]

ADORA2B blockade Hypoxia-adrenergic
axis

Adenosine deaminase
deficient mice Attenuated development of PH [128]

Ref indicates reference; BMPR2, bone morphogenetic protein receptor 2; VEGF, vascular endothelial growth
factor; TGFβ, transforming growth factor β; PAP, pulmonary artery pressure; RAS, renin-angiotensin system;
PPAR, peroxisome proliferator-activated receptor; EndoMT, endothelial to mesenchymal transition; HIF, hypoxia-
inducible factor; RV, right ventricle; NF-κB, nuclear factor-kappa B.

5. Conclusions

Pulmonary hypertension is an important and deadly complication of chronic lung
diseases, including ILD and COPD. There are both overlapping and distinct pathogenic
mechanisms associated with the development of PH in these conditions. It remains imper-
ative that we use the best standard of care to treat the underlying respiratory condition,
yet the severe pathobiologic changes in the pulmonary circulation associated with the
development of PH cannot be ignored. Vasoconstriction and vascular remodeling continue
to be the areas that are considered to be the most ripe for targeted therapeutics; yet to date,
only inhaled treprostinil has attained FDA approval for the treatment of PH associated
with ILD and no targeted therapies are available for PH associated with COPD. We have
reviewed many emerging therapeutic targets based on important molecular mechanisms
in PH associated with both ILD and COPD, which include BMPR2, angiogenesis, NF-κB,
RAS, PPARγ, EndoMT, adrenergic stimuli, and HIF signaling. While our understanding of
these molecular targets and signaling pathways in Group 3 PH has grown exponentially,
much of the work has remained in the preclinical stages of investigation. Continuing to
develop our understanding of PH related to ILD and COPD, as well as bringing novel,
targeted therapies into development and clinical studies should remain a priority with this
deadly condition.
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Abbreviations

ADA Adenosine deaminase
AR Adenosine receptor
BMPR Bone morphogentic protein receptor
COPD Chronic obstructive pulmonary disease
DPP-4 Dipeptidyl peptidase type 4
EndoMT Endothelial to mesenchymal transition
ET-1 Endothelin-1
ILD Interstitial lung disease
IPF Idiopathic pulmonary fibrosis
HIF Hypoxia-inducible factor
LTOT Long-term oxygen therapy
NF-κB Nuclear factor kappa B
NO Nitric oxide
PAH Pulmonary arterial hypertension
PAP Pulmonary arterial pressure
PCWP Pulmonary capillary wedge pressure
PDE-5 Phosphodiesterase type 5
PF Pulmonary fibrosis
PH Pulmonary hypertension
PPAR Peroxisome proliferator-activated receptor
PVR Pulmonary vascular resistance
RAS Renin–angiotensin system
RHC Right heart catheterization
RV Right ventricle
TGF-β Transforming growth factor beta
VEGF Vascular endothelial growth factor
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