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Abstract: Stromal cell-derived factor-1 (SDF1) and its C-X-C chemokine receptor type 4 receptor (CXCR4)
are significant mediators for cancer cells’” proliferation, and we studied their expression in Ehrlich
solid tumors (ESTs) grown in mice. x-Hederin is a pentacyclic triterpenoid saponin found in Hedera
or Nigella species with biological activity that involves suppression of growth of breast cancer cell
lines. The aim of this study was to explore the chemopreventive activity of x-hederin with/without
cisplatin; this was achieved by measuring the reduction in tumor masses and the downregulation in
SDF1/CXCR4/pAKT signaling proteins and nuclear factor kappa B (NF«B). Ehrlich carcinoma cells were
injected in four groups of Swiss albino female mice (Group1: EST control group, Group2: EST + o-hederin
group, Group3: EST + cisplatin group, and Group4: EST + a-hederin/cisplatin treated group). Tumors
were dissected and weighed, one EST was processed for histopathological staining with hematoxylin
and eosin (HE), and the second MC was frozen and processed for estimation of signaling proteins.
Computational analysis for these target proteins interactions showed direct-ordered interactions. The
dissected solid tumors revealed decreases in tumor masses (~21%) and diminished viable tumor regions
with significant necrotic surrounds, particularly with the combination regimens. Immunohistochemistry
showed reductions (~50%) in intratumoral NFkf{ in the mouse group that received the combination
therapy. The combination treatment lowered the SDF1/CXCR4/p-AKT proteins in ESTs compared to the
control. In conclusion, o-hederin augmented the chemotherapeutic potential of cisplatin against ESTs;
this effect was at least partly mediated through suppressing the chemokine SDF1/CXCR4/p-AKT/NF«B
signaling. Further studies are recommended to verify the chemotherapeutic potential of x-hederin in
other breast cancer models.
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1. Introduction

In women, breast cancer is the most diagnosed life-threatening cancer and the top
cause of cancer death [1,2]. Many drugs were established for treating breast cancer but, drug
resistance and adverse effects often take place [3]. Ehrlich solid tumors (ESTs) is a highly
popular experimental tumor used to test various herbal anticancer medicines [4-6]. Ehrlich
ascites carcinoma is a hyperdiploid undifferentiated tumor that has fast proliferation, no
regression, a high transplantable capacity, and malignant characterization [7].

Chemokines have been implicated in the development of the tolerated tumor mi-
croenvironment [8]. Stromal-cell-derived factor-1 (SDF1) is also recognized as C-X-C motif
chemokine ligand 12, CXCL12, which is a key regulatory chemokine found in both healthy
and malignant cells [9]. SDF1 is a high-affinity ligand for the G-protein-coupled receptor
C-X-C chemokine receptor type-4 (CXCR4). The chemokine receptor SDF1/CXCR4 pro-
mote inflammation, growth, and spread of various cancers, including cervical and breast
malignancies [10]. Furthermore, SDF1/CXCR4 communication seemed to connect tumors
and their stromal cells [11], as well as activate many transcription factor machineries,
including nuclear factor-kappa B (NF«B) [12] and protein kinase B (AKT) [13,14].

NFkB transcription factors were shown to have an important role in a variety of malig-
nancies. NFkB through its transcription apparatus can influence a variety of inflammatory
mediators, apoptosis, stress responses, and cellular differentiation [15,16]. Moreover, NFkB
pathway activation has vital roles in tumor development and proliferation and angiogen-
esis [17,18]. The inhibition of NF«kB signaling paths is exploited as a particular target in
experimental treatment to decrease tumor growth, invasion, and metastasis [19,20]. The
AKT protein is an interacting prognostic oncogene that is activated by inflammation and
damaged DNA. It is overexpressed in a variety of malignancies, promoting cancer cell
proliferation and invasiveness, which reveals the preventative and therapeutic potential of
AKT inhibition in cancer [21-23].

Natural plant foods occupy an important position in cancer therapy. Various triter-
penoid saponins provide a potential chemopreventive effect against breast cancer [24].
a-hederin {(38,4x)-3-[[2-O-(6-Deoxy-a-L-mannopyranosyl)-a-L-arabinopyranosyl]oxy]-
23-hydroxyolean-12-en-28-oic acid} is a pentacyclic triterpenoid saponin found in Hedera
or Nigella species and was reported to show multiple biological activities. Currently, the
number of investigations into its biological activity is increasing due to its promising anti-
cancer potential [25]. a-hederin was reported to display cytotoxic potential against many
cancer cell lines [24] and experimental malignancies [24,26]. Importantly, the studies using
«-hederin in breast cancer animal models are limited, and the mechanism of its chemother-
apeutic action have not been fully understood. The anti-inflammatory activity of ivy leaves
(Hedera species) dry extract is attributed to the extract’s regulatory influence on the nuclear
factor-«xB (NFkB) pathway by switching of the inhibitor of NF«B (If3) kinase-(IKK) [18,26].
Furthermore, reports on the chemotherapeutic potential of x-hederin are few; these reports
focused on biological activity rather than the mechanisms [27].

Cisplatin was reported to possess anti-tumor potential against EST [28]. Cisplatin is a
chemical isomer of the molecule PtCI2(NH3)2; Cis-diamminedichloroplatinum (II) [29]. It
has a strong anti-neoplastic impact [30]. Its mode of action is based on DNA damage [31].
Although cisplatin is a key antineoplastic medication, it has dose-limiting nephrotoxicity [32].

Throughout the published evidence, the SDF1/CXCR4 expressional levels in EST
tissues need to be more enumerated. Moreover, the manipulation of SDF1/CXCR4 by
a-hederin was not studied before. The aim of the current study was to investigate the
chemotherapeutic potential of the a-hederin saponin and its effect combined with cisplatin
in EST grown in mice focusing on the SDF1/CXCR4/pAKT-1/NF«B signaling pathway as
a molecular target. Moreover, the interactions between the targeted proteins were analyzed
computationally using the STRING database.
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2. Results
2.1. Effect of a-Hederin and Cisplatin in Reducing the Solid Tumor Masses

The EST control group displayed well-defined solid tumors (0.58 £ 0.78 g in mass).
Mice treated with «-hederin, cisplatin, or combination showed quantifiable decreases in
tumor masses compared to the EST control mice. In comparison to each treatment alone,
the combination cisplatin and «-hederin regimen displayed superior reductions in tumor
masses compared to the monotherapies (p < 0.05), Figure 1.
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Figure 1. Effect of ax-hederin and cisplatin on solid tumor masses. EST: Ehrlich solid tumors.
Data are mean + SD, *: versus EST control group, &: versus EST + «-hederin group, A: versus
EST + cisplatin group at p < 0.05.

2.2. Effect of a-Hederin and Cisplatin on the Level of Inflammatory Factors in ESTs

The mRNA expression of TNF-« in the frozen tumors was significantly reduced in
mice treated with cisplatin or the x-hederin/cisplatin combination. The mRNA expression
of NFkB was significantly reduced in mice treated with «-hederin, cisplatin, or their
combination. The mRNA expression of caspase 3 was significantly increased in mice treated
with «-hederin, cisplatin, or their combination. Importantly the expression of these proteins
in the combination group was different from their expression in the monotherapy groups
(Figure 2A—-C). Similarly, the protein level of TNF-oc and NF«B in the tumor homogenates
was significantly reduced by «-hederin or cisplatin compared to the EST control group.
The combination group showed lower cytokine levels compared to the monotherapies, as
shown in Figure 2D,E.

2.3. Effect of a-Hederin and Cisplatin on Tumoral Level of SDF1/CXCR4/p-AKT Proteins

In the EST control group, the protein levels of SDF1/CXCR4/p-AKT are shown in
Figure 3A. Monotherapy with a-hederin or cisplatin significantly reduced the levels of these
proteins in comparison to the EST control group. The combination group showed detri-
mental effect on tumoral SDF1/CXCR4/p-AKT proteins in comparison to monotherapy
with cisplatin, as shown in Figure 3B-D.



Pharmaceuticals 2023, 16, 405

40f18

>

mRNA expression for TNF-a

B 14 -
C A
1.2 -
1.1 - g . &
1 4 = 1 - % 4 7 A *
0.9 4 A = * A 8 6 4
0.8 - * = 0.8 - 2
0.7 - & g * & g 54 .
0.6 1 * 3 0.6 * 8 4 1 %
0.4 | S S 3 -
. 2 04 A a
0.3 - ] o 2 -
0.2 4 i S
0.1 - g 02 § 17
<
0 - £ 0 A 2 0 -
o
S & & & SOOI £ S & & &
& & ¢ & F CF &L
© @ & & & $
xO‘ < o((‘ XO' x °(° xo x O((\
P A & < SR M
& C kX %% K Q@ ¢“ &
@ S @
E 750 -
400 -
c * A = A
= * = *
g 300 - & ,g 500 - * &
% 200 * a *
b oo
® »
2 8 250 -
3 100 A o
0 - -
A O O <o A O O IS
€ FF ¢S
& K & & K &
0;9 (&) O & x(J 6‘\0
x> &KX & x A o
R & L, © S, ©
& C QX & Y &
@ Q@

Figure 2. RT-PCR and protein level for tumor markers. The mRNA expression folds for (A) TNF-«,
(B) NFkB, and (C) caspase 3 and protein level of (D) TNF-«, (E) NF«B. *: versus EST control, &: versus
EST + o-hederin group, A: versus EST + cisplatin group. Data are mean + SD and statistical analyzed
atp <0.05.

2.4. Tumor Characteristics in Sections Stained with Hematoxylin and Eosin

Tumor histopathology is shown in Figure 4. Panel A-D demonstrated a variety of
unusual multiple mitotic tumor features, including significant nuclear pleomorphism with
larger nuclei and scattered multinucleated tumor giant cells. Furthermore, malignant cells
infiltrated dispersed lymphovascular and skeletal muscle fibers.

2.5. a-Hederin Regressed the Viable Tumor Area in Combination with Cisplatin

Following cisplatin injection, core viable tumor tissue was surrounded by necrotic gran-
ular eosinophilic structureless regions, as seen in Figure 5A-D. Treatment with
a-hederin, alone or in combination with cisplatin, reduced tumor cell viability signifi-
cantly, with increased regions of necrosis embedded by ghosts of necrotic tumor cells, as
shown in Figure 5, Panel E-H. Further, comparing the experimental groups indicated that
EST + x-hederin group showed a 4.85-fold increase, EST + cisplatin group showed an
8.6-fold increase, and the EST + combination group showed an 11.1-fold increase in necro-
sis area %. (Figure 5I). The giant cell count and mitosis count in the EST + combination
group were reduced significantly in comparison to the EST + «-hederin group and the
EST + cisplatin (Figure 5J,K).
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Figure 3. Western blotting for the target proteins. Panel (A): gels for the (1,3) EST + combination
group; (2) EST control group, (4,5) EST + «-hederin group, (6,7) EST + cisplatin group. Panel
(B): Column chart for SDF1 Panel (C): column chart for CXCR4 and Panel (D): column chart for
p-AKT. *: versus EST control, &: versus EST + «-hederin group, A: versus EST + cisplatin group.
Data are mean & SD and statistically analyzed at p < 0.05.
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Figure 4. The pathological characteristics of Ehrlich solid tumors stainied with hematoxylin and
eosin. Images show different tumor characteristics; panel (A) tumor cells showing marked nuclear
and cellular pleomorphism and hyperchromasia with enlarged nuclei and prominent nucleoli (arrow),
with scattered multinucleated tumor giant cells (arrowhead). Panel (B) shows multiple mitotic figures
(dashed arrow), indicating high mitotic activity with abnormal mitotic figures (arrowhead), a feature
of malignant tumor. Panel (C) shows lymphovascular invasion by tumor cells; the vessel contour is
indicated by arrows pointing out endothelial cell lining of vessel wall. Panel (D) is a low-magnification
image of tumor cells (arrowhead) infiltrating the surrounding skeletal muscle fibers (arrow).
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Figure 5. Hematoxylin and eosin staining for solid tumors from the tumor control group and cisplatin
groups. Panel (A,B) show low- and high-magnification images of the control group with viable tumor
cells with infiltration of surrounding tissues. Panel (C,D) show low- and high-magnification images
of cisplatin group tumor showing tumor necrosis appearing as granular eosinophilic structureless
areas (arrow, panel (C)), with central viable tumor cells (arrow, panel (D)). Panel (E,F) low- and
high-magnification images of EST + x-hederin group showing areas tumor necrosis (arrow, panel (E)),
with residual viable tumor cells (dashed arrow, panel (F)), with scattered giant cells (arrow, panel
(F)) and necrotic cells (arrowhead, panel (F)). Panel (G,H) low- and high-magnification images of
EST + combination group showing wide areas of necrosis (arrow, panel (G)) and scattered very few
viable cells (arrow, panel (H)). Comparison of the pathological findings in solid tumor sections are
shown in (I) necrosis area %, (J) giant cell count, and (K) mitosis count. The pathological findings
were determined for six random fields/tumor section and averaged. EST: Ehrlich solid tumors,
Data are mean + SD, *: versus EST control group, &: versus EST + «-hederin group, A: versus
EST + cisplatin group at p < 0.05. Data are mean + SD and were compared at p < 0.05.
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2.6. Effect of a-Hederin and Cisplatin on Immunostaining for NFxB in ESTs

Untreated tumor tissues showed a marked expression of NF«kB, which was mainly
allocated in the viable tumor cells, as shown in Figure 6A. Along with reduced viable tumor
cells after cisplatin and/or a-hederin treatment, NFkB showed less expressional allocation
throughout the residual EST tumor and its necrotic surrounds, as shown in Figure 6B,C.
Importantly, the EST + combination group showed the minimal immunostaining for NFkB
(Figure 6D). Statistical comparison between the study groups indicated that immunos-
taining % in the EST + a-hederin group and the EST + cisplatin group (33.02 £ 3.89 &
23.89 + 3.47) was reduced significantly compared to the EST control group (41.1 £ 1.96,
Figure 6E). The EST + combination group showed significantly reduced immunostaining
area for NF«B (20.66 £ 5.7) compared to the EST control group, as well as the mice groups
that received a-hederin or cisplatin (Figure 6E).
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Figure 6. Immunostaining for NFkB in the study groups. (A) Photomicrograph from the EST
control group shows marked expression of NF«B by tumor cells. (B) The cisplatin group showed
lower expression of NF«B by tumor cells. (C) This image shows the EST + «-hederin group with
a moderate expression of NF«B by tumor cells with areas of necrosis. (D) The combination group,
showing lower expression. (E) column chart for the staining area %. EST: Ehrlich solid tumors.
*: versus EST control group, &: versus EST + «-hederin group, A: versus EST + cisplatin group. Data
are mean + SD and were compared at p < 0.05.

2.7. Targeted Protein—Protein Interactions and Analysis of Pathway Enrichment

The targeted proteins showed highly evidenced interactions. SDF1 (CXCL12) showed
direct interaction with its receptor CXCR4 with no direct significant interactions to other
proteins except for other published evidence for AKT-1 and TNF-a. CXCR4 showed predic-
tive co-expressional interactions with AKT-1 and TNF-a but no predictive interactions with
NF«kB. These co-expressional relations were also detected experimentally. The AKT-1 exhib-
ited a direct co-expressional link with NF«B in humans (score 0.046) and experimentally
(score 0.062). Moreover, AKT-1 and TNF displayed putative homologous experimental
interactions. TNF-a and NF«B interactions emphasized co-expressional links with a score
of 0.0888 in humans and putative homologs in other organisms with a score of 0.063, as
shown in Figure 7. One of the displayed direct co-expressional proteins for SDF1/CXCR4
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interaction was the T-cell surface glycoprotein CD4. It also showed direct co-expressions
with TNF-o with a score of 0.098, as shown in Figure 8. Moreover, Relb proto-oncogene,
NFkB subunit (RELB), NF«B inhibitor alpha (NFKBIA), and tumor necrosis factor recep-
tor superfamily member 1A (TNFRF1A) showed direct co-expressional interactions with
TNF-o and NF«B, as shown in Figure 8.

cxcri? | Chemokine-Chemokine [Known Interactions
Receptor inleraction

At  from curated databases

Ol experimentally determined
[Predicted Interactions
AN gene nelghborhood
BN gone fusions

N gene co-occurrence
Others

i textmining
A co-expression
A= protein homology

Figure 7. The computational interaction analysis of the target translational proteins related to the
chemokine—chemokine receptor interactions. The STRING database was used. The confidence score
was 0.700. Network edges showed the evidence interaction types. AKT, protein kinase B; CD4,
T-cell surface glycoprotein CD4; CXCR4, C-X-C chemokine receptor type 4 receptor; PHLPP1, PH
domain leucine-rich repeat-containing protein phosphatase 1; NF«B; nuclear factor kappa B; NFKBIA,
NF-kappa-B inhibitor alpha; RELB, Relb proto-oncogene, NF«B subunit; SDF1, stromal cell-derived
factor-1; TNF-«, tumor necrosis factor o; TNFRF1A, tumor necrosis factor receptor superfamily
member 1A.
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3. Discussion

Cisplatin is a commonly used chemotherapeutic regimen for solid tumors. However,
given its association with serious adverse effects such as nephrotoxicity (especially in
higher doses), long-term carcinogenicity, and the development of acquired resistance to
its apoptotic effects, as well as its lack of antiangiogenic therapeutic properties, caution is
needed in its use [33-35].

The new molecular chemotherapeutic discoveries for current known plant extracts
are important economic and pharmacovigilant trends. As a pentacyclic triterpene saponin
found in Hedera or Nigella species, x-hederin is a promising active ingredient [36]. It pro-
vided various chemotherapeutic potentials in different in vitro and in vivo cancer models,
including gastric cancer cells [26,37], colon cancer cells [38], breast cancer cells [24], and the
human ovarian cancer cell line SKOV-3 [36], and it was also proven to provide anti-oxidant
activity [39]. Few studies have tested the chemotherapeutic potential of x-hederin: research
tends to focus on biological activity rather than mechanisms.

In the current study, we used the EST experimental model, which is widely used for
testing the chemotherapeutic potential of drugs [40—42]. The molecular individual and
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combined therapeutic roles of x-hederin with cisplatin were probed in the current study.
We found that o-hederin was able to enhance the chemotherapeutic potential of cisplatin,
which appeared as a reduction in the mass of the solid tumors. This action occurs, at least
partly, via the downregulation of SDF1/CXCR4/p-AKT/NFkB-manipulated inflammatory,
proliferative, and invasiveness signals. In addition, x-hederin alters the physical occurrence
of EST.

In fact, the chemokine—chemokine receptor interactions of SDF1 and CXCR4 has been
emphasized [43]. Different signaling paths with translational impacts in cancer-stem-
like cells have been recognized in SDF1/CXCR4 interactions, including AKT-1 [44]. We
found this ordered signaling path in the current work as well. Moreover, we found
direct ordered interconnections with TNF-« and/or NFkB via both bioinformatic ap-
proaches that used verified databases and our in vivo mouse model of EST. Previous studies
demonstrated the interconnection of SDF1/CXCR4 and TNF-« in cancer angiogenesis and
metastasis [45,46]. Furthermore, AKT-1 has been found to influence, in a co-expressional
manner, the translation and activation of NFkB [47], which we corroborated in the present
study. TNF-« and TNFRF1A demonstrated a translational impact on NFkB in the current
computational analysis, which agrees with previously published knowledge [48,49].

In mice inoculated with ESTs, the masses of the tumors declined after cisplatin and/or
a-hederin administration. These data reflect the antitumor potential of x-hederin compared
to cisplatin. Similarly, in SW620 cancer colon cells, the reduction in viable cells and pausing
of the cell cycle G2 and M phases were confirmed after o-hederin exposure [38]. In
addition, apoptosis, which is dependent on mitochondrial activation and caspases and is
regulated by cyclin D1, was enhanced by «-hederin [24,26,38,50]. Furthermoroe, x-hederin
could manipulate cancer cell proliferation through phosphatidylinositol 3-kinase/AKT/c-
Jun N terminal kinase signals [50]. Notably, synergistic apoptotic and antiproliferative
chemotherapeutic responses were confirmed after supplementation of «-hederin and
cisplatin in gastric cancer cells both in vitro and in vivo [37].

Many tumors are influenced by chemokine-receptor interactions in autocrine and
paracrine patterns [8]. CXCR4 and its ligand SDF1 have previously been identified as im-
portant metastatic contributors in a variety of malignancies [51,52]. CXCR4 overexpression
is linked to enhanced vascular endothelial growth factor recruitment, cancer cell prolifera-
tion, and metastasis [53,54]. Moreover, CXCR4 suppression has also been associated with
increased tumor cell death [54,55].

To address current knowledge gaps, it will be necessary to investigate the SDF1/CXCR4
signaling pathway in ESTs. In the current work, EST tissues exhibited high expressional lev-
els of SDF1/CXCR4. These insights will aid in understanding the integration of chemokines
and their receptor distribution and affinities in tumor cell responses to therapy, as well as
the mechanisms of invasiveness. Cisplatin has been found to inhibit the SDF1/CXCR4
axis and its impact on ovarian cancer metastasis [56]; these findings are consistent with
our research findings. Moreover, in our research, a-hederin showed marked reduction in
the expressional levels of SDF1/CXCR4 in the untreated EST tissues and with cisplatin. It
should be noted that o-hederin might be taken concurrently to minimize chemotherapeutic
resistance and improve therapeutic efficacy.

In agreement with our work, previous research has shown that AKT inhibition has
preventive and therapeutic potential with good prognosis in several cancers, including the
ESTs. Moreover, AKT is partially modulated by SDF1/CXCR4 interactions [10,13,21,23],
and a-hederin has shown reductive capabilities for oral cancer SCC-25 cell lines [57]. In
the current work, although cisplatin was shown to reduce tumor p-AKT-1 expression,
combining it with a-hederin improved this impact.

In the cancer microenvironment, several proinflammatory and proangiogenic molec-
ular signals are intercalated, where NFkB is a potential rapid transcriptional regulator.
Upon stimulation by chemical, inflammatory, infectious, or carcinogenic cellular stresses,
intranuclear translocation of NFkB emerges, ending in control of cellular survival and
proliferation. It also adjusts different regulatory genes involving inflammatory, apop-
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totic, angiogenic, metastatic, and chemo- and radio-resistant genes [586-60]. Notably,
SDF1/CXCR4 showed stimulatory impacts on NFkB activation and translocation [12].
Our current data demonstrated higher expressional levels of NFkB in EST tissues, which
agrees with prior research [61-63]. Moreover, the NFkB-dependent transcriptional pro-
/inflammatory pathways are partially dependent on cancer-associated fibroblasts and
matrix metalloproteinases, which are responsible for the sustained inflammatory and
oncogenic milieu [60,62,64,65].

In the present study, individual administration of x-hederin to EST-bearing mice re-
sulted in marked reduction in the elevated expressional tumor levels of NFkB. Furthermore,
concurrent exposure to cisplatin and «-hederin markedly reduced the tumor NF«B levels.
Similarly, c-hederin prohibited the NF«B signals in the SW620 cancer colon cells. It blocked
NF«B translocation to the nucleus through amelioration of the regulatory proteins [38].

Cisplatin chemotherapeutic resistance is a challenging problem in cancer patients.
Some of the various resistance mechanisms include augmented cellular efflux pumps, DNA
repairing, detoxification, and antiapoptotic signaling [66,67]. Across different EST studies,
the addition of other herbal medications to cisplatin increased the therapeutic efficacy of
individual cisplatin usage and decreased its resistance specifically by enhancing apoptotic
signals [68-71]. In cisplatin-treated cancer cells, translocational and nuclear activation
of NFkB were emphasized [72]. Presently, the administration of a-hederin countered
the cisplatin-induced NFkB spur. This may provide a clue about how «-hederin could
synergistically enhance the chemotherapeutic effects of cisplatin at the cellular levels.

In the current EST experimental model, to show the synergistic effect of x-hederin
with cisplatin, we assessed the SDF1, CXCR4, p-AKT, and NF«kB molecular therapeutic
pathways. The related proinflammatory and pro-apototic cytokines displayed significant
reductions after individual and combined regimens of x-hederin with cisplatin.

TNF-« is an important immunological and inflammatory cytokine. In EST-bearing
mice, tumor TNF-a revealed marked increments. This pathological evidence could be
elucidated by recruiting tumor-infiltrating macrophages and elevating the reactive oxygen
species that result from the oxidative stress ecosystem [62,63,73-75]. Of notice in cancer
immunogenesis, NF«kB has crucial immune responses for both innate and adaptive types.
Moreover, progressive inflammation and genetic instability found in cancer paracrine envi-
ronments induced by immune-cell-generated reactive oxygen species have an activating
role on NFkB [76-79]. These evidence blocks could illustrate the chemotherapeutic effects
of a-hederin through the reciprocal relationship of elevated TNF-« and activated NF«kB.

Moreover, a number of studies investigated «-hederin for its promising chemothera-
peutic potential, since many research papers documented its cytotoxic action against cancer
cell lines, including lung carcinoma, colon adenocarcinoma, larynx epidermoid carcinoma,
and pancreas carcinoma [80-84], as well as in vivo tumors [85-87]. The cytotoxic action
of a-hederin was thought to be mediated via promotion of apoptosis and alteration of
membranes [88,89]. One study reported that x-hederin inhibits growth and induces apop-
tosis in breast cancer cells [90], while another mentioned that o-hederin induces autophagy
and cell death in colorectal cancer cells via an ROS-dependent mechanism in breast cancer
cells [24] and AMPK/mTOR signaling pathway activation [25]. In the current study, we
evaluated the activity of a-hederin on breast solid tumor growth and apoptosis of ESTs
grown in mice and explored the underlying mechanisms.

4. Materials and Methods
4.1. Computational Interaction Analysis for the Target Proteins

To investigate the targeted protein—protein interaction, the STRING database (https:
/ /string-db.org (accessed on 21 February 2023), Version 11.5) was used on 27 September
2022. Through our search, the targeted proteins and the chemokine—chemokine receptor
pathways were scoped, including SDF1 (CXCL 12), CXCR4, AKT-1, NF«kB, and TNF-c.
The search was limited to “Homo sapiens”. The interaction score was restricted to 0.700,
a high confidence score. The evidence interaction types between the nodal proteins were
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represented by the network edges, where these interactions were experimentally proved
or not, and the gene interaction predictability. The edge interactions were visualized with
colors: green for gene neighborhood interactions, red for gene fusion interactions, blue for
gene co-occurrence, black for gene co-expression, and olive green for database citational
interactions. The first shell displayed only five query interactors.

4.2. Signaling Pathway Enrichment Analysis

The target pathway was selected using the online KEGG pathway database (http:
//www.genome.jp/kegg, accessed on 21 October 2022).

4.3. Experimental Animals

Moustafa Rashed Company provided twenty-eight female Swiss albino mice for
the trial, which were 20-25 g in weight. Mice were kept in plastic cages at 22 & 3 °C
with a normal light-dark cycle. Before the experiment began, mice were given a week
to become used to their living arrangements. Food and water were always available
during the course of the experiment. The experimental methods followed the ARRIVE
guidelines and the National Research Council’s Guide for the Care and Use of Laboratory
Animals. This research paper was approved by the Ethics Committee at Suez Canal
University (202302RA3).

4.4. Drugs and Reagents

a-Hederin (purity 98%; chemical formula: C41H66012) was bought from Sigma-Aldrich,
St. Louis, MO, USA) and dissolved in sunflower oil; oral administration was done in a volume
of 0.1 mL/mouse. Cisplatin vials (Unistin vials, EIMC United Pharmaceuticals, Cairo, Egypt)
were purchased from an oncology pharmacy and diluted to prepare a stock solution with
sterile saline.

4.5. Tumor Cell Preparation and Intradermal Inoculation

Ehrlich ascites carcinoma cell line was obtained from the National Cancer Institute
(Cairo, Egypt). Ehrlich ascites carcinoma originated from a murine spontaneous breast
cancer used to develop an ascites variant. The tumor cell line was preserved by intraperi-
toneal passage into another mouse after seven days [91]. Each mouse was inoculated
subcutaneously at two sites on the lower ventral side (after shaving and disinfection with
alcohol) with a 100-pL dose of Ehrlich carcinoma cell suspension (2.5 million cells per
0.1 mL) on each site [92,93].

4.6. Study Groups

The mice were split into four groups at random, with 10 animals in each. Group (1)
was the EST control group. Group (2) mice were given an oral daily dose of x-hederin
(80 mg/kg) [94]. Group (3) mice were given cisplatin (4 mg/kg, intraperitoneally) twice
weekly for 21 days. Group (4) mice were given a combination of cisplatin and «-hederin at
the same time as the monotherapy groups. All treatments were started at day 8 after tumor
inoculation and continued for twenty-one days [95,96].

4.7. Harvesting the Solid Tumors

The mice were sedated with thiopental sodium (50 mg/kg) and killed by cervical
dislocation at the end of the experiment. Tumor discs were dissected and weighed from
both sides. The right disc was used to explore the histopathological and the immunohis-
tochemical analyses. The left disc, on the other hand, was promptly frozen and stored at
—80 °C till the time of biochemical experiments.

4.8. Western Blotting for p-Akt, SDF1, and CXCR4 Proteins

The frozen tumor discs were disintegrated in RIPA buffer that contains protease
and phosphatase inhibitors. To eliminate solid impurities, cell lysates were spun at
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2000x g (20 min, 4 °C). The protein concentration in supernatants was assessed by using
the Bio-Rad Quick Start™ Bradford Protein Assay kit. After initial denaturation with 4 x

Laemmli Sample Buffer, same quantities of protein from EST’s homogenate were loaded
on sodium dodecyl sulphate polyacrylamide gel (Bio-Rad, Hercules, CA, USA). Following
electrophoresis, the transportation to the nitrocellulose membranes was held to the sep-
arated gel’s protein. To block the free sites on the membranes, they were incubated for 1
h in 5 percent nonfat dried milk (Bio-Rad). Then, incubation with primary antibodies for
targeted proteins at a dilution of 1:500 and 4 °C was conducted: rabbit polyclonal antibodies
(SDF1 antibody [N1C3] Gene Tex, Irvine, CA, USA, Cat No. GTX116092), rabbit CXCR4
polyclonal antibodies (Proteintech Group Inc., Rosemont, IL 60018, USA, Cat Number:
11073-2-AP), and p-AKT polyclonal antibody (catalog #sc-293125, Santa Cruz Biotech-
nology Inc., Dallas, TX, USA). After washing, the blots were treated with horseradish
peroxidase (HRP)-conjugated secondary antibody and goat anti-mouse. The protein was
detected using the ECL substrate Western blotting detection kit (#170-5060, Biorad) with
enhanced chemiluminescence. Then, we captured the film bands by a charge-coupled
device with a camera-based imager (ImageQuantTMLAS500, GE Healthcare Life Sciences,
Marlborough, MA, USA). Image] software (NIH) was used to determine the intensity of
immunoreactivity [97,98].

4.9. RT-PCR Quantification of Cytokines and Factors in ESTs

Tumoral total RNA was extracted by the aid of RNArasy Mini Kit from Qiagen Com-
pany (Hilden, Germany). We assessed RNA concentrations and purity using a NanoDrop
ND-1000 spectrophotometer (NanoDrop Tech., Inc. Wilmington, DE, USA). We then trans-
formed the total RNA into cDNA using a high-capacity cDNA reverse transcriptase kit
(Applied Biosystems, Waltham, MA, USA). Then, we performed the PCR in a 48-well
plate from a Sybr Green I PCR Master Kit (Fermentas, MA, USA) using the Step One
instrument (Applied Biosystems). Gene expression was calculated using the comparative
Ct method [99]. Table 1 shows the primer sequence for the measured genes.

Table 1. Primer sequences of genes measured in the study.

Gene Forward Reverse
TNF-o AGAACTCCAGGCGGTGTCTGT CCTTGTCCCTTGAAGAGAACC
NFkB AATTGCCCCGGCAT ATGCGCCAATGCCCT
Caspase 3 ATGTCAGCTCGCAATGG AAGAAATTATGGAATTG
GAPDH TGGCACAGTCAAGGCTGAGA CTTCTGAGTGGCAGTGATGG

4.10. ELISA Quantification of Cytokines in EST Homogenates

Samples from the frozen tumor discs were analyzed by enzyme linked immunoassay
(ELISA) to quantify the tumors’ TNF-oc (Mouse TNE- o« ELISA Kit, Cat. Number: MBS2500421,
MyBiosource, San Diego, CA, USA) and NF«B (Mouse NF«B RTU ELISA Kit, Cat number:
MBS4501353, MyBiosource). ELISA reader (tat Fax 2100, USA) was employed to measure the
color intensity at the specified wavelength.

4.11. Tumor Histopathology and Assessment

The harvested right tumor discs were preserved in a 10% phosphate-buffered formalde-
hyde solution (Al-nasr Company, Helwan, Egypt). After that, the formalin-fixed tissues
were encased in paraffin wax and sectioned at 4 micrometer intervals (Leica microtome RM
2135, Leica Instruments GmbH, Nussloch, Germany). After that, the slices were stained
with hematoxylin and eosin (H-E) and inspected blindly. Photographs were acquired at
100x and 400 x original magnification (objective 10x, 40x), using the UIS optical system
(Olympus®, Shinjuku, Japan). Tumors were assessed for the count of giant cells and mitotic
pictures in addition to area of necrosis % [40,93].
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4.12. Immunohistochemical Imaging and Quantification of NFxB in Tumor Tissue

Tumor sections were deparaffinized and then incubated with 3% H,O, to block the
activity of endogenous peroxidases. Then, antigen retrieval was conducted by covering
the tissues by citrate buffer and boiling. Primary rabbit polyclonal antibodies against
mouse NF«B (1:100, Thermo Scientific, Waltham, MA, USA) were used and applied to the
tumor tissues overnight. After that, we washed the tumor sections 3 times and used the
Power-Stain™ 1.0 Poly horseradish peroxidase (HRP)-DAB kit (Genemed Biotechnologies,
San Francisco, CA, USA). Finally, all slides were cover-slipped and then examined blindly
by a pathologist, and images were taken and analyzed using Image]J software (Bethesda,
MA, USA).

4.13. Data Handling and Statistical Analysis

The statistical package for social sciences (SPSS) application was used to process the
statistical data (windows version number 25). Data were reported as mean + SD. We used
one-way analysis of variance (ANOVA) and the Bonferroni test for pair-wise comparison.
We set the accepted level of significance as p < 0.05.

5. Conclusions

This study documented the chemotherapeutic potential of x-hederin when used as
a monotherapy and revealed that x-hederin augmented the potential of cisplatin against
ESTs grown in mice. «-hederin suppressed the SDF1/CXCR4/p-AKT/NFkB signaling
that was, at least partly, responsible for mitigating the growth of ESTs. Further studies are
recommended to investigate the chemotherapeutic potential of x-hederin in other models
of cancer in rodents and to test the possible alleviation of cisplatin-induced organ toxicities.
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