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Abstract: Neuroinflammation is a serious immunomodulatory complex disorder that causes neuro-
logical and somatic ailments. The treatment of brain inflammation with new drugs derived from
natural sources is a significant therapeutic goal. Utilizing LC-ESI-MS/MS analysis, the active con-
stituents of Salvadora persica extract (SPE) were identified tentatively as exerting antioxidant and
anti-inflammatory effects in natural medicine. Herein, we determined the antiviral potential of
SPE against herpes simplex virus type 2 (HSV-2) using the plaque assay. HSV-2 is a neurotropic
virus that can cause neurological diseases. SPE exhibited promising antiviral potential with a half-
maximal cytotoxic concentration (CC50) of 185.960 ± 0.1 µg/mL and a half-maximal inhibitory
concentration (IC50) of 8.946 ± 0.02 µg/mL. The in vivo study of the SPE impact against lipopolysac-
charide (LPS)-induced neuroinflammation was performed using 42 mice divided into seven groups.
All groups were administered LPS (0.25 mg/kg) intraperitoneally, except for the normal and SPE
groups 1 and 2. Groups 5, 6, and 7 received 100, 200, and 300 mg/kg SPE. It was revealed that SPE
inhibited acetylcholinesterase in the brain. It increased superoxide dismutase and catalase while
decreasing malondialdehyde, which explains its antioxidative stress activity. SPE downregulated the
gene expression of the inducible nitric oxide synthase, as well as the apoptotic markers (caspase-3
and c-Jun). In addition, it decreased the expression of the proinflammatory cytokines (interleukin-6
and tumor necrosis factor-alpha). Mice administered SPE (300 mg/kg) with LPS exhibited normal
neurons in the cerebral cortices, hippocampus pyramidal layer, and cerebellum, as determined by the
histopathological analysis. Therefore, using S. persica to prevent and treat neurodegeneration could
be a promising new therapeutic strategy to be explored.
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1. Introduction

Neuroinflammation is a significant factor that causes many central nervous system
(CNS) ailments. It is a complex response to neuronal cell injuries in the brain, including
the stimulation of microglia, which are the major cellular components of neuroinflamma-
tion. This condition is characterized by the release of proinflammatory cytokines, such
as interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNFα), as well as the production
of reactive oxygen species (ROS) and nitric oxide (NO). Neuroinflammation is an innate
immune response that acts against infections and variable pathogens. Neurodegenerative
and other CNS diseases, including Alzheimer’s disease (AD) and Parkinson’s (PA), are
caused by the proinflammatory mediators mentioned earlier through their contribution
to the death of neurons. It is a significant target for treating the neuroinflammation of the
brain to manage the severe manifestations of different CNS diseases [1–3].

Arak shrubs belong to the Salvadoraceae family, also known as Salvadora persica L. [4,5].
The shrubs are disseminated across the Arabian Peninsula, Africa, and India [6]. It is known
that the stems, bark, and roots contain variable secondary metabolites with remarkable free
radical scavenging and anti-inflammatory impacts [7]. S. persica contains essential oils [8];
flavonoids (such as rutin and quercetin) [9,10]; phenolic acids (such as gallic, chlorogenic,
caffeic, and rosmarinic acids) [11]; alkaloids such as persicaline [12]; sulfated glycosides [13];
phenolic diterpenes; salvadourea; benzyl isothiocyanate [14]; chlorides; fluorides; tannins;
and fatty acids [9]. It played a significant role in preventing and treating different dental
diseases [15]. In addition, it exhibited variable biological activities such as wound healing,
analgesic, antimicrobial, antidepressant, anticonvulsant, and anticancer potentials [9]. To
discover new drugs for managing neuroinflammation in the various CNS diseases, it
is essential to investigate the effects of natural substances such as plants. Interestingly,
several plant extracts were found to be effective against the neurodegeneration of AD and
PA diseases [16,17].

Many neurotropic viruses can infect the CNS. These viruses, such as herpesviruses,
Ebola, and rabies, can lead to multiple nervous system diseases, including meningitis,
encephalitis, and flaccid paralysis [18]. Herpesviruses, such as herpes simplex virus type 1
(HSV-1) and HSV-2, are enveloped viruses with double-stranded DNA. They primarily
infect the hosts’ skin, mucous membranes, and nerve tissues, resulting in high morbidity
and mortality rates [19]. Due to their latent neuron infections, HSV-1 and HSV-2 have a high
prevalence in the human population, with lifelong infections and sporadic recurrences [20].
Variants of HSV that show resistance to the currently used antivirals are increasing, par-
ticularly in immunocompromised patients [21]. Therefore, it is crucial to discover novel
antivirals that can decrease the severity and duration of the infections caused by such
viruses. In this study, we aimed to investigate the antiviral activity of Salvadora persica
methanol extract of stem bark (SPE) against the HSV-2 virus.

Since there are insufficient treatments for neurodegenerative disorders, investigating
the possibility of using plant extracts as safe and inexpensive sources to prevent and treat
such disorders is a promising idea that must be investigated. The present study aimed to
investigate the activity of SPE against lipopolysaccharide (LPS)-induced neuroinflammation
in mice and assess the underlying mechanism of action and the antiviral activity of SPE
against the neurotropic virus HSV-2. In addition, the LC-ESI-MS/MS technique was used
to tentatively identify the phytochemical constituents of SPE.

2. Results
2.1. Recognition of the Chemical Profile of Salvadora persica Extract by LC-ESI-MS/MS Analysis

The LC-ESI-MS/MS analysis of SPE could represent the phytochemical components
and tentatively demonstrate the diversity of its compounds. The presence of phenolic
glycosides such as syringin; coumaric acids derivatives (such as rosmarinic acid); phenolic
acids (such as sinapic acid); alkyl glucosinolate (such as benzyl glucosinolate); flavonoids
(such as kaempferol-7-O-neohesperidoside, hesperetin, rhoifolin, and apigenin); and in-
doles (such as 3-formylindole) displayed the diversity of the components. The major
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compounds displayed in negative and positive ESI modes were diosmin, isosakuranetin-
7-O-neohesperidoside, acacetin-7-O-rutinoside, rhoifolin, agmatine, benzyl glucosinolate,
hydroxybenzoic acid, spermidine, pantothenate, malic acid, and 3-formylindole, as dis-
played in Table 1 and Figures 1–3. Figures S1 and S2 depict the negative and positive modes
of the total ion chromatogram, respectively.
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Figure 2. The fragmentation pattern of the main compounds recognized in the methanol extract of
Salvadora persica stem bark: pantothenate, rhoifolin, agmatine, and spermidine. * stands for m/z of
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Figure 3. The fragmentation pattern of the main compounds recognized in the methanol extract
of Salvadora persica stem bark: malic acid, benzyl glucosinolate, p-hydroxy benzoic acid, and 3-
formylindole. * stands for m/z of [M + H]+, [M − H]−, and fragments of each compound.
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Table 1. LC-ESI-MS/MS analysis of the methanol extract of Salvadora persica stem bark displaying the
tentatively recognized compounds.

# RT
(min)

Precursor
m/z

Error
ppm Compound Name Formula Adduction

Name MS/MS Ontology

1 1.1 131.129 0 Agmatine C5H14N4 [M + H]+ 60.0550, 72.0801,
114.0965 Guanidines

2 1.12 146.165 0.3 Spermidine C7H19N3 [M + H]+ 72.0794, 84.08425,
112.1084, 129.1375 Dialkylamines

3 1.15 133.014 −0.6 Malic acid C4H6O5 [M − H]− 71.0144, 72.9925,
89.0248, 115.0042

Beta hydroxy acids
derivatives

4 1.17 173.045 −0.8 Shikimic acid C7H10O5 [M − H]−
73.0265, 93.0345,

111.0066, 138.9140,
154.9062

Shikimic acids
derivatves

5 1.23 104.107 1.2 Choline C5H14NO [M]+ 58.0660, 60.0816 Cholines

6 1.64 124.039 0.3 Nicotinic acid C6H5NO2 [M + H]+ 78.0352, 80.05060,
107.0404

Pyridine carboxylic
acids

7 1.65 86.096 −0.3 Piperidine C5H11N [M + H]+ 69.0710, 86.0969 Piperidines

8 2.06 408.042 0.7 Benzyl
glucosinolate C14H19NO9S2 [M − H]−

74.9906, 95.9517,
166.0331, 241.0030,
259.0139, 274.9913

Alkylglucosinolates

9 2.33 220.118 −0.6 Pantothenate C9H17NO5 [M + H]+ 90.0526, 202.1076 Secondary alcohols

10 2.75 167.035 −0.7 Homogenentisic
acid C8H8O4 [M − H]− 108.0210, 109.0304,

122.0345, 123.0485
2(hydroxyphenyl)

acetic acids

11 2.93 137.024 −1.8 P-hydroxybenzoic
acid C7H6O3 [M − H]− 65.0400, 75.0232,

93.0337
Hydroxybenzoic acid

derivatives

12 4.38 390.175 −0.3 Syringin C17H24O9 [M + NH4]+
105.0682, 133.0636,
161.0610, 193.0851,

211.0949
Phenolic glycosides

13 4.69 359.077 −0.3 Rosmarinic acid C18H16O8 [M − H]−
72.9911, 123.0408,

133.0296, 161.0247,
179.0321, 197.0480

Coumaric acids
derivatives

14 6.26 223.061 0.1 Sinapic acid C11H12O5 [M − H]−
93.0322, 121.0278,

149.0237, 177.0510,
193.0141, 205.0518

Hydroxycinnamic acids

15 6.51 593.151 0.7 Kaempferol-7-O-
neohesperidoside C27H30O15 [M − H]− 284.0328, 385.0439 Flavonoid-7-O-

glycosides

16 6.54 596.173 −0.1 cyanidin-3-O-
rutinoside C27H31O15 [M]+ 287.0549, 449.1057 Anthocyanidin-3-O-

glycosides

17 6.74 301.071 −0.4 Hesperetin C16H14O6 [M − H]− 269.0488, 289.0489,
301.0726

4′-O-methylated
flavonoids

18 6.81 181.050 0.7 Syringaldehyde C9H10O4 [M − H]− 67.0180, 123.0072,
151.0023, 166.0266 Methoxyphenols

19 6.87 167.035 −0.4 5-Methoxysalicylic
acid C8H8O4 [M − H]− 108.0208, 124.0111,

152.0111
M-methoxybenzoic

acids derivatives

20 7.23 579.170 −0.2 Rhoifolin C27H30O14 [M + H]+ 271.0579, 433.1155 Flavonoid-7-O-
glycosides

21 7.54 609.181 −0.6 Diosmin C28H32O15 [M + H]+ 286.0526, 301.0743,
463.1243

Flavonoid-7-O-
glycosides

22 7.63 494.141 −0.2 Malvidin-3-
galactoside C23H25O12 [M]+

137.0616, 163.0757,
253.0856, 285.1151,
313.1100, 331.1161

Anthocyanidin-3-O-
glycosides

23 7.94 174.056 0 1-methoxyindole-
3-carbaldehyde C10H9NO2 [M − H]− 131.0379, 159.0321 Indoles

24 8.02 137.132 −5 Sabinene C10H16 [M + H]+ 65.0379, 94.0376,
122.0327

Bicyclic
monoterpenoids

25 8.12 144.045 −1 3-Formylindole C9H7NO [M − H]−
114.0339, 115.0422,
116.0502, 126.0343,

142.0292
Indoles

26 8.29 177.055 −0.9 Coniferaldehyde C10H10O3 [M − H]− 129.0025, 134.0377,
162.0320 Methoxyphenols

27 8.61 163.040 −0.8
2-Hydroxy

cinnamic Acid
(2-Coumaric acid)

C9H8O3 [M − H]− 76.09749, 92.0297,
93.0360, 120.0197 Hydroxycinnamic acids
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Table 1. Cont.

# RT
(min)

Precursor
m/z

Error
ppm Compound Name Formula Adduction

Name MS/MS Ontology

30 9.08 593.186 −0.2 Acacetin-7-O-
rutinoside C28H32O14 [M + H]+

85.0299, 129.0558,
242.0574, 285.0782,

447.1322
Flavonoid-7-O-

glycosides

31 9.12 591.171 0.2 Acacetin-7-O-
neohesperidoside C28H32O14 [M − H]− 268.0378, 283.0612 Flavonoid-7-O-

glycosides

32 9.27 595.202 0.8
Isosakuranetin-7-

O-
neohesperidoside

C28H34O14 [M + H]+

85.0306, 129.0552,
153.0207, 195.0301,
263.0574, 287.0930,
433.1550, 449.1382

Flavonoid-7-O-
glycosides

33 9.28 287.091 0.7 Isosakuranetin C16H14O5 [M + H]+ 91.0548, 153.0187,
161.0641

4′-O-methylated
flavonoids

34 9.78 447.128 0.1 Sissotrin C22H22O10 [M + H]+ 149.0152, 242.0657,
270.0481, 285.0748

Isoflavonoid
O-glycosides

35 10.51 269.045 0.5 Apigenin C15H10O5 [M − H]− 117.0353, 148.0222,
151.0004, 254.0616 Flavones

36 14.00 285.075 −0.2 Acacetin C16H12O5 [M + H]+ 153.0229, 187.0495,
242.0585, 270.0551

4′-O-methylated
flavonoids

2.2. Antiviral Activity
2.2.1. Cytotoxicity of SPE on the Vero-E6 Cells

The values of CC50 of SPE on Vero-E6 cells were determined by the MTT assay, as
demonstrated in Figure 4. The value of CC50 was 185.960 ± 0.1 µg/mL. This means that
the concentration of SPE that caused death for 50% of the Vero-E6 cells was equal to
185.960 ± 0.1 µg/mL. Thus, we used lower concentrations studying the antiviral activity
of SPE on Vero-E6 cells infected with the HSV-2 virus.
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2.2.2. Antiviral Activity of SPE

The antiviral potential of the SPE was explored against the HSV-2 virus, and the value
of the half-maximal inhibitory concentration (IC50) was determined, as shown in Figure 5.
The value of IC50 of SPE was 8.946 ± 0.02 µg/mL, and this concentration was needed to
inhibit the HSV-2 virus by 50%.
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2.3. In Vivo Study
2.3.1. Effect on the AChE Activity

LPS significantly increased (p < 0.05) the AChE activity compared to the vehicle control.
Figure 6 demonstrates that pretreatment with SPE significantly decreased (p < 0.05) the
increased AChE activity in the brain compared to the LPS-treated group. Groups 5, 6, and 7
revealed a significant decrease (p < 0.05) in the AChE activity with percentages of 23.07%,
25%, and 26.9%, respectively.
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2.3.2. Effect of SPE on the LPS-Induced Oxidative Stress Markers

Compared to the vehicle control group, LPS significantly increased (p < 0.05) the
MDA levels, whereas Rivastigmine (RVS) and SPE significantly decreased (p < 0.05) the
LPS-induced increase in the MDA levels (Figure 7).

Pharmaceuticals 2023, 16, x FOR PEER REVIEW 10 of 23 
 

 

 

Figure 7. The levels of (A) malondialdehyde (MDA), (B) catalase (CAT), and (C) superoxide dis-

mutase (SOD) of the control (group 1), SPE 300 control (group 2), LPS (group 3), LPS + Rivastigmine 

(group 4), LPS + SPE 100 (group 5), LPS + SPE 200 (group 6), and LPS + SPE 300 (group 7). *: Signif-

icant at p ≤ 0.05. **: Significant at p ≤ 0.01. ***: Significant at p ≤ 0.001. ****: Significant at p ≤ 0.0001. 

The level of oxidative stress induced by LPS administration was evaluated by the 

CAT and SOD levels in the brain. The levels of CAT and SOD in the LPS-treated group 

were significantly lower (p < 0.05) than the vehicle control group. Compared to the LPS-

treated group, the pretreatment with RVS and SPE restored the decreased levels of SOD 

and CAT (Figure 7). 

2.3.3. Effect of SPE on the Relative Gene Expression of IL-6, TNF-α, and iNOS 

Compared to the vehicle-treated group, IL-6 gene expression was significantly in-

creased in the LPS-treated group (p < 0.05). The significantly low expression levels (p < 

0.05) of IL-6 in the RVS and SPE pretreated group demonstrated a substantial anti-inflam-

matory effect in comparison to the LPS-treated group (Figure 8). 

Figure 7. The levels of (A) malondialdehyde (MDA), (B) catalase (CAT), and (C) superoxide dis-
mutase (SOD) of the control (group 1), SPE 300 control (group 2), LPS (group 3), LPS + Rivastig-
mine (group 4), LPS + SPE 100 (group 5), LPS + SPE 200 (group 6), and LPS + SPE 300 (group 7).
*: Significant at p ≤ 0.05. **: Significant at p ≤ 0.01. ***: Significant at p ≤ 0.001. ****: Significant at
p ≤ 0.0001.

The level of oxidative stress induced by LPS administration was evaluated by the
CAT and SOD levels in the brain. The levels of CAT and SOD in the LPS-treated group
were significantly lower (p < 0.05) than the vehicle control group. Compared to the LPS-
treated group, the pretreatment with RVS and SPE restored the decreased levels of SOD
and CAT (Figure 7).

2.3.3. Effect of SPE on the Relative Gene Expression of IL-6, TNF-α, and iNOS

Compared to the vehicle-treated group, IL-6 gene expression was significantly in-
creased in the LPS-treated group (p < 0.05). The significantly low expression levels (p < 0.05)
of IL-6 in the RVS and SPE pretreated group demonstrated a substantial anti-inflammatory
effect in comparison to the LPS-treated group (Figure 8).

Furthermore, the TNF-α and iNOS expression levels were significantly elevated
(p < 0.05) in the LPS-treated group compared to the vehicle control group. The increased
expression of the TNF- α and iNOS levels by LPS was significantly downregulated (p < 0.05)
by the RVS and SPE pretreatment (Figure 8).

2.3.4. Effect of SPE on the Proapoptotic Gene Expression

In comparison with the vehicle control group, the administration of LPS dramatically
increased (p < 0.05) the caspase-3 expression level. The increase in the caspase-3 expression
levels induced by LPS was considerably reduced (p < 0.05) by the RVS and SPE pretreatment.

The c-Jun expression level was substantially higher (p < 0.05) after exposure to LPS
than in the vehicle control group. Additionally, the c-Jun expression levels were significantly
lower (p < 0.05) in the RVS and SPE groups (Figure 9).
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LPS + SPE 300 (group 7). ****: Significant at p ≤ 0.0001.
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Figure 9. The relative gene expression of (A) caspase-3 and (B) c-Jun of the control (group 1),
SPE 300 control (group 2), LPS (group 3), LPS + Rivastigmine (group 4), LPS + SPE 100 (group 5),
LPS + SPE 200 (group 6), and LPS + SPE 300 (group 7). **** Significant at p ≤ 0.0001.

2.3.5. Histopathological Data

Figures 10–12 depict brain sections stained with H&E that illustrate the histopatholog-
ical characteristics of the various groups in the cerebral cortices, cerebellum, and hippocam-
pus. In the H&E-stained cerebral cortices sections of group 5, there were normal neurons
with congested blood vessels. Group 6 exhibited normal neurons with mildly congested
blood vessels, while the group 7 sections revealed completely normal neurons. In addition,
in the H&E-stained cerebellum sections of group 5, there were markedly degenerated purk-
inje neurons. Group 6 exhibited a few degenerated purkinje neurons, while the group 7
sections revealed completely normal purkinje neurons. In addition, in the H&E-stained
hippocampus sections of groups 5 and 6, there were a few degenerated neurons in the
pyramidal layer. Group 7 revealed completely normal neurons in the pyramidal layer.
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Figure 10. H&E-stained brain sections showing the cerebral cortices of the different groups. Normal
neurons were revealed in the control group (group 1, (A)). Sections from the group that received LPS
(group 3, (B)) revealed congested blood vessels (red arrows) and the shrinkage of neurons (black
arrows). Sections from the treated group with RVS (group 4, (C)) showed normal neurons. Sections
from the treated group with SPE 100 mg/kg (group 5, (D)) showed normal neurons with congested
blood vessels (red arrow). Sections from the treated group with SPE 200 mg/kg (group 6, (E)) showed
normal neurons with mildly congested blood vessels (red arrow). Sections from the treated group
with SPE 300 mg/kg (group 7, (F)) showed normal neurons (×400).
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Figure 11. H&E-stained brain sections showing the cerebellum of the different groups. Normal
neurons were revealed in the control group (group 1, (A)). Sections from the group that received LPS
(group 3, (B)) showed a severe loss of purkinje neurons (black arrow). Sections from the treated group
with RVS (group 4, (C)) showed normal purkinje neurons. Sections from the treated group with SPE
100 mg/kg (group 5, (D)) showed markedly degenerated purkinje neurons (black arrows). Sections
from the treated group with SPE 200 mg/kg (group 6, (E)) showed a few degenerated purkinje
neurons (black arrow). Sections from the treated group with SPE 300 mg/kg (group 7, (F)) showed
normal purkinje neurons (×400). The letters G, P, and M stand for granular layer, purkinje layer, and
molecular layer, respectively.
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Figure 12. H&E-stained brain sections showing the hippocampus of the different groups. Normal
neurons were revealed in the control group (group 1, (A)). Sections from the group that received LPS
(group 3, (B)) showed the appearance of many degenerated neurons in the pyramidal layer (black
arrows). Sections from the treated group with RVS (group 4, (C)), SPE 100 mg/kg (group 5, (D)), and
SPE 200 mg/kg (group 6, (E)) showed the presence of a few degenerated neurons in the pyramidal
layer (black arrows). Sections from the treated group with SPE 300 mg/kg showed normal neurons
in the pyramidal layer (group 7, (F)) (×400).

3. Discussion

Neurological disorders are a significant challenge for healthcare systems all over the
world. Due to the stressful nature of the current era, these diseases are unfortunately
increasing and affecting a large number of people. In addition, treatment options for these
diseases are scarce or nonexistent. Most of the used drugs merely alleviate the disease
symptoms [22]. Consequently, the discovery of new therapeutic agents for these neurologic
diseases is crucial. Plants are considered an abundant source of varieties of bioactive
phytochemicals [23], which can be utilized in the treatment of neurological disorders.

In the negative and positive ESI modes, the LC-ESI-MS/MS analysis of SPE revealed
36 compounds of phenolic glycosides, coumaric acids, flavonoids, alkyl glucosinolate, and
indoles. Diosmin, isosakuranetin-7-O-neohesperidoside (poncirin), acacetin-7-O-rutinoside,
rhoifolin, agmatine, benzyl glucosinolate, pantothenate, spermidine, hydroxybenzoic acid,
malic acid, and 3-formylindole are the most abundant compounds. The neuroprotective
effect of diosmin [24] and rhoifolin [25] has been reported in the literature, which may
explain the neuroprotective effect of SPE in the current study. In this study, it was found
that the SPE contained benzyl glucosinolate. It was revealed that glucosinolate-derived
isothiocyanate as benzyl glucosinolate exhibited a broad range of activities against the
onset and progression of several neurodegenerative disorders. Glucosinolates have no
significant biological effect, but isothiocyanates produced from the hydrolysis of glucosino-
lates have a neuroprotective effect. The hydrolysis of glucosinolates may be catalyzed by
thioglucosidase enzymes present in the gut microbiota of mice, as in humans [26,27]. The
ability of isothiocyanates, the activated form of glucosinolate compounds, to improve the
endogenous degradation of the protein systems has been investigated as a key protective
mechanism to oppose the anomalous build-up of toxic protein oligomers in most neurode-
generative diseases [28]. The reported neuroprotective effect of indole-3-carbinol in PA
disease [29] could be used to infer the potential neuroprotective effect of 3-formylindole [29].
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Flavonoid-rich foods are significant nutraceuticals that improve health and cognitive
capabilities, delay aging, combat chronic diseases, increase life expectancy, and prevent or
slow the pathological symptoms of neurodegenerative disorders. Flavonoids may suppress
cholinesterases, including AChE, with free-radical scavenging effects and modulation of the
signaling pathways included in the cognitive and neuroprotective functions. They increase
the vascular blood flow and stimulate neurogenesis. Flavonoids also inhibit apoptosis in
neuronal cells [30].

Pantothenate counteracted the pathological effects by preventing disturbances in the
glutathione system [31]. Spermidine is a polyamine and an autophagy inducer that can
maintain neuronal homeostasis. Healthy brain development and function are dependent
on the brain’s polyamine concentration. Polyamines interact with the opioid system,
glutamatergic signaling, and neuroinflammation in the neuronal and glial compartments.
Among the polyamines, spermidine is found at the highest level in the human brain. Age-
linked fluctuations in spermidine levels may contribute to impairments in neural networks
and neurogenesis. Spermidine has antiaging and anti-inflammatory properties that give
protection against neurotoxicity and neurological disorders. Therefore, a polyamine-rich
plant extract may be a promising target for increasing the spermidine levels in the brain [32].

HSV-2 is one of the viruses that cause neurological disorders. Therefore, we deter-
mined the in vitro antiviral activity of SPE against HSV-2 by using the plaque assay. This as-
say is a standard quantitative method for determining the number of infectious viruses [33].
After allowing serial dilutions of the tested virus to infect cells in the cell culture, this
is accomplished by counting the plaques that form in the cell culture [34]. In this study,
SPE demonstrated antiviral activity against HSV-2 with a IC50 of 8.946 ± 0.02 µg/mL. The
value of IC50 represents the concentration of the tested compound needed to produce 50%
inhibition of the studied viruses [34].

Neuroinflammation has been hypothesized to play a role in the development of cog-
nitive impairment and neurodegenerative disorders. Several neurodegenerative diseases,
including AD, PA, amyotrophic lateral sclerosis (ALS), and MS (multiple sclerosis), and
their specific pathophysiology are unknown. For the study of cognitive impairment as-
sociated with neuroinflammation and neurodegenerative diseases, the development of a
suitable animal model is essential.

This study aimed to determine how SPE protects mice with LPS-induced neuroin-
flammation from memory loss and immune reactions. Several studies have demonstrated
that the administration of LPS causes neuroinflammation and blood–brain barrier (BBB)
damage, followed by amyloid formation and memory loss. In addition, neuronal loss and
microglial activation brought on by LPS-induced brain inflammation caused the release of
neurotoxic substances, including inflammatory cytokines (TNF-α and IL-6). Chronic LPS
administration can impair learning and spatial memory, such as the cognitive loss seen in
AD, which is linked to inflammation and amyloid formation due to increased β-amyloid
protein (Aβ) deposition [35–37].

The mechanism by which SPE improved LPS-induced neuroinflammation may be
explained by its direct action on the brain via antioxidant and anti-inflammatory effects.
The cholinergic system in neuroinflammatory disorders is unbalanced [38]. AChE inhibitors
enhance cognition [39] and are the most effective therapy for treating AD patients [40].
LPS increased the activity of AChE in mice brains, which is consistent with a previous
study by Tyagi et al. [41]. It caused oxidative damage, decreased acetylcholine (Ach) in
the brain [42], and disrupted the cholinergic system by ROS induction [43]. Age-related
dementia is correlated with the increase in oxidative stress in the aged population [44].
According to the results of the current experiment, pretreatment with SPE improved the
mice’s cognitive performance as the SPE (300 mg/kg)-treated group showed a substantial
decrease in AChE activity compared to the LPS-treated group.

In addition, H&E-stained brain sections alleviated the detrimental effects of LPS in the
cerebral cortices, cerebellum, and hippocampus in the group pretreated with 300 mg/kg SPE.
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The process of inflammation is caused by the activation of many inflammatory path-
ways [45], and several inflammatory mediators, such as iNOS, IL-6, TNF-α, and proapop-
totic markers (caspase-3 and c-Jun) are released in this process [46]. Due to its high aerobic
metabolism, blood perfusion, and deficient antioxidant defense, the brain is highly suscepti-
ble to oxidative damage. As a result, cognitive decline and neuronal damage are attributed
to oxidative stress in the brain [47]. Previous research has shown that a mouse’s brain
underwent a considerable change in oxidative stress indicators after receiving an injection
of LPS [48].

Our study found that SPE reduced the proinflammatory mediators and proapoptotic
markers in the LPS-induced mice. The MDA levels significantly increased (p ≤ 0.05) in
the brains of the LPS group compared to the normal control group, whereas the CAT and
SOD levels significantly decreased (p ≤ 0.05). Additionally, our findings revealed that SPE
administration reversed the aberrant changes in the MDA, SOD, and CAT levels induced
by LPS administration. This result demonstrates that the neuroprotective properties of
SPE can be attributed to its antioxidant potential. These findings are supported by earlier
studies that revealed the ROS-scavenging effects of S. persica [48,49].

TNF-α stimulates the production of other cytokines, including IL-6, IL-1, IL-3, etc.
Increased Aß deposition is linked to the activation of these cytokines. According to sev-
eral studies, IL-6 and TNF-α are raised by LPS treatments [50,51]. The current research
shows that LPS-treated mice have higher TNF-α, IL-6, iNOS, caspase-3, and c-Jun markedly
decreased by SPE and rivastigmine pretreatment. Numerous in vivo investigations have
suggested that inhibiting TNF-α and IL-6 may enhance long-term potentiation and post-
pone or prevent neuronal dysfunction [52,53]. It has been found that an increase in the
caspase-3 levels is related to TNF downstream signaling. These results are supported
by research demonstrating a role for caspase-3 in neurodegeneration. Evidence suggests
that caspase-3 degrades the tau protein and produces neurofibrillary tangles that impair
cognitive function [54]. Similar findings were found in our investigation. SPE admin-
istration decreased the LPS-induced production of proinflammatory cytokines, such as
TNF-α, IL-6, and iNOS, and apoptotic markers, such as caspase-3 and c-Jun. Hence, SPE
prevented LPS-induced neuroinflammation, which prevented memory loss and enhanced
cognition. The phosphorylation of tau proteins that causes plaque formation is another
process involving JNK 3. As previously reported, c-Jun is the JNK pathway’s downstream
effector [55], and LPS can activate the c-Jun/JNK pathway, which promotes apoptosis [56].
Our results are consistent with these findings, as the LPS-treated group had elevated c-Jun
levels, markedly decreasing the administration of SPE and RVS. As a result, it was proven
that SPE had an impact on the apoptosis-related protein c-Jun.

4. Materials and Methods
4.1. Chemicals and Media

All chemicals and media were bought from Merck, the UK, and Oxoid, USA.

4.2. Plant Collection and Preparation of Extract

The fresh stems and twigs barks of S. persica shrubs were collected in June 2021 from a
farm of Tahoor Freshler Meswak at El-Bagor, Monufia Governorate, Egypt. The plant was
identified by Prof. Dr. Mohammed Ibrahim Fotoh, Professor of Ornamental Horticulture
and Landscape Design, at the Faculty of Agriculture, Tanta University. The fresh stems
and twigs barks (1.5 kg) were dried at room temperature, ground, and extracted with
95% methanol (4 L × 3 times). The combined extract was evaporated at 40 ◦C under
vacuum to obtain 46.7 g of the extract as a dry residue. A representative sample was kept
(PG-A-00522) at the Herbarium of the Department of Pharmacognosy, Faculty of Pharmacy,
Tanta University.
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4.3. LC-ESI-MS/MS Analysis of SPE

Using LC-ESI-MS/MS and the methodology previously described, the metabolic
profile of the defatted methanol extract of S. persica stem bark was determined [57,58].

4.4. In Vitro Antiviral Potential
4.4.1. Viruses and Cell Lines

Vero-E6 cells (Vacsera, Cairo, Egypt) were utilized in the propagation of herpes simplex
virus type 2 (HSV-2) in Dulbecco’s modified Eagle’s medium (DMEM) with 10% fetal bovine
serum (FBS) and 1% penicillin/streptomycin antibiotics. The viral stocks were generated
by inoculating the cells with the viruses in tissue culture flasks and incubating them in an
atmosphere containing 5% CO2 at 37 ◦C. The tissue culture flasks were inoculated with
Vero-E6 cells a day before the virus infection. Trypsin (1%) was added to the infection
medium after treating L-1-tosylamido-2-phenylethyl chloromethyl ketone. After two
hours of incubation, the medium with the viruses was removed, and a new medium was
added and incubated for three days. Following centrifugation to remove cell debris, the
supernatant was aliquoted and titrated using the plaque assay [59].

4.4.2. MTT Cytotoxicity Assay

Using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), the half-
maximal cytotoxic concentration (CC50) of SPE was determined [59,60]. The absorbance
(A) of the produced formazan was identified at an optical density (OD) of 540 nm using
an ELISA reader (Sunrise Tecan, Zürich, Switzerland). The cytotoxicity percentage was
calculated according to the equation:

% cytotoxicity =
A (cells without treatment)−A (treated cells)

A (cells without treatment)
× 100

4.4.3. Plaque Assay

As previously reported [24], it was performed to elucidate the potential antiviral SPE
against HSV-2 in a six-well tissue culture plate seeded with Vero-E6 cells (90% confluent).
Briefly, after the propagation of the virus, as mentioned earlier, it was 10-fold serially diluted
using DMEM. After that, the diluted virus suspension (100 µL) was mixed with DMEM
(400 µL), added to the tissue culture plate wells, and incubated at 37 ◦C. After one hour,
the suspension was removed, and the Vero-E6 cells were covered with DMEM supplied
with 2% agarose (2%) and the SPE at nontoxic concentrations. The agarose was allowed
to solidify, and the tissue culture plates were incubated at 37 ◦C for 72 h. Subsequently,
10% formalin was added to the well for one hour, removed, and the cells were washed.
Finally, 0.1% crystal violet solution was added for staining, and then, the cells were rinsed
with water and left to dry. The plaques were enumerated as nonstained spots with a violet
background, and the percentage of the inhibition of the plaque formation was calculated
using the following equation:

% inhibition =
Untreated viral count− treated viral count

untreated viral count
× 100

4.5. In Vivo Protective Effect against LPS-Induced Neuroinflammation in Mice
4.5.1. Animals

Forty-two adult albino male mice (22–34 g) were used in this study. The animals
were maintained in standard laboratory conditions, including 25 ± 2 ◦C, 60–70% humidity,
and free access to food and water. The animals were acclimated for ten days before the
trial started [61].

4.5.2. Experimental Groups

The animals were divided randomly into seven groups of six mice each.
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Group 1 (vehicle control): mice were administered 0.2 mL saline intraperitoneally (IP).
Group 2: administered only 300 mg/kg of SPE without LPS administration.
Group 3 (negative control or LPS group): mice were administered 0.03 mL of LPS

(0.25 mg/kg, IP).
Group 4 (Rivastigmine or RVS group): mice administered RVS (0.25 mg/kg, IP).
Groups 5, 6, and 7: administered SPE in saline at 100, 200, and 300 mg/kg orally.
The treatment period was 28 days, and LPS was administered from days 15 to

21 (groups 3–7). The animals were euthanized on the last day of the previously men-
tioned period.

4.5.3. Biochemical Assessment

The brains were immediately removed and placed in an extremely cold isotonic
solution. The brain was homogenized in phosphate-buffered saline (PBS, pH 7.4). The
homogenate was centrifuged at 10,000× g for 15 min, and the supernatant was used for
further biochemical analysis.

4.5.3.1. Evaluation of Acetylcholinesterase (AChE) Activity

The activity of AChE reflects both the imbalance in the cholinergic system, as well as
the degeneration of the cholinergic neurons in the brain. Briefly, 3 mL of sodium phosphate
buffer (0.01 M, pH 8), 50 mL of the supernatant from the brain tissue homogenate, 100 mL
of acetyl thio-choline iodide (AcSCh, 0.75 nM), and 100 mL of 5,5′-dithiobis-(2-nitrobenzoic
Acid) (DTNB or Ellman’s reagent, 10 mM) were mixed. At 412 nm, the absorbance was
measured spectrophotometrically every 30 s for 5 min. Micromoles of AcSCh hydrolyzed
per min per mg of protein were used to express the results [62].

4.5.3.2. Estimation of Malondialdehyde (MDA) Level

The thiobarbituric acid reactive substances (TBARS) assay was used to quantify MDA,
as it can detect the products of lipid oxidation (LPO), as TBARS acts as a source of ROS.
This procedure involved incubating 0.1 mL of the brain supernatant with 0.5 mL of Tris-
HCl (0.1 M, pH 7.4) for two hours. Following incubation to precipitate the proteins, one
milliliter of trichloroacetic acid (TCA) solution (10% w/v) was added. The combined
product was centrifuged for 10 min with 1000× g at 4 ◦C. The supernatant was decanted,
0.67% thiobarbituric acid (TBA) was added, and the mixture was placed in boiling water
for 15 min. The tubes were immediately placed in an ice bath to cool for 15 min, and then,
1 mL of distilled water was added. A spectrophotometer determined the amount of MDA
at 532 nm [63].

4.5.3.3. Estimation of Superoxide Dismutase (SOD) Level

The ability of the enzyme to remove the superoxide radicals created by pyrogallol
in an alkaline solution was the basis for measuring the SOD activity. Briefly, 180 mL of
potassium phosphate buffer (0.1 M, pH 7.4) and 10 mL of pyrogallol solution were added to
10 L of brain tissue homogenate (2.6 mM in 10 mM HCl). For five minutes, the absorbance
increase rate measurements were taken every 30 s. The enzyme needed to block pyrogallol
autoxidation by 50% per 200 L of the assay mixture was used to define one unit of SOD [64].

4.5.3.4. Estimation of Catalase (CAT) Level

The CAT level was determined was performed using a biodiagnostics kit (CA 2517,
Biodiagnostics, Cairo, Egypt). In brief, the catalase enzyme was allowed to react with a
known quantity of H2O2, and after one minute, the reaction was stopped using a catalase
inhibitor. The remaining H2O2 was combined with 3,5-dichloro-2-hydroxybenzene sulfonic
acid (DHBS) and 4-aminophenazone (AAP) in the presence of horseradish peroxidase
(HRP) to create a chromophore with a color intensity that was inversely proportional to the
quantity of catalase in the initial sample [65].
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4.5.3.5. Determination of Caspase-3, Interleukin-6 (IL-6), Tumor Necrosis Factor-Alpha
(TNF-α), Inducible Nitric Oxide Synthase (iNOS), and c-Jun Genes Expression by
Quantitative Real-Time PCR (qRT-PCR)

TRIzol reagent (Invitrogen, Waltham, USA) was used to purify RNA from the tissue
samples. The Maxima first strand cDNA synthesis kit (Thermo Scientific, Waltham, MA,
USA) was then used to create complementary DNA (cDNA). The primer sets for genes were
produced using the Primer3PLUS program (version 0.4.0; available at http://frodo.wi.mit.edu
(accessed on 1 December 2022); Table S1). According to the procedure outlined [66],
real-time PCR experiments were carried out using the Applied Biosystem 7500 real-time
PCR detection system (Life Technologies, San Francisco, CA, USA) using SensiFAST Sybr
green Low-Rox PCR master mix kit (Bioline, London, UK). The housekeeping gene was
β-actin. In the control group, the relative gene expression for each gene was adjusted to
one (negative control) [67].

4.6. Histopathological Analysis

The collected tissue specimens from each group were immediately preserved in 10%
formalin. Hematoxylin and eosin (H&E) stains were used to examine the brain sections
histopathologically under a light microscope [68].

4.7. Statistics

The results obtained were expressed as mean ± standard deviation (SD). The in vitro
antiviral study used ANOVA and post hoc test (Tukey). Statistical analysis of the in vivo
study of each variable was tested for normality using the Shapiro–Wilk normality test.
The differences in each variable were analyzed using Kruskal-Wallis, followed by Dunn’s
multiple comparisons tests. Statistical analysis was conducted using GraphPad Prism
(version 9.3.1, GraphPad, San Diego, CA, USA). The level of statistical significance was set
at (p < 0.05).

5. Conclusions

The LC-ESI-MS/MS analysis of SPE tentatively demonstrated the diversity of its bioac-
tive compounds. Diosmin, isosakuranetin-7-O-neohesperidoside, acacetin-7-O-rutinoside,
rhoifolin, spermidine, pantothenate, benzyl glucosinolate, hydroxybenzoic acid, and
3-formylindole were the most abundant compounds. These components may account
for Salvadora persica’s anti-inflammatory and antioxidant properties. This study demon-
strated that SPE possessed antiviral activity against HSV-2, the causative agent of certain
neurological disorders. Additionally, SPE reduced the brain inflammation caused by LPs.
The decrease in the MDA levels and the increase in the SOD and CAT levels demonstrated
the ability of SPE to inhibit oxidative stress. It exhibited anti-neuroinflammatory and
antiapoptotic properties by decreasing the LPS-induced production of proinflammatory
cytokines such as TNF-, IL-6, and iNOS. SPE enhanced the cognitive performance of mice
due to a significant decrease in AChE activity compared to the LPS-treated group. At
300 mg/kg of SPE, normal neurons appeared in the cerebral cortices, cerebellum, and
hippocampus. Therefore, it should be considered that SPE could be used for prophylaxis
and to treat neurodegenerative diseases caused by inflammatory or oxidative damage.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/ph16030398/s1: Figure S1: Total ion chromatogram (nega-
tive mode) of LC-ESI-MS/MS of methanol extract of Salvadora persica stem bark. Figure S2: Total ion
chromatogram (positive mode) of LC-ESI-MS/MS of methanol extract of Salvadora persica stem bark.
Table S1: Primer sequences of the tested genes.
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