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Abstract: Saponins represent important natural derivatives of plant triterpenoids that are secondary
plant metabolites. Saponins, also named glycoconjugates, are available both as natural and synthetic
products. This review is focused on saponins of the oleanane, ursane, and lupane types of triter-
penoids that include several plant triterpenoids displaying various important pharmacological effects.
Additional convenient structural modifications of naturally-occurring plant products often result in
enhancing the pharmacological effects of the parent natural structures. This is an important objective
for all semisynthetic modifications of the reviewed plant products, and it is included in this review
paper as well. The period covered by this review (2019–2022) is relatively short, mainly due to the
existence of previously published review papers in recent years.
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1. Introduction

Pentacyclic triterpenoids are among the most important plant products, even if they
are still less pharmacologically explored. Among these secondary plant metabolites, the
most frequently studied triterpenoids are those with oleanane, ursane and lupane skele-
tons, represented mainly by oleanolic acid (1a), ursolic acid (1b), and betulinic acid (1c)
(Figure 1). Other pentacyclic triterpenoids less frequently occurring in nature, namely
glycyrrhizic acid (1d), glycyrrhetinic acid (1e), quillaic acid (1f), and echinocystic acid (1g)
(Figure 1), are among the most frequent oleanane-type of triterpenoids, and several even
less frequent structures are also included into the respective parts of this review paper.
All these triterpenoids display important therapeutic potential [1–7]. However, a general
disadvantage of plant triterpenoids consists in their low solubility in water and aqueous
media, and limited bioavailability. This disadvantage can be solved by designing and
preparing suitable derivatives with enhanced pharmacological activity and bioavailability
in comparison with the parent plant triterpenoids, as reviewed recently [3]. In natural
resources, all triterpenoids mostly appear as aglycones in triterpenoid saponins that may
be considered glycoconjugates [8–12].

The olive tree (Olea europaea L.; Oleaceae) is the most important plant source of
oleanolic acid, (3β)-3-hydroxy-olean-12-en-28-oic acid (1a), found mainly in its leaves and
fruits [8,13]. However, olive leaves, bark, and fruits also contain a small amount of ursolic
acid (1b) [14]. In natural resources, both of these triterpenoids often appear simultaneously.
The name of oleanolic acid (1a) is based on the name of the olive plant, an important food,
nutritive, and medicinal species. Other natural resources of oleanolic acid (1a) are mostly
medicinal plants, of which the most important ones are Panax ginseng C.A.Mey (Araliaceae;
namely the root), Arctostaphyllos uva-ursi L. Spreng. (Ericaceae; bearberry), Calluna vulgaris L.
Hull (Ericaceae; heather), Crataeva nurvala Buch. Ham. (Capparaceae; three-leaved caper),
Rosmarinus officinalis L. (Lamiaceae; rosemary), Sambucus chinensis Lindl. (Adoxaceae;
Chinese elder), Solanum incanum L. (Solanaceae; Sodom’s apple), or Syzygium aromaticum L.
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Merr. & L.M. Perry (Myrtaceae; clove), and then fungi, e.g., Ganoderma lucidum Karst
(Ganodermataceae; reishi) [15].
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Figure 1. The structures of selected natural triterpenoids.

Ursolic acid, (3β)-3-hydroxy-urs-12-en-28-oic acid (1b), is often considered to be the
isomer of oleanolic acid (1a), bearing similar structural characteristics. Ursolic acid (1b) has
been found in many nutritive, food, or medicinal plants, e.g., apple (Malus domestica Borkh.;
Rosaceae; fruit peel), bearberry (Arctostaphylos uva-ursi L. Spreng.; Ericaceae; leaves), black
elder (Sambucus nigra L.; Adoxaceae; leaves and bark), coffee (Coffea arabica L.; Rubiaceae;
the leaves), hawthorn (Crataegus L. spp.; Rosaceae; the leaves and flowers), eucalyptus
(Eucalyptus L’Hér.; Myrtaceae; the leaves and bark), lavender (Lavandula angustifolia Mill.;
Lamiaceae; the leaves and flowers), marjoram (Origanum majorana L.; Lamiaceae; leaves),
oregano (Origanum vulgare L.; Lamiaceae; the leaves), oleander (Nerium oleander L.; Apoc-
ynaceae; the leaves), sage (Salvia officinalis L.; Lamiaceae; the leaves), or thyme (Thymus
vulgaris L.; Lamiaceae; the leaves), and in the wax layers of many edible fruits [14,16].

Betulinic acid, (3β)-3-hydroxy-lup-20(29)-en-28-oic acid (1c), is the lupane-type of
pentacyclic triterpenoids. It is widespread in the bark of the birch tree (Betula L. spp.,
Betulaceae). The bark contains a number of medicinally important plant products [17].
Other sources of betulinic acid (1c) include Diospyros L. spp. (Ebenaceae), Paeonia L.
spp. (Paeoniaceae), Platanus L. spp. (Platanaceae), Syzygium P. Browne ex Gaertn. spp.
(Myrtaceae), and Ziziphus Mill. spp. (Rhamnaceae), of which most plants belong to the
medicinal species, often used in traditional medicines [18].

In general, pentacyclic triterpenoids have displayed their capability of forming
nanoscale materials that have various important physicochemical characteristics [19–22].
Self-assembly was also observed with other natural products, e.g., sterols and their deriva-
tives, including derivatives of steryl saponins [23]. Later on, different derivatives of
natural triterpenoids have also been subjected to a similar investigation resulting in the
findings that a number of those compounds also display the analogous ability to self-
assemble, and the formed nanosized materials exhibited important physicochemical and
pharmacological characteristics, making those triterpenoid-based materials attractive for
a more detailed investigation of their physicochemical properties and pharmacological
effects [24–28]. Nanosized materials of this origin often display amphiphilic properties,
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which are important for pharmacological and medicinal applications. Saponins that are con-
sidered to be glycoconjugates with similar characteristics as amphiphiles, both appearing
in nature and/or available synthetically, representing compounds and nanoscale materials
formed therefrom that are capable of giving rise to multivalent carbohydrate-mediated in-
teractions in biological processes that include important disease mechanisms [29]. Saponins
also play an important role as adjuvants, i.e., compounds or nanoscale systems capable of
increasing the efficacy of certain drugs [30].

Natural triterpenoids, namely those mentioned in this review in more detail, display
a broad spectra of pharmacological effects that are well documented in the literature and
have been reviewed recently [3,31–33]. As already stated, due to the limited solubility
of triterpenoids in aqueous media, they mostly appear as triterpenoid saponins in plant
resources. Therefore, in the objectives of this review paper, triterpenoid saponins (glycocon-
jugates) were targeted, with special attention paid to those bearing oleanane, ursane, and
lupane skeletons of aglycones. Because several review papers have been recently published
on the synthesis of triterpenoid saponins (glycoconjugates), including the evaluation of
their pharmacological effects [11,12,34], the period has been selected in this review paper
to cover original papers appearing even more recently (2019–2022). Triterpenoid saponins
were generally reported to display anticancer, antiviral, antibacterial, anti-inflammatory,
anti-Alzheimer, antileishmanial, antioxidant, and immunomodulatory effects, and the abil-
ity to inhibit α-glucosidase [34]. They represent an important group of natural compounds,
available also by chemical synthesis (glycoconjugates). Even if several review papers have
been published on this topic in the period 2015–2021 [5–7,11,12,31–34], the period of the
most recent four years, 2019–2022, has not been fully covered. Therefore, attention has been
focused on the most recent findings that have appeared in the literature during several
of the most recent years, and highlights original papers that appeared in the period not
being reviewed before. The original approach of this review paper is that (a) it has covered
and highlighted the most recent four years of investigation in the field, and (b) it has been
focused on saponins of triterpenoids arranged according to the structure of the triterpenoid
aglycone, with the comments and evaluation of the pharmacological activity, mode of
action, and physicochemical characteristics, whenever those items of information have
been available in the original papers included in this review article.

2. Triterpenoids with the Oleanane Skeleton

Oleanane-type triterpenoids are the most widespread plant triterpenoids from the
reviewed types of triterpenoids. They include not only the intensively studied oleanolic
acid (1a), but also glycyrrhizic (1d), glycyrrhetinic (1e), quillaic (1f) and echinocystic acid
(1g) (Figure 1), and several other oleanane-type triterpenoid saponins, e.g., monellosides,
etc., that are mentioned in this review paper in the respective paragraphs below.

Five oleanane-type triterpenoid saponins (2a–2e; Figure 2) were isolated from the
leaves of Aralia dasyphylla Miq. (Araliaceae), besides ursane-type triterpenoid saponins that
are mentioned below in the text [35]. All isolated compounds were evaluated in vitro for
their cytotoxicity in three human cancer cell lines, i.e., human hepatocellular carcinoma
(HepG2), human lung adenocarcinoma (LU-1), and human rhabdomyosarcoma (RD), and
in silico by molecular docking studies on human glucose transporter 1 (hGLUT1) protein.
The triterpenoids 2a, 2c, and 2d exhibited good growth inhibition of HepG2 and LU-1
cancer cell lines with IC50 values in the range of 1.76–7.21 µM (Table 1). The triterpenoid
2c was the compound with the highest cytotoxicity of this series of compounds, capa-
ble of inhibiting all tested cancer cell lines with IC50 values of 2.73 ± 0.12 µM (HepG2),
1.76 ± 0.11 µM (LU-1), and 2.63 ± 0.10 µM (RD), respectively (Table 1). The in silico
calculations of absorption, distribution, metabolism, excretion, and oral toxicity (ADMET)
parameters, and molecular docking study results with 2a–2e showed that compound 2a
had one of the highest binding affinities to hGLUT1 [35]. Therefore, the presented results
focused attention on developing potential hGLUT1 inhibitors elatoside E (2a), 3-O-[β-D-
glucopyranosyl(l→3)]-α-L-arabinopyranosyl oleanolic acid (2c), 3-O-α-L-arabinopyranosyl
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oleanolic acid (2d), and oleanolic acid 28-O-β-D-glucopyranosyl ester (2e) that were evalu-
ated to become worthy of further investigation for the prevention or treatment of diabetes
and cancer (Table 1). Based on other calculated data, the intestinal absorption increased in
the series 2a < 2c < 2d < 2e.
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Figure 2. Oleanane-type triterpenoids found in the leaves of Aralia dasyphylla.

Table 1. The cell survival values and in vitro cytotoxicity of 2a–2e in three different cancer cell
lines [35].

Compound CS Values [%] (Mean ± SD) a IC50 [µM] (Mean ± SD) b

HepG2 c LU-1 d RD e HepG2 c LU-1 d RD e

2a 0 18.51 ± 1.20 67.13 ± 2.17 3.24 ± 0.22 2.55 ± 0.12 >100 ± 1.45
2b 97.01 ± 0.90 76.47 ± 2.00 95.57 ± 1.90 >100 ± 1.32 >100 ± 0.97 >100 ± 0.58
2c 5.98 ± 0.39 0 0 2.73 ± 0.12 1.76 ± 0.11 2.63 ± 0.10
2d 43.98 ± 1.46 25.21 ± 1.34 72.82 ± 1.26 7.21 ± 0.57 4.56 ± 0.24 >100 ± 1.28
2e 60.88 ± 1.80 67.52 ± 2.33 65.52 ± 1.54 >100 ± 2.10 >100 ± 1.43 >100 ± 1.45

ellipticine f 1.25 ± 0.30 1.87 ± 0.20 0 1.22 ± 0.09 1.30 ± 0.10 1.18 ± 0.08
a The concentration of the sample c = 5 µg · mL−1. CS (cell survival) value [%] is the ability of cells to survive at a
certain concentration of the reagent [in %] compared with the control (n = 3); b Data are presented as means of the
concentration of the sample required for 50% inhibition of cell growth ± SD from triplicated; c HepG2 (human
hepatocellular carcinoma); d LU-1 (human lung adenocarcinoma); e RD (human rhabdomyosarcoma); f ellipticine
(5,11-dimethyl-6H-pyrido[4,3-b]carbazole) was used as a positive control.

Other oleanane-type saponins 3a and 3b (Figure 3) were isolated from plants of the
genus Weigela Thunb. (Caprifoliaceae) [36] that is composed of about ten species, mainly
distributed in Asia, but can be found in Europe as well [37]. Over 200 cultivars have been
produced for ornamental purposes [36,37]. The oleanane saponins were generally reported
to possess a spectrum of pharmacological activities that include anti-inflammatory [38],
anticomplementary [39], stimulatory [40] and cytotoxic activity [37,41–43]. They are also
capable of recognizing antibodies [44]. A detailed study with 3a and 3b has not yet been
published [36]; however, based on the investigation performed by other authors [45], it
is supposed that the important pharmacological potential of 3a and 3b will be evaluated
later on.
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Weigela species were also studied by other authors [45], who isolated additional
oleanane-type saponins (4a–4d; Figure 4 and 5a–5f; Figure 5) from three Weigela (Thunb.)
hybrids and cultivars: W. x Styriaca, W. florida “Minor black”, and W. florida “Brigela” [45].
The authors elucidated the structures of all new compounds of the series of 4a–4d (Figure 4)
and 5a–5f (Figure 5) [45]. The tested saponins 4a–4d and 5a–5f showed antifungal activity
(Candida albicans) and antibacterial activity (Staphylococcus aureus, Pseudomonas aeruginosa)
with the minimum inhibitory concentrations MIC ~200 µg ·mL−1 [45].

A series of 13 so far undescribed triterpenoid saponins, named monellosides A-M
(6a–6m; Figure 6), were isolated from the aerial parts of Anagallis monelli ssp. linifolia
(L.) Maire (Primulaceae), together with a series of ten already known oleanane-type
glycosides [46]. The structures of the isolated compounds were elucidated by the rel-
evant analytical methods (1D and 2D-NMR spectroscopy and HR-ESI-MS), followed
by acid hydrolysis to liberate the triterpenoid aglycones. Monellosides A-M (6a–6m;
Figure 6) have a carbohydrate chain linked on the C(3)-OH of the aglycone with a common
β-D-glucopyranosyl-(1→4)-α-L-arabinopyranosyl sequence, which was further glycosy-
lated by an additional glucose and/or xylose unit. The sequence of β-D-xylopyrano
syl-(1→2)-β-D-glucopyranosyl-(1→4)-[β-D-glucopyranosyl-(1→2)-]α-L-arabinopyranosyl
oligosaccharide motif was common to all the 13,28-epoxyoleanane core skeletons except
for the compounds 6j–6m (Figure 6) of the series. It seems to be a general feature of the
saponins from the species of Myrsinaceae and Primulaceae families that they bear the
13,28-epoxy-bridged skeleton of the pentacyclic triterpenoids found therein. The finding
of the phytochemical results contributed to increasing the knowledge of the structures
of the saponins of the genus Anagallis and their chemotaxonomy, and stimulated further
evaluation of the biological effects of these saponins [46]. The pharmacological potential of
6a–6m (Figure 6) has not yet been fully evaluated.

Three new oleanane-type triterpenoid saponins (7a–7c; Figure 7) were isolated and
identified in the extracts from the stem bark of mertajam, Lepisanthes rubiginosa Roxb.
(Sapindaceae), a plant growing in Asia, namely in Malaysia, Thailand, and Vietnam, and in
the tropical areas of Africa and north-western Australia [47]. The plant has been extensively
used in traditional medicine, namely to treat fever, headache, cough, diarrhea, dysentery,
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and jaundice [48]. Cytotoxic, antibacterial, antifungal, antioxidant, antihyperglycemic, and
antipruritic activity had been proven for the extracts of L. rubiginosa [49]. The plant is a
rich natural source of pentacyclic triterpenoids and their saponins, flavonoids, phenolic
acids, tannins, and other phenolic products [49]. Finally, an intensive investigation resulted
in the isolation of several new triterpenoid glycosides, lepiginosides (7a–7c) [48]. The
potential antibacterial activity of the isolated compounds was tested in Klebsiella pneumoniae,
Pseudomonas aeruginosa, Salmonella typhimurium, Shigella sonnei, Escherichia coli, Staphylococcus
haemolyticus, and in the methicillin-resistant Staphylococcus aureus; however, none of the inves-
tigated triterpenoid saponins showed significant activity [47]. Therefore, it seems reasonable
that a synergic action of different constituents in the extracts of L. rubiginosa is required for the
pharmacological effects to be displayed, as it was found for the plant extracts.
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Xanthoceraside (8; Figure 8), another oleanane-type saponin, was isolated from
Xanthoceras sorbifolium Bunge (Sapindaceae; yellowhorn), a plant widely used in traditional
medicine in China and Russia [50]. The compound has been proven to be a potent agent for
treating major depressive disorders [50], namely in connection with chronic corticosterone
administration. Corticosterone administration induced anxiety and depression-like abnor-
mal behavior, caused a decrease in the expression levels of the brain-derived neurotrophic
factor and a decrease in the phosphorylation of protein kinase B (AKT), the mammalian
target of rapamycin (mTOR), and, finally, a decrease in a cAMP response element bind-
ing protein (CREB) in the prefrontal cortex (PFC). Therefore, xanthoceraside (8; Figure 8)
became an attractive candidate for pharmacotherapy to treat major depressive disorder
(MDD) with hypothalamic–pituitary–adrenal (HPA) axis dysfunction.

The chronic corticosterone (CORT) administration model was employed in the investi-
gation of the effects of the studied compound, because previous investigations resulted
in reports suggesting the relationship between CORT and brain-derived neurotrophic
factor (BDNF) expression [51]. Mice that were chronically administered with CORT
(20 mg · kg−1 per day) for three weeks enabled the investigation conducted to find whether
chronic CORT administration impairs emotional function in mice by using the open field,
social interaction, and novelty-suppressed feeding tests. Finally, the results suggested that
chronic CORT administration induced anxiety-like and depression-like abnormal behavior
in mice [50], and xanthoceraside (8; Figure 8) was capable of treating such behavior based
on depressive disorders.
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Platycosides having the general structures 9a–9c shown in Figure 9, another series
of the saponins of the oleanane-type of triterpenoids, have been isolated and identified
from Platycodon grandiflorus Jacq. (Campanulaceae; Chinese bellflower), a well-known
edible and medicinal plant [52]. The general formula 9a represents the platycodigenin-type
of compounds, 9b represents the platygalacic-acid-type of compounds, and, finally, 9c
represents the platyconic acid-type of compounds. Platycosides comprise 56 described
plant products altogether [52]. They are the main active constituents of P. grandiflorus,
with multiple pharmacological activities. The substituents R1 and R2 in 9a–9c represent
a combination of monosaccharide-based and oligosaccharide-based substituents, or a
hydrogen atom [52]. P. grandiflorus was used as a dietary supplement and functional food
for relieving pulmonary disorders [52]. The investigation was focused on the metabolism
of the identified platycosides in vivo, because the mechanism of platycosides had not been
fully clarified. The study resulted in an important finding that 3-O-β-D-glucopyranosyl
platycosides (general formulae 9a–9c), dietary supplements, could be absorbed into the
bloodstream, which provided new knowledge about how these plant-based saponins
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are metabolized in vivo [52]. These findings also revealed that both intestinal bacterial
metabolism and hydrolysis of ester linkage at C(17)-COOH by carboxylesterases in the
liver are the possible deglycosylation metabolism pathways of platycosides in vivo, and
indicated their rapid excretion from the organism. The findings are generally important for
understanding the metabolism of platycosides after dietary consumption.
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Figure 9. Oleanane-type platycosides from Platycodon grandiflorus.

Glycyrrhizic acid (1d; Figure 1) and glycyrrhetinic acid 3β-D-glucuronide (10;
Figure 10) have been known to be valuable constituents of licorice. Most recently, they
were also isolated from Glycyrrhiza uralensis Fisch. (Fabaceae; Chinese licorice), and used in
the investigation of uridine diphosphate glucose dehydrogenase activity [53]. The agly-
cone of both natural products (1d and 10) belongs to the oleanane-type of triterpenoids
under the name of glycyrrhetinic acid (1e; Figure 1). The plant G. uralensis has widely
been used in traditional Chinese medicine for treating health disorders, e.g., diabetes [54],
hepatitis [55–57], bronchitis [58], or AIDS [59]. It also showed a potential therapeutic effect
on SARS-CoV-2 [60]. The plant and its extracts of different types have been traditionally
used as an anti-inflammatory [61], for liver protection [62] and immune regulation [63], as
antivirus [64] and anticancer [65] agents, as well as for immunity regulation. Triterpenoid
saponins from G. uralensis are predominantly present as glucuronides [66]. In the reviewed
original paper [53], uridine diphosphate glucose dehydrogenase (UGDH) activity was
studied. The results of molecular docking revealed that five uridine diphosphate glucose
(UDPG) isoforms had strong and similar bindings with the substrate. This was the common
structural basis enabling the five UDP isoforms to catalyze the substrate. However, there
were differences in their binding modes, which indicated different catalytic efficiencies
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of the UDPG isoforms. All isoforms have strictly conserved residues in the active sites
(Ala160 and Glu161), whereas Glu157, Thr163, Asp167, Ser271, and Phe334 were found
to be unique amino acid residues of UGDH1–UGDH5, respectively. The binding modes
to UGDHs of the two derivatives were similar with UGDH, and they all had multiple
identical binding sites. To determine the stability of the whole structure of each of the five
UGDH models complexed to the UDPG isoforms, the systems were calculated in silico. The
results revealed that the binding forces between the product and UGDHs were relatively
weak, and when the enzyme converts the substrate into a product, the product was easier
to dissociate from the protein complex [53].
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Figure 10. Glycyrrhetinic acid 3β-D-glucuronide.

Based on natural saponins 11a and 11b (Figure 11) that have been isolated from
Quillaja saponaria Molina (Quillajaceae; soap bark tree), an evergreen tree that is native
to Chile [67], a series of novel oleanane-based saponins (11c–11f; Figure 11) have been
designed using both quillaic acid (1f; Figure 1) and echinocystic acid (1g; Figure 1) as
triterpenoid core molecules. The natural mixture of 11a and 11b (Figure 11) has also been
known under the code QS-21 [67]. The compounds 11c–11f (Figure 11) were subsequently
prepared and immunologically evaluated on the basis of streamlined saponin adjuvants and
the Tn (Thomsen-nouveau) carbohydrate antigen [68]. These synthetic compounds (11c–11f)
induced moderate antibody responses in mice, which initiated a search for optimization in
the development of self-adjuvanting glycoconjugate cancer vaccines [67,68].

The Tn (Thomsen-nouveau) antigen [N-acetylgalactosamine (GalNAc) α-O-linked to
serine or threonine] is a typical tumor-associated carbohydrate antigen (TACA) overex-
pressed on the cell surface glycoproteins in human tumors [67,68]. Despite its potential
for anticancer vaccine development, it is only weakly immunogenic, and needs to be ad-
ministered as a conjugate to induce strong immune responses [68]. The classical approach
always involved a covalent bond to an immunogenic carrier protein, finally leading to an
enhanced antigen presentation, T cell activation, and co-administration with an immuno-
logical adjuvant such as the saponin natural products 11a and 11b, which were responsible
for activating both antibody and cellular immunity, further strengthening the immune
response [67]. Compounds 11a and 11b represent a mixture of natural triterpenoid glyco-
side isomers that share a central quillaic acid (1f; Figure 1) unit conjugated to a left-hand
branched trisaccharide and a C(28)-linked linear tetrasaccharide decorated with a glycosy-
lated acyl chain. This natural mixed product (11a and 11b) has already been widely applied
in clinical applications, and has recently got approval as a part of the adjuvant system
for vaccines [67]. However, due to the scarcity, heterogeneity, chemical instability, and
dose-limiting toxicity of the natural product (a mixture of 11a and 11b), its advancement to
become a stand-alone adjuvant in vaccines was impeded. This was the main reason why
subsequent intensive investigation resulted in designing and developing fully synthetic
adjuvant–antigen glycoconjugates 11c–11f as the first example of a di-component vaccine
that involved saponins chemically linked to TACAs [67]. The immunological evaluation
in mice revealed that this novel saponin–Tn conjugate design induced a certain degree of
Tn-specific antibodies in the absence of any external adjuvants or carrier systems. This
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novel approach may be considered “self-adjuvanting”, and it is expected to benefit from
additional structural and/or formulation optimization [67].
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A modification of the 3β-D-glucuronic acid residue from the Quillaja saponin adju-
vants was made by the N-acylation of the carboxyl group by linear alkyl C8-, C10-, C12-, and
C14-carbon-chained amines [67,68]. The synthesized amide derivatives bear linear alkyl
amine chains as substituents of the carboxyl group of the 3β-D-glucuronic acid unit. This
structural modification resulted in a finding that hydrophobic alkyl chains modified the
conformation of these glycosides and, subsequently, modified the micellar structures. This
finding clearly shows the effect of nano-assembly on pharmacological activity. Structural
modifications affected the pharmacological function of the studied compounds in their
interactions with cellular receptors, and finally affected the adjuvanticity of the glycosidic
compounds. The amide derivatives bearing C8 to C12 residues modified the response to
a pro-inflammatory Th1 immunity. In mice, IgG2a levels were dependent on the direct
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influence of the secreted interferon-c (IFN-c), a crucial Th1 cytokine. The subsequent deriva-
tion by a longer and more lipophilic tetradecylamide group yielded derivatives capable
of inducing Th2 immunity, which was demonstrated by a low IgG2a/IgG1 ratio. The
immunomodulatory properties or adjuvanticity of the N-acylated natural products were af-
fected by the changes in the conformation and micellar structure of the modified molecules.
Physicochemical modifications in the structures of the molecules subsequently modified
the availability of certain groups, e.g., fucopyranose, to bind to the presumed dendritic cells’
lectin receptor DC-SIGN, an essential step in the stimulation of Th2 immunity. The struc-
tural characteristics in an aqueous environment depended on the balance of the hydrophilic
and lipophilic moieties (HLB) of glycosides and on the interactions of the newly introduced
alkyl chains with the lipophilic triterpenoid aglycone of the native saponin and hydrophilic
oligosaccharide chains. All these factors contributed to the explanation of the qualita-
tive and quantitative changes in adjuvanticity of the structurally modified compounds
(11a and 11b vs. 11c–11f). The achieved results clearly demonstrated that the correlation of
HLB values with the adjuvanticity of the saponins is not straightforward, as it had been
proposed earlier [69]. It was found that the participation of different functional groups,
such as the triterpenoid aglycone, glycoside residues, and acyl groups, was important both
for adjuvanticity and the HLB [69]. A modification of the natural products 11a and 11b by
long alkyl chains, besides changing their HLB values, yielded novel analogs (11c–11f) with
quantitative and qualitative differences in adjuvanticity [67].

Aster tataricus L. f. (Asteraceae) is a nutrient-potent herb found in mainland China,
South Korea, and Japan. The rhizomes and roots of A. tataricus have been used in tradi-
tional medicine to eliminate phlegm and coughing for a long time. The investigation of
the plant extracts revealed a potential therapeutic effect of A. tataricus as an antioxidant,
antitussive, antibacterial, antidepressant, and anti-inflammatory agent, namely due to
the abundance of chemical constituents such as shionone, caffeoylquinic acids, and triter-
penoid saponins present in the root of the plant [70]. Subsequently, several triterpenoid
saponins were isolated from A. tataricus, their structures were elucidated, and their potential
anti-inflammatory activities were investigated and evaluated by measuring lipopolysac-
charide (LPS)-enhanced nitric oxide (NO) formation in murine macrophages [70]. Among
these natural products, saponins 12a and 12b (Figure 12) exhibited the most potent anti-
inflammatory activity (IC50 = 42.1 µM and IC50 = 1.2 µM, respectively), while the other
natural products isolated therefrom were much less active and mostly inactive [70]. Be-
cause the quantity of 12b in the natural source was very low, its synthesis, based on the
structure of 12a, was designed and performed [70,71]. The enhancing anti-inflammatory
activity of 12b (IC50 = 1.2 µM) was exceptional within this series of compounds, because
other saponins structurally related to 12b showed only negligible inhibitory activity [70,71].
Inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein levels were
dose-dependently suppressed by 12b in the lipopolysaccharide (LPS)-activated RAW
264.7 (murine macrophage) cells. An investigation of the anti-inflammatory mechanism
indicated that 12b reduced the phosphorylation and degradation of the inhibitor of NF-κB,
which led to the blocking of NF-κB p65 translocation to the nucleus. This triterpenoid
saponin 12b was worthy of further investigation. However, due to the limited quantity of
12b that could be isolated from the plant material, its total synthesis was designed [71].

The synthesis of 12b was achieved by following a [3 + 2] block synthesis strategy, in
which the trisaccharide acceptor and the disaccharide donor were rationally designed and
obtained from semi-protected monosaccharides by stereoselective glycosylation reactions,
either by activation of the thioglycoside or by the formation of glycosyl trichloroacetimidate.
The target compound 12b was then available in a bigger quantity for the subsequent
investigation [71]. The bioactivity of saponins depends on their glycoconjugation pattern
and, therefore, the carbohydrate being a part of a saponin is always important for the
elucidation of the biological activity of saponins, as documented by the enhancing anti-
inflammatory activity of 12b in comparison with that of 12a [71].
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3. Triterpenoids with the Ursane Skeleton

In addition to the oleanane-type of triterpenoid saponins mentioned above in the
section on triterpenoids 2a–2e with the oleanane skeleton (Figure 2), five ursane-type
triterpenoid saponins (13a–13e; Figure 13) were also isolated from the leaves of
Aralia dasyphylla Miq. (Araliaceae) [35]. All isolated ursane-type compounds (13a–13e)
were evaluated in the same way as the earlier mentioned oleanane-type plant products
2a–2e. The cytotoxicity of 13a–13e in three human cancer cell lines, human hepatocellular
carcinoma (HepG2), human lung adenocarcinoma (LU-1), and human rhabdomyosarcoma
(RD) was evaluated in vitro. The molecular docking studies on human glucose transporter
1 (hGLUT1) protein were made in silico. The triterpenoids 13b and 13d exhibited good
growth inhibition of HepG2 and LU-1 cancer cell lines with IC50 values in the range of
concentration c = 1.76–7.21 µM (Table 2). The in silico molecular docking study results showed
that compound 13d had one of the highest binding affinities to hGLUT1 among these ursane-
type plant products. The compounds 13a–13e were also evaluated for their in silico ADMET
of absorption, distribution, metabolism, excretion, and oral toxicity parameters. Based on the
calculated data, intestinal absorption increased in the series 13e < 13d < 13b < 13c.
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Table 2. The cell survival values and in vitro cytotoxicity of 13a–13e in three different cancer cell lines [35].

Compound CS Values [%] (Mean ± SD) a IC50 [µM] (Mean ± SD) b

HepG2 c LU-1 d RD e HepG2 c LU-1 d RD e

13a 68.42 ± 0.96 29.61 ± 0.15 66.79 ± 1.51 >100 ± 1.45 7.04 ± 0.64 >100 ± 1.16
13b 45.98 ± 1.45 25.11 ± 1.54 72.81 ± 1.56 7.21 ± 0.60 4.56 ± 0.18 >100 ± 0.65
13c 59.88 ± 1.80 65.52 ± 2.53 64.52 ± 1.34 >100 ± 1.80 >100 ± 0.84 >100 ± 0.35
13d 37.20 ± 2.30 15.12 ± 0.60 70.00 ± 2.19 5.36 ± 0.47 2.85 ± 0.20 >100 ± 1.42
13e 98.28 ± 0.95 78.70 ± 1.15 98.42 ± 1.47 >100 ± 1.36 >100 ± 1.34 >100 ± 1.89

ellipticine f 1.25 ± 0.30 1.87 ± 0.20 0 1.22 ± 0.09 1.30 ± 0.10 1.18 ± 0.08
a The concentration of the sample c = 5 µg · mL−1. CS (cell survival) value [%] is the ability of cells to survive at a
certain concentration of the reagent [in %] compared with the control (n = 3); b Data are presented as means of the
concentration of the sample required for 50% inhibition of cell growth ± SD from triplicated; c HepG2 (human
hepatocellular carcinoma); d LU-1 (human lung adenocarcinoma); e RD (human rhabdomyosarcoma); f ellipticine
(5,11-dimethyl-6H-pyrido [4,3-b]carbazole) was used as a positive control.

The recent COVID-19 pandemic has been a global threat to public health with emerg-
ing attention paid to the SARS-CoV-2 variants, and represented a great challenge to the
development of both antiviral agents and vaccines. The ursolic acid-based saponins (14a
and 14b; Figure 14) were subjected to an investigation for novel SARS-CoV-2 fusion
inhibitors [72]. Structurally, these saponins bear a hydrophilic branched trisaccharide
α-L-rhamnopyranosyl-(1→2)-[α-L-rhamnopyranosyl-(1→4)]-β-D-glucopyranosyl residue,
known as chacotriose, incorporated to the hydrophobic aglycone (1b) by the β-D-glycosidic
linkage, followed by different side chains at the C(17)-COOH group of the ursolic acid.
The β-chacotriosyl moiety of 14a and 14b was essential for biological activity. The com-
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pounds 14a and 14b showed inhibition rates higher than 80% in the antiviral assay at
a concentration of c = 40 µM. In turn, modifying the β-chacotriosyl moiety in the α-
L-rhamnopyranosyl-(1→2)-β-D-glucopyranosyl or the α-L-rhamnopyranosyl-(1→4)-β-D-
glucopyranosyl residues resulted in a significant loss of inhibition effect. This result
illustrated the crucial role of the β-chacotriosyl moiety in the anti-SARS-CoV-2 activity.
However, neither chacotriose nor ursolic acid (1b) showed inhibition toward SARS-CoV-2
as single compounds at a concentration of c = 40 µM. This finding demonstrated that these
saponins acted as integral structures, but neither the oligosaccharide chain nor the aglycone
alone was capable of generating anti-SARS-CoV-2 activity.
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Figure 14. Ursane-type saponin derivatives for the SARS-CoV-2 treatment.

To investigate the effect of different substituents in different locations of the basic
structure of the triterpenoid molecule, a series of the title saponins 14c–14q (Figure 14)
were designed and synthesized. Based on the antiviral effect of 14a (EC50 = 10.69 µM),
the inhibition rates of the title saponins against SARS-CoV-2 at the concentrations of
c = 40 µM (high concentration) and c = 10 µM (low concentration; EC50 values) were
evaluated. The incorporated trifluoromethoxy group as a bioisostere of the methoxy group
might form an additional potential interaction with the S protein. The trifluoromethoxy
group was first incorporated at the ortho-position of the phenyl ring to generate 14c;
however, the novel compound displayed higher cytotoxicity than 14a (Table 3). The impact
of 2,6-disubstitution was determined with 14d. This structural modification resulted in a
slight improvement in biological activity, comparable with that of 14a, and the increased
antiviral activity was not accompanied by cytotoxicity, as followed from the CC50 value of
the concentration of c > 100 µM against HEK293T human-ACE2 cells with 14d. In contrast,
a replacement of the phenyl ring of 14a with a 2,3-dihydrobenzo[b][1,4]dioxine residue (14e)
had a negative effect on the antiviral activity. A replacement of the phenyl group by more
sterically hindered biphenyl moieties (14f–14h) resulted in a loss of biological activity. The
compound 14i, bearing a quinolone ring with a similar steric hindrance of the substituent,
showed surprisingly analogous inhibition activity as 14a. A similar increase in inhibitory
potency was also observed with other (6 + 5)-fused heteroaryl derivatives containing the
nitrogen group (14k was more potent than 14a in cellular assays). These results revealed that
larger substituents at the C(28)-position of the ursolic acid (1b; Figure 1) were unfavorable
substituents, and finally directed the investigation towards smaller substituents. However,
attempts to lower steric hindrance by substituting the phenyl side chain with a small
tetrazole group (14l) induced strong toxicity towards HEK293T human-ACE2 cells. The
length of the alkyl spacer between the amide group and the phenyl ring affected the
inhibition effects of the compounds as well (14m–14o) [72].
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Table 3. Antiviral activity of the saponins 14c–14q tested in SARS-CoV-2 S protein at the concentra-
tions of c = 10 µM and c = 40 µM, respectively [72].

Compound R Inhibition Rate [%]

c = 10 µM c = 40 µM
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Compound R Inhibition Rate [%]
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a the title saponins showed significant cytotoxicity at corresponding concentrations, and the inhibi-
tion rate could not be calculated; b salvianolic acid C, (2R)-3-(3,4-dihydroxyphenyl)-2-[(E)-3-[2-(3,4-
dihydroxyphenyl)-7-hydroxy-1-benzofuran-4-yl]prop-2-enoyl]oxypropanoic acid, was used as a 
reference compound. 

In summary, the leading compound 14d showed potent antiviral activity against in-
fectious SARS-CoV-2 (Wuhan-HU-1 variant) in Vero-E6 cells and was also effective 
against the infection of diverse pseudo-typed SARS-CoV-2 variants with mutations in the 
S protein, including the Omicron and Delta variants. Compound 14d was also able to tar-
get the cavity between S1 and S2 subunits to stabilize the pre-fusion state of the SARS-
CoV-2 S protein that resulted in interfering with virus–cell membrane fusion. This inves-
tigation introduced a series of novel SARS-CoV-2 fusion inhibitors (14c–14q) against 
SARS-CoV-2 and its variants based on the (3β)-3-O-chacotriosyl derivatives of the ursolic 
acid (1b; Figure 1) skeleton. On the basis of 14a, subsequent chemical optimization led to 
the development of the novel and potent lead compound 14d, which had an excellent 
potency (EC50 = 2.05 µM) and a favorable SI value (SI > 49) when tested with infectious 
SARS-CoV-2, and displayed a broad-spectrum entry inhibition against recently emerged 
SARS-CoV-2 variants, such as Delta and Omicron. It has been found that, by utilizing 
surface plasmon resonance (SPR) measurement, the co-immunoprecipitation (Co-IP) as-
say, cell–cell fusion assay, and docking studies in combination with mutagenesis studies, 
the most promising was the compound 14d from this series. The compound 14d showed 
the capability of occupying the cavity between S1 and S2 subunits in the SARS-CoV-2 S 
protein for interfering with virus–cell fusion, finally resulting in a broad and effective an-
tiviral activity in vitro. The results supported further clinical development of the fusion 
inhibitors structurally related to 14d with a high inhibition effect on SARS-CoV-2 and its 
variants [72]. 

Ilex pubescens Hook. & Arn. (Aquifoliaceae; holly) represents another medicinal plant 
that is a source of triterpenoid saponins with the ursane-type of skeleton (15a–15d; Figure 
15) [73]. The extract from the plant tissues is capable of regulating lipid levels, such as 
lysophosphatidylcholine (LPC) and lysophosphatidylethanolamine (LPE). The studied 
triterpenoid saponins isolated from I. pubescens improved blood biochemical function in 
the process of blood stasis syndrome, and played a role in vascular protection and mainte-
nance of the normal morphology of blood vessels [73]. This study indicated that combin-
ing systemic pharmacology, metabolomics, and molecular docking is an effective and fea-
sible strategy to discover potential therapeutic targets of herbal medicines [73]. During 
this investigation, it was found that the ursane-type of triterpenoid saponins 15a–15d from 
I. pubescens generally improved blood biochemical function in the process of blood stasis 
syndrome, and played a role in vascular protection and maintenance of the normal mor-
phology of blood vessels. Metabolite pathways involved in steroid biosynthesis and 
sphingolipid metabolism were significantly disturbed. Both metabolomics analysis and 
network pharmacology results showed that triterpenoid saponins from I. pubescens ame-
liorated vascular injury. The lipid accumulation was mediated by the PI3K/AKT signaling 
pathway activation. The simulation of molecular dynamics and the enzyme inhibitory ac-
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not be calculated; b salvianolic acid C, (2R)-3-(3,4-dihydroxyphenyl)-2-[(E)-3-[2-(3,4-dihydroxyphenyl)-7-hydroxy-
1-benzofuran-4-yl]prop-2-enoyl]oxypropanoic acid, was used as a reference compound.

In summary, the leading compound 14d showed potent antiviral activity against
infectious SARS-CoV-2 (Wuhan-HU-1 variant) in Vero-E6 cells and was also effective
against the infection of diverse pseudo-typed SARS-CoV-2 variants with mutations in
the S protein, including the Omicron and Delta variants. Compound 14d was also able
to target the cavity between S1 and S2 subunits to stabilize the pre-fusion state of the
SARS-CoV-2 S protein that resulted in interfering with virus–cell membrane fusion. This
investigation introduced a series of novel SARS-CoV-2 fusion inhibitors (14c–14q) against
SARS-CoV-2 and its variants based on the (3β)-3-O-chacotriosyl derivatives of the ursolic
acid (1b; Figure 1) skeleton. On the basis of 14a, subsequent chemical optimization led
to the development of the novel and potent lead compound 14d, which had an excellent
potency (EC50 = 2.05 µM) and a favorable SI value (SI > 49) when tested with infectious
SARS-CoV-2, and displayed a broad-spectrum entry inhibition against recently emerged
SARS-CoV-2 variants, such as Delta and Omicron. It has been found that, by utilizing
surface plasmon resonance (SPR) measurement, the co-immunoprecipitation (Co-IP) assay,
cell–cell fusion assay, and docking studies in combination with mutagenesis studies, the
most promising was the compound 14d from this series. The compound 14d showed the
capability of occupying the cavity between S1 and S2 subunits in the SARS-CoV-2 S protein
for interfering with virus–cell fusion, finally resulting in a broad and effective antiviral
activity in vitro. The results supported further clinical development of the fusion inhibitors
structurally related to 14d with a high inhibition effect on SARS-CoV-2 and its variants [72].

Ilex pubescens Hook. & Arn. (Aquifoliaceae; holly) represents another medicinal
plant that is a source of triterpenoid saponins with the ursane-type of skeleton (15a–15d;
Figure 15) [73]. The extract from the plant tissues is capable of regulating lipid levels, such
as lysophosphatidylcholine (LPC) and lysophosphatidylethanolamine (LPE). The studied
triterpenoid saponins isolated from I. pubescens improved blood biochemical function
in the process of blood stasis syndrome, and played a role in vascular protection and
maintenance of the normal morphology of blood vessels [73]. This study indicated that
combining systemic pharmacology, metabolomics, and molecular docking is an effective
and feasible strategy to discover potential therapeutic targets of herbal medicines [73].
During this investigation, it was found that the ursane-type of triterpenoid saponins
15a–15d from I. pubescens generally improved blood biochemical function in the process of
blood stasis syndrome, and played a role in vascular protection and maintenance of the
normal morphology of blood vessels. Metabolite pathways involved in steroid biosynthesis
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and sphingolipid metabolism were significantly disturbed. Both metabolomics analysis
and network pharmacology results showed that triterpenoid saponins from I. pubescens
ameliorated vascular injury. The lipid accumulation was mediated by the PI3K/AKT
signaling pathway activation. The simulation of molecular dynamics and the enzyme
inhibitory activity resulted in a finding that the main components of triterpenoid saponins
from I. pubescens (15a–15d) gave rise to stable complexes with PI3K, AKT, and eNOS
that displayed significant binding affinity. It was noted that levels of PI3K, AKT, p-AKT,
eNOS mRNA, and other proteins were always considerably elevated when treated with
triterpenoid saponins from I. pubescens (15a–15d). Therefore, these triterpenoid saponins
protected the vasculature by regulating the PI3K/AKT signaling pathway, activating eNOS
and increasing the release of NO [73].
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4. Triterpenoids with the Lupane Skeleton

Acankoreagenin, (3α)-3-hydroxy-lup-20(29)-en-23,28-dioic acid (16a), and impressic
acid, (3α,11α)-3,11-dihydroxylup-20(29)-en-28-oic acid (16b), are two lupane-type triter-
penoids that were isolated from various Acanthopanax (Eleutherococcus) Decne. & Planch.
(Araliaceae; thorny ginseng) and Schefflera J.R. Forst. & G. Forst. (Araliaceae; umbrella
tree) species (Figure 16) [74]. The antinociceptive and anti-inflammatory activities of
Schefflera octophylla extracts are well known and have been characterized. Acankoreagenin
(16a) demonstrated inhibitory activities towards different enzymes responsible for diabetes,
such as α-glucosidase and protein tyrosine phosphatase 1B (PTP1B), displaying IC50 ∼ 13
and 16 µM, respectively, and towards α-amylase (in vitro; IC50 = 31 µM). This compound
reduced the production of the cytokine-stimulated inducible nitric oxide synthase (iNOS)
and caused a limited activation of the transcription factor NF-κB in cells. The inhibition
of the NF-κB pathway prevents iNOS expression in vitro [74]. The compound 16a dis-
played anti-inflammatory activity both in vitro and in vivo, reducing the serum levels
of inflammatory cytokines (TNF-α and IL-1β) and the release of the protein HMGB1, a
pro-inflammatory cytokine, in a dose-dependent way [74].
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More than 15 acankoreosides (16c–16q; Figure 16) were derived from the acanko-
reagenin aglycone. Compounds such as 16c and 16d were proven to act as remarkable
anti-inflammatory agents, inhibiting cytokine release from the activated macrophages.
Regardless of their effectiveness, acankoreosides and impressic acid (16b) have so far been
much less intensively studied than the structurally related compounds betulinic acid (1c)
and 23-hydroxybetulinic acid (anemosapogenin). The structural differences (notably the
R/S stereoisomerism of the C(3)-OH group of the triterpenoid skeleton) and functional
similarities of these compounds were investigated. The complete series of acankoreosides
was presented for the first time in the paper by Bailly [74]. These natural products were also
investigated as anti-inflammatory agents, and acankoreosides have been recommended as
templates for designing new anticancer and antiviral drugs.

Russian authors [75] synthesized an interesting mannopyranosyl derivative of be-
tulinic acid, decorated by a phosphoniohexyl group that formed an ester at the C(17)-COOH
group. The conjugation of betulinic acid (1c) or its saponine derivative with vector frag-
ments, lipophilic delocalized cations, e.g., triphenylphosphonium salt, can provide targeted
delivery of the drug agent to the required organs or tissues, and/or selective interaction
with a certain type of transformed cells. This approach achieved an increase in the concen-
tration of the active agent in the mitochondrial matrix by more than 1000 times [76]. The
inclusion of a phosphonium fragment into the structure of betulinic acid-based mannopy-
ranoside saponin (17; Figure 17) led to a significant increase in the cytotoxicity of the target
compound 17 in human cancer cell lines, in comparison with the parent betulinic acid (1c;
Figure 1) [75,76]. Moreover, it was shown in Canada that decorating the C(3)-OH group of
betulinic acid (1c) with the D-mannopyranoside or L-rhamnopyranoside units led to a sub-
stantial enhancement of cytotoxicity in the respective triterpenoid saponins in comparison
with the parent betulinic acid (1c) [77]. Finally, the Russian authors combined both struc-
tural motifs into a single structure 17, in which they used the α-linked D-mannopyranoside
unit to produce saponin, and synthesized a highly cytotoxic compound 17 [75].
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5. Conclusions

We have reviewed the most recent triterpenoid (oleanane-, ursane-, and lupane-type)
saponins found in plant sources, which have been identified and investigated. Table 4 sum-
marizes all relevant data, including references. The types of pharmacological effects found
during the investigation of the plant products represent a broad spectrum of biological
activity. The mode of action of the compounds was mentioned wherever it was described
in the original literature source. In addition to naturally-occurring plant products, synthetic
glycoconjugates related to natural saponin products were mentioned and evaluated. The
semisynthetic derivation of natural triterpenoids and triterpenoid saponins resulted in
compounds displaying enhanced pharmacological effects, e.g., 11c–11f vs. 11a and 11b or
12b vs. 12a. Natural products have been a source of inspiration for the synthesis of novel
compounds showing novel or enhanced types of pharmacological effects (14c–14q or 17).
Adjuvant–antigen glycoconjugates 11c–11f represent the first example of a di-component
vaccine that involved saponins chemically linked to the tumor-associated carbohydrate
antigen overexpressed on the cell surface glycoproteins in human tumors, and those com-
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pounds already show a good prerequisite for obtaining approval for practical application
in the form of anticancer vaccines [30].

Table 4. Summary of the reviewed triterpenoid saponins.

Plant [Reference] Saponin Found Type of Pharmacological Application

Aralia dasyphylla Miq. (Araliaceae) [35] Oleanane-type Cytotoxicity

Weigela Thunb. (Caprifoliaceae) [36,45] Oleanane-type Cytotoxicity, antifungal activity,
antibacterial activity

Anagallis monelli ssp. linifolia (L.) Maire
(Primulaceae) [46] Oleanane-type: monellosides

Cytotoxicity, antibacterial, antifungal,
antioxidant, antihyperglycemic and

antipruritic activity
Lepisanthes rubiginosa Roxb.

(Sapindaceae) [47] Oleanane-type Antibacterial activity

Xanthoceras sorbifolium Bunge
(Sapindaceae) [50] Oleanane-type: xanthoceraside Major depressive disorders treatment

Platycodon grandiflorus Jacq.
(Campanulaceae) [52] Oleanane-type: platycosides Dietary supplements absorbed

into the bloodstream

Glycyrrhiza uralensis Fisch. (Fabaceae) [53] a Oleanane-type: glycyrrhizic acid,
glycyrrhetinic acid glucuronide

Anti-inflammatory activity, liver protection,
immune regulation, antiviral activity,

anticancer activity
Quillaja saponaria Molina

(Quillajaceae) [67,68] Oleanane-type Saponin adjuvants, carbohydrate antigen

Aster tataricus L. f. (Asteraceae) [70,71] Oleanane-type Anti-inflammatory activity
Aralia dasyphylla Miq. (Araliaceae) [35] Ursane-type Cytotoxicity

Ilex pubescens Hook. & Arn.
(Aquifoliaceae) [73] Ursane-type Regulation of lipid level, improving blood

biochemical function
Acanthopanax spp. (Eleutherococcus) Decne. &

Planch. (Araliaceae) [74]
Lupane-type: acankoreagenin,
impressic acid, acankoreosides

Antinociceptive activity,
anti-inflammatory activity

Schefflera spp. J.R. Forst. & G. Forst.
(Araliaceae) [74]

Lupane-type: acankoreagenin,
impressic acid, acankoreosides

Antinociceptive activity,
anti-inflammatory activity

a Discovery [53] mentioned in this review paper, because glycyrrhizic acid and glycyrrhetinic acid β-D-glucuronide
are known from many plant sources.

Based on the number of original and review papers targeting plant triterpenoids
that have been published in the most recent 5 years, a clear conclusion can be postulated
on the increasing importance of sustainable resources of future therapeutics. A broad
scale of human diseases that may be successfully treated by the semisynthetic derivatives
of triterpenoids has been ever increasing. Several of the most successful triterpenoid
derivatives have already been in practical use. Among them, the betulinic acid-based
anti-HIV agent, bevirimat, should be highlighted [78,79]. It is expected that the number of
practically successful triterpenoid derivatives will gradually increase. Our recent results
dealing with different derivatives of plant triterpenoids, not including their glycoconjugates,
displayed the high potential of these compounds as antimicrobial, antiviral, and cytotoxic
agents [26–28]. Some of them showed their capability of acting as chemodynamic and
photodynamic therapy agents [80,81] or coordinating metal ions, such as radioisotopic
64Cu(II) salts, for potential positron emission tomography (PET) imaging and radiotherapy
in combination with cytotoxicity [27]. Due to the important potential of plant triterpenoids
and their semisynthetic derivatives, they have been intensively studied as functional
nanoscale assemblies with an impact in the areas of nanomedicine and drug delivery, but
also in dye removal or catalysis in different chemical processes, and this importance will be
even increasing in the forthcoming time [28].
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