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Abstract: Over the last few years, the development of fluorescent probes has received considerable
attention. Fluorescence signaling allows noninvasive and harmless real-time imaging with great
spectral resolution in living objects, which is extremely useful for modern biomedical applications.
This review presents the basic photophysical principles and strategies for the rational design of
fluorescent probes as visualization agents in medical diagnosis and drug delivery systems. Common
photophysical phenomena, such as Intramolecular Charge Transfer (ICT), Twisted Intramolecular
Charge Transfer (TICT), Photoinduced Electron Transfer (PET), Excited-State Intramolecular Proton
Transfer (ESIPT), Fluorescent Resonance Energy Transfer (FRET), and Aggregation-Induced Emission
(AIE), are described as platforms for fluorescence sensing and imaging in vivo and in vitro. The
presented examples are focused on the visualization of pH, biologically important cations and
anions, reactive oxygen species (ROS), viscosity, biomolecules, and enzymes that find application
for diagnostic purposes. The general strategies regarding fluorescence probes as molecular logic
devices and fluorescence–drug conjugates for theranostic and drug delivery systems are discussed.
This work could be of help for researchers working in the field of fluorescence sensing compounds,
molecular logic gates, and drug delivery.

Keywords: fluorescent probes; drug delivery; cell imaging; fluorescent diagnostic and therapy;
molecular logic gates; fluorescent–drug conjugates; theranostics

1. Introduction

Due to their importance in chemical laboratories, healthcare, industry, food production,
biotechnological processes, and environmental and life sciences, a great deal of attention
is currently being paid to the design and synthesis of new materials with chemosensing
properties [1–6]. The recent progress in this field has resulted in a large number of different
architectures. Among them, fluorescent probes have been the subject of major research
interest [7–16]. Mainly, their attractiveness lies in their fluorescence signaling output, which
provides a rapid response time, high efficiency and sensitivity, great spatial resolution, and
cheap and affordable equipment suitable for field analysis. Moreover, owing to their smaller
size, together with their safe and indestructible signaling nature, they are excellent tools in
diagnostic medicine and real-time bioimaging [17–21]. Fluorescent probes have also found
application in the real-time monitoring of drug delivery systems, which provide important
information on drug transport and drug distribution in the body, and thereby increasing
the quality of medical treatment [22–24]. In the last decade, the area of fluorescence sensing
compounds was extended toward more complex molecular logic gates containing multiple
recognition units with multiple signaling outputs [25–27]. Molecular logic gates are intelli-
gent sensory molecules that analyze more than one analyte by mimicking electronic logical
elements in the computer. These molecules are able to perform different sensor functions
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simultaneously and can calculate autonomously a composite result, which is why some
scientists define them as molecular-level labs [28]. The information processing by Boolean
Logic from a molecular device can be particularly useful for the rapid screening of medical
conditions in which the analysis is not performed by a physician, but by the molecular
device itself. Such molecular devices can save time for doctors and are crucial when health
services are in extreme conditions, for example, in epidemics or bioterrorism [29,30].

The recent advances in the design and synthesis of fluorescent probes for diagnostic
purposes and monitoring in drug delivery systems are discussed in several reviews [31–35].
Generally, they have been studied from a diagnostic point of view or described as complex
nanoparticles. In this short review, we focus our attention on the main photophysical mecha-
nisms and approaches that found application in the rational design of small fluorescent probes
with high potential in the diagnostic of medical conditions and drug delivery. The photophysi-
cal phenomena Intramolecular Charge Transfer (ICT), Twisted Intramolecular Charge Transfer
(TICT), Photoinduced Electron Transfer (PET), Excited-State Intramolecular Proton Transfer (ES-
IPT), Fluorescent Resonance Energy Transfer (FRET), and Aggregation-Induced Emission (AIE)
are well described as the most popular basis for fluorescence sensing and imaging (Scheme 1).
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Scheme 1. Schematic representation of the structure of the review.

The basic strategies in fluorescent probes for in vivo and in vitro visualization are
illustrated with examples for the detection of pH, biologically important cations and anions,
reactive oxygen species (ROS), viscosity, biomolecules, and enzymes, which currently are
very attractive for diagnostic purposes (Alzheimer’s disease, cancer, and diabetes). In
addition, an overview of recent achievements in the development of fluorescence probes
as molecular logic devices with biomedical application was provided. Moreover, the
implementation of the above photophysical phenomena in fluorescence–drug conjugates
for theranostic and drug delivery systems is revealed. The structure of the present review
can be summarized according to Scheme 1.

2. Fluorescent Probes Based on Intramolecular Charge Transfer (ICT)

The phenomenon, intramolecular charge transfer (ICT), occurs after light absorption
of fluorophoric systems in which an electron-donating unit was directly conjugated with an
electron-withdrawing one [36,37]. During excitation, such systems undergo donor–acceptor
charge transfer from the donor to acceptor that results in “charge-polarized” excited states
with a positively charged electron-donor site. The subsequent change in the dipole moment
leads to a Stokes shift, which is strongly microenvironmentally dependable. This makes
ICT systems a very suitable platform for sensing designing, as the presence of a charged
guest nearby the donor or acceptor moiety changes the ICT efficiency and, respectively,
the fluorophore photophysical properties. For example, when a cation interacts with the
electron-donor group in an ICT system, it reduces the electron-donating ability of the donor.
Due to the resulting reduction in conjugation, a blue shifting of the absorption is predicted
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together with a reduction in the extinction coefficient (Figure 1, left side). Interaction of the
cation with the ICT acceptor group results in the opposite effect owing to the enhanced
electron-withdrawing character of the acceptor moiety; thus, the absorption spectrum is
red-shifted, and the molar absorption coefficient increases (Figure 1, right side). In principle,
the fluorescence spectra are shifted in the same direction as the corresponding absorption
spectra. Additionally, changes in the quantum yields and lifetimes are also expected, as the
observed effects strongly depend on the charge and the size of the cation.
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Figure 1. ICT probe based on cation interaction with an electron-donating or electron-withdrawing group.

A typical ICT-based probe for metal cations is compound 1, which possesses a chelate
unit NS2O2 for the highly sensitive and selective detection of Hg2+ ions (Figure 2). This sys-
tem showed a fluorescent signal at 728 nm due to the strong ICT occurring from the electron-
donating nitrogen in the chelate moiety to the chromenylium-cyanine fluorophore [38].
In presence of Hg2+, the fluorescence of 1 was blue-shifted to 663 nm due to the lowered
ICT efficiency as a result of the Hg2+ chelating process in which the lone electron pair on
the nitrogen participated. This observation has several advantages for the monitoring of
living organisms and it was successfully applied for real-time detection of Hg2+ in living
cells. First, probe 1 emitted in a near-infrared (NIR) region where the biomolecules have
weak light absorption and fluorescence that reduce background interference such as auto-
fluorescence, scattering, and absorption by biomolecules. In addition, the NIR has a good
penetrating ability, allowing deep penetration in living systems. Moreover, the resulting
fluorescence changes at 728 nm and 663 nm in 1 allow a ratiometric signaling output. In
ratiometric methods, the presence of an analyte is quantified by the ratio of fluorescent
intensities of two different fluorescent bands, which provides a self-calibration effect and
built-in correction for environmental effects including biomolecules. Additionally, probe 1
showed good cell permeability and low toxicity.
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Figure 2. Fluorescence recognition mechanism and reversibility of probe 1 with Hg2+ ion. Fluo-
rescence image of L929 cells incubated with probe (5 µM) after staining for 30 min (upper panel)
and after incubated with Hg2+ (50 µM) for another 30 min (lower panel). Adapted with permission
from [38]. Copyright (2019) Elsevier.

Intracellular Mg2+ plays important role in physiological processes such as activities of
ion channels in membrane proteins and the regulation of many enzymes. The abnormal con-
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centration of intracellular Mg2+ is associated with renal losses, neurological manifestations,
diabetes, osteoporosis, and coronary heart disease [39–41]. That is why the detection of
intracellular Mg2+ is very attractive from a diagnostic point of view. The 1,8-naphthalimide-
based probe 2 is an interesting example of a fluorescent probe for the selective intracellular
imaging of Mg2+ [42] (Figure 3).
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It is well-known that the light absorption of 1,8-naphthalimide fluorophore results in
a charge transfer interaction between the C-4 positioned substituent and both the electron-
accepting carbonyl groups, whose efficiency strongly depends on the electron-donating
ability of the C-4 substituent [43–45]. Thus, the decreased electron-donating capability of
the hydroxyl group bounded at the C-4 position of 2 after the binding process with Mg2+

reduced the ICT in this probe and resulted in a blue shift in its absorption from 480 to
393 nm. It was found that the changes in the absorption spectra were accompanied with
the appearance of bright green fluorescence that was applied for selective “off-on” Mg2+

sensing purposes. The detection limit of 5.01 × 10−8 M was calculated and a 1:2 complex
ratio between Mg2+ and the probe was determined. The formed complex was identified
and characterized using 1H NMR, 13C NMR, and ESI-MS techniques. Furthermore, probe 2
showed low toxicity and good permeability in living A549 cells.

Zn2+ is another important metal cation whose intracellular detection could be useful
for diagnostic purposes. This ion is involved in pathological processes, such as Alzheimer’s
disease, epilepsy, ischemic stroke, infantile diarrhea, apoptosis, disorder of enzyme reg-
ulation, and neurotransmission. Recently, Ahmed et al. synthesized compound 3 as a
useful ICT-based fluorescent probe for intracellular measurements of Zn2+ [46]. This probe
showed “turn-on” NIR fluorescence emission at 661 nm in the presence of Zn2+, which
the authors explained was due to the increased ICT efficiency in the probe after Zn2+

complexation (Figure 4). The resulting complex was characterized by 1H NMR, 13C NMR,
and HR-MS. The probe showed low toxicity and a good signaling response upon the
intracellular imaging of Zn2+ in MCF-7 living cells.
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rescence image of MCF-7 cells pretreated with probe (10 µM) for 30 min (upper panel) and after
incubated with Zn2+ (100 µM) for 1 h (lower panel). Adapted with permission from [46]. Copyright
(2020) Elsevier.

The discriminative detection of two or more metal cations at the same time could play
an essential role for better diagnostics in medicine and biology. This encouraged Huang
et al. to synthesize probe 4, which was able to coordinate Cu2+ and Hg2+ [47]. Probe 4 was
designed as an ICT-based NIR fluorescence ratiometric probe, which makes it a promising
candidate for real-time imaging in living organisms (Figure 5). This probe has a bright
emission at 730 nm and contains an electron-donating amino group as a metal recognition
unit that takes place in a strong ICT process during excitation. In the presence of Hg2+, the
probe fluorescence was blue-shifted to 673 nm due to the binding of Hg2+ with electron-
donating amines that reduced the ICT efficiency. Based on the observed fluorescent changes,
a ratiometric analysis was constructed, which showed a value of 5.23 in the presence of
Hg2+, and 0.37 in its absence. In addition, this probe was able to coordinate Cu2+ but
it was found that the observed complex was non-fluorescence. Furthermore, the probe
was applied in Hella cells for discriminative fluorescence detection of Hg2+ and Cu2+ ions
in biological systems. The intracellular imaging of Hg2+ showed high emissions at the
window of 640–700 nm and low emissions at NIR in the range of 701–758 nm. The presence
of Cu2+ resulted in no emissions at both fluorescence windows. The simultaneous presence
of Hg2+ and Cu2+ ions led to low emissions at 640–700 nm and no emissions at 701–758 nm.
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Intracellular pH plays a critical role in physiological and pathological processes such
as cell growth and apoptosis, ion transport, homeostasis, and enzymatic activity. Abnormal
pH values are associated with inappropriate cell function in some common disease types
such as cancer and Alzheimer’s. Hence, the monitoring of intracellular pH has attracted
increasing interest.

The illustrated Figure 6 fluorescence compounds 5 and 6 were rationally designed
as probes for measurements of intracellular pHs using a very similar strategy [48,49].
Both systems are ICT fluorophores in which the electron-accepting part is a nitrogen-
containing heterocycle—in 5, it is benzothiazole and in 6, it is benzo[e]indole. In neutral
form, these molecules possess green fluorescence owing to the occurrence of ICT in an
excited state. In acid media, the probes change their green emissions in red fluorescence
due to the protonation of the electron-accepting heterocyclic nitrogen that enhanced its
electron deficiency and ICT efficiency, respectively. The maximal fluorescence intensity in 5
was shifted from 515 to 565 nm. This change was about 10 nm more than the one in 6, where
the fluorescence maximum was shifted from 517 to 555 nm. Based on the observed changes,
a ratiometric analysis was obtained and implemented for pH measurements in living cells.
However, due to the different acidity of both receptors, the 5 and 6 were suitable for pH
determination at different pH windows. Compound 5 showed a pKa value of 6.73 and
fluorescence response from pH 7.5 to pH 6.0, while the pKa of probe 6 was calculated to be
4.98, which makes it useful for pH measurements ranging between 5.5 and 4.6. Due to the
higher acidity, 6 was applied for the detection of pHs in lysosomes, which are known as
acid organelles.
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The condensation of 3-amino-1,2,4-triazole to the C-4 and C-5 position of the 1,8-
naphthalimide fluorophoric system resulted in an interesting architecture suitable for
the ratiometric intracellular imaging of pH [50–52]. The introduced aminotriazole in 1,8-
naphthalimide fluorophore has unusually high acidity compared to other 1,8-naphthalimide
probes and showed a pKa value in the physiological range of about 6.5. Additionally, the
aminotriazole naphthalimides showed increased water solubility, low cytotoxicity, clear
cellular location, and membrane permeability making them an excellent platform for pH
measurements in living cells [50]. In a slightly acid and neutral solution, the condensed
aminotriazolyl-1,8-naphthalimide fluorophore 7 was blue-emitting and showed a fluores-
cence maximum at 440 nm due to the ICT interaction of aromatic amine at C-4 position to
the electron-accepting imide (Figure 7).
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The reversible coordination is not the only approach for interaction between the
probes and analytes. An alternative way is the reactive-based probes in which a selective
chemical reaction between the recognition part in the receptor and the analyte occurs.
The general advantage of the reactive probes is their selectivity that was induced from a
specific reaction with the analyte. A typical example of a reactive ICT probe is presented
in Figure 8. Probe 8 represents a conjugated system containing two electron-accepting
fragments—indole and thiocarbonyl units [53]. The thiocarbonyl was introduced as a
selective Hg2+ receptor moiety due to the thiophilic characteristics of that cation. After
desulfurization in the presence of Hg2+, electron-accepting thiocarbonyl in 8 was replaced
with a strong electron-donating hydroxyl group; thus, an ICT interaction was raised, and a
NIR fluorescent emission at 708 nm was observed. Moreover, it was found that the probe
was biocompatible, organism-permeable, and was used for the detection of intracellular
Hg2+ Cy-PT cells and zebrafish.

Li et al. used the same strategy for the real-time and specific detection of neutrophil
elastase in living cells [54]. Overexpression of neutrophil elastase may degrade some
proteins leading to serious lung diseases such as lung injury, chronic obstructive lung
disease, acute respiratory, and distress syndrome. In addition, neutrophil elastase can
promote tumor growth and metastasis, which indicates lung cancer in tumor tissue [55–58].
Therefore, the detection of neutrophil elastase in living organisms could be used as a critical
biomarker for the diagnosis of lung diseases and lung cancer. Probe 9 was designed as a
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new strategy for the construction of a neutrophil elastase fluorescent probe [54]. It contained
pentafluoropropionyl as a receptor fragment that was bounded to a 4-trifluoromethyl-7-
hydroxyl coumarin fluorophore (Figure 9).
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Figure 9. Construction of NE probe 9 containing hydroxyl fluorophores and self-immolation group.
Adapted with permission from [54]. Copyright (2023) Elsevier.

Due to the lack of donor–acceptor interaction, the ICT process in the probe was not
feasible and its fluorescence emission was not observed. However, in the presence of
neutrophil elastase, the receptor fragment was hydrolyzed to a hydroxyl group and probe
9 was converted to 4-trifluoromethyl-7-hydroxyl coumarin with a strong ICT nature giving
green fluorescence. Due to the use of the pentafluoropropionyl receptor part, the novel
probe 9 showed high selectivity, ultra-high fluorescence enhancement, and a high signal-to-
noise ratio compared to the previously reported probe, containing esters and amides as
recognition units. Furthermore, 9 showed good biocompatibility and low toxicity. Thus, the
probe was successfully applied for the selective real-time detection of neutrophil elastase
(NE) activity in living HeLa, SKOV3, A549, and HepG2 cells, and zebrafish.

The lack of oxygen in tissues is known as hypoxia. With hypoxia stress, excessive reac-
tive oxygen species (ROS) are produced, which results in cell damage and death. In terms
of biological reagents, types of ROS are superoxide anion (O2

−), hydrogen peroxide(H2O2),
lipid peroxides (ROOH), hypochlorous acid (HClO), singlet oxygen (1O2), ozone (O3), and
peroxynitrite (ONOO-), which are constantly used in redox activities of living systems.
Recent research has revealed that cancer cells have approximately ten times higher con-
centrations of ROS compared to normal cells; thus, ROS-responsive probes could be a
promising platform for the discriminative detection of cancer cells over normal cells.

ONOO- is a ROS unit that is produced in living organisms by O2
− and nitric ox-

ide (NO). Its excessive cell generation is associated not only with cancer but also with
many other disorders such as inflammatory diseases, diabetes, sepsis, atherosclerosis,
Alzheimer’s, and other neurodegenerative diseases [59–62]. Huang et al. synthesized
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probe 10, designed for the selective and discriminative detection of hypoxia cells over
normal cells [63]. Probe 10 consisted of the 1,1,1-Trifluoro-4-(4-oxyphenyl)butan-2-one
group as the recognition group and a heptamethine cyanine dye as the NIR fluorescence
reporter. In the presence of ONOO-, this probe was oxidized and released a strong ICT
heptamethine cyanine fluorophore with maximal fluorescence at 630 nm (Figure 10). The
observed detection limit was 9.2 nM. The probe showed low toxicity, great biocompat-
ibility, and was successfully applied to detect hypoxia injury in Cy-CF3, zebrafish, and
hypoxic mice.
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Figure 10. Probe 10 detection mechanism proposed for ONOO. Imaging of LO2 cells treated with
probe 10 (10 µM) for 30 min under hypoxic conditions with 1% O2. Adapted with permission
from [63]. Copyright (2022) Elsevier.

Wang et al. rationally designed probe 11 as an HClO fluorescence sensing compound
for the discriminative detection of cancer cells based on selective ROS reactive interaction
(Figure 11) [64]. In a simulated physiological condition, the probe showed a rapid NIR
fluorescence off–on response (response time: 10 s) toward HClO as an endogenous ROS
species with a detection limit of 2.4 nM. The HClO triggered an efficient oxidation chemical
process of the aldoxime recognition group to nitrile, resulting in an ICT-based fluorophoric
system with maximal emissions placed at 680 nm. Probe 11 showed negligible cytotoxicity,
high sensitivity, and has been applied to discriminate cancerous cells and tissues from
normal ones.
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Figure 11. Proposed reaction mechanism of probe 11 for HClO and Schematic illustration of discrim-
inating cancer cells from normal cells using 11. Fluorescence images of 11-loaded (2 µM, 20 min)
cancer cells and normal cells. Adapted with permission from [64]. Copyright (2021) Elsevier.

Superoxide anion (O2
−) is a ROS unit that produces considerably less than 1-2% of

consumed oxygen molecules in the mitochondrial respiratory chain, and the diffusing
superoxide anion typically is converted to other ROS (such as hydrogen peroxide, perox-
ynitrite, and perhydroxyl radical) in biological systems. An excessive level of superoxide
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anion induced increasing oxidative stress and mitochondrial dysfunction that could be
an indication of diabetes rheumatoid arthritis, heart disease, Alzheimer’s disease, and
cancer [65–70].

This focused attention of Zhang et al. to prepare mitochondria-accessing ratiomet-
ric fluorescent probe 12 capable of detecting selectively superoxide anions [71]. As a
receptor fragment in probe 12, a triphenylphosphonium unit was introduced in which
the diphenylphosphinate part trigged selective oxidation in the presence of superoxide
anions. Because of the oxidation of 12, a green emitting 4-amino-1,8-naphthalimide was
obtained (Figure 12). The green fluorescence was attributed to the enhanced ICT in the
1,8-naphthalimide fluorophore containing strong electron-donating amines instead of a
C-4 carbamate group in the former blue-emitting naphthalimide 12. Using the fluorescent
changes at 475 nm and 540 nm, a ratiometric analysis was constructed and applied for the
detection of mitochondrial superoxide anions as well as inflammatory D magna. The limit
of detection was determined to be 0.370 µM. The cytotoxicity test revealed more than 80%
cell viability, suggesting that the probe can be used safely in living cell imaging.
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with 12. Adapted with permission from [71]. Copyright (2018) American Chemical Society.

Monitoring intracellular selenocysteine (Sec) is of significant interest for studying Sec
metabolism and its changes in disease-relevant concentrations. The 1,8-naphthalimide 13
was prepared as a selective probe for Sec imaging by ratiometric fluorescence response [72].
The 1,8-naphthalimide probe 13 was a blue-emitting ICT system with acrylate moiety at
position C-4 (Figure 13). At physiological conditions, in the presence of selenocysteine, the
probe undergoes hydrolysis to 4-hydroxy-1,8-naphthalimide and changes its initial blue
emission from blue (fluorescence maximum at 420 nm) to green (fluorescence maximum at
546 nm) due to the increased electron ability of C-4 substituent and enhanced ICT process.
Based on the observed changes, a ratiometric analysis with a detection limit of 12 nM
selenocysteine was observed. Furthermore, probe 13 was applied for the high specificity
and selectivity rapid quantification of exogenous and endogenous Sec in living Hela cells.

Tyrosinase is a polyphenolic oxidase enzyme with clinical importance due to its
association with the progress of some diseases such as Parkinson, dopamine neurotoxicity,
schizophrenia, and melanoma cancer [73–75]. This encouraged Sidhu et al. to obtain the
1,8-naphthalimide 14 as an efficient fluorescent ratiometric probe for intracellular imaging
of tyrosinase (Figure 14) [76].
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Figure 14. Tyrosinase detection strategy. Fluorescence images of A375 after 30 min of incubation with
probe 14 (upper panel). Cells exhibit strong blue emissions compared to green channel suggesting that
the probe was not significantly catalyzed by endogenous tyrosinase. After 3 h of incubation (lower
panel), green emissions of A375 enhanced prominently while blue emissions quenched significantly.
Green emissions indicate the endogenous catalysis of probe 14. Adapted with permission from [76].
Copyright (2018) The Royal Society of Chemistry.

The probe was designed as an ICT naphthalimide fluorophore, conjugated with a
3-hydroxybenzyl unit at the C-4 position as a receptor for selective tyrosinase reaction.
Because of the low ICT process in 14, the probe showed blue emissive fluorescence output
at 467 nm. In the presence of tyrosinase at physiological conditions 14 was hydrolyzed to 4-
amino-1,8-naphthalimide containing a strong electron-donating group, which increased the
ICT efficiency and red-shifted the former probes’ emissions to the green region at 535 nm.
It was found that the probe displayed a sensitive ratiometric response to tyrosinase with a
detection limit of 0.2 U mL−1. The MTT analysis showed moderate cytotoxicity—70% cell
viability at 20 µM. In addition, 14 was used to image endogenous tyrosinase in A375 cells
in the blue and green channels of a confocal microscope.

The ICT donor–acceptor–donor mode is an interesting approach for the design of an
NIR probe for bioimaging. An example is illustrated in Figure 15, where two electron-
donating N,N-diethylaniline recognition groups were bonded to a single boron difluoride
bridged azafluvene as the strong electron-withdrawing group in order to obtain NIR
fluorescent probe 15 for Amyloid β-peptide [77]. Amyloid β-peptide (Aβ) aggregation
is a primary biomarker for Alzheimer’s disease; hence, the preparation of a fluorescent
probe for its detection plays an important diagnostic role. It was found that the N,N-
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diethylaniline recognition groups were selectively binding Aβ oligomers and were not
responsive to other biomolecular small molecules. The resulting complex was strongly
sensitive to the Aβ aggregation process due to the environmentally sensing ICT nature of
15 and showed off–on emissions during the agglomeration of Aβ. Probe 15 showed low
cytotoxicity toward HaCat, HeLa, and bEnd.3 cells, and it was used for a brain-imaging
Alzheimer’s disease model mice. The observed results illustrated the great potential of 15
for early in vivo diagnosis of Alzheimer’s disease.
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Figure 15. Fluorescence image of the AD model mice (left panel) and in vitro fluorescence staining of
15 on age-matched Tg mouse (right panel)—APP/PS1 transgenic, male. Adapted with permission
from [77]. Copyright (2022) Elsevier.

3. Fluorescent Probes Based on Twisted Intramolecular Charge Transfer (TICT)

In some cases, the excitation of ICT systems induces an intramolecular rotation in
which the donor and acceptor parts take more stable coplanar conformation in an excited
state. After excitation to the Twisted Intramolecular Charge Transfer (TICT) state, the chro-
mophoric system returns to a ground-state radiative level through red-shifted emissions or
by non-radiative relaxation (Figure 16) [78].
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Figure 16. Twisted intramolecular charge transfer (TICT) dynamics. Upon excitation from the GS,
the LE state equilibrates rapidly with the TICT state after fast charge transfer (GS = ground state;
LE = locally excited state). Adapted with permission from [78]. Copyright (2016) The Royal Society
of Chemistry.

The observed fluorescence properties are environmentally dependent; thus, the TICT
fluorophores are the ideal platform for the construction of fluorescent probes. Notably,
the TICT excited state is strongly solvent-viscosity dependable due to the prevented bond
rotation in more viscous liquids and makes this phenomenon especially valuable for
imaging microenvironmental viscosity in biological objects [79–81].

For example, recently Wei et al. prepared three 1,8-naphthalimides 16a-c bounded
to different nitrogen-containing heterocycles (Figure 17) [82]. These compounds showed
only very weak fluorescence emissions due to non-radiative decay through a twisted
intramolecular charge transfer. The authors found that the probes 16a-c showed well-
pronounced fluorescence emissions at 580–630 nm in a viscose solution such as glycerol due
to the hindered TICT process. The observed fluorescence enhancement from low viscose
methanol to glycerol solution was by about 19 times. Moreover, all of the three probes
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showed low cytotoxicity against Hella cells with a calculated viability higher than 80% at
15 µM concentration, and they were used for imaging the fluctuations of the mitochondrial
viscosity in Hella cells. This makes the synthesized probes a potential tool for the early
diagnosis of mitochondrial-related diseases.
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Figure 17. Synthetic routes of probes 16a-c. Confocal laser fluorescence images of probe 16a in HeLa
cells. Cells incubated with the probe (10 µM) for 20 min (upper panel) and incubated with monensin
(10 µM) for 30 min and probe 16a (10 µM) for another 20 min (lower panel). Adapted with permission
from [82]. Copyright (2021) Elsevier.

Intracellular viscosity is an index affecting physiological processes that affect the
transport, diffusion, and interactions between biomolecules. The abnormal viscosity values
are related to atherosclerosis, hypertension, diabetes, Alzheimer’s disease, and cancer [83].
Wang et al. applied this for highly selective tumor visualization using TICT fluorescent
probe 17 (Figure 18) [84]. Similar to probes 16a-c, compound 17 showed only weak flu-
orescence at 555 nm due to TICT non-emissive deexcitation. However, in glycerol, this
emission was highly enhanced and the observed fluorescence enhancement calculated from
the fluorescent intensities in water and glycerol was more than 200 times. Because the
viscosity in cancer cells is higher than normal, the authors selectively visualized tumors in
mice models. As can be seen in Figure 18, isolated, and incubated in 20 µM of the probe,
solutions of sample heart, liver, spleen, lung, kidney, and tumor are presented, where the
tumor shows significantly higher fluorescence over the organs. Together with these results,
probe 17 showed low toxicity and good biocompatibility, which makes it an excellent tool
for tumor visualization.

Based on the fluorescence properties of NIR TICT probe 18, Zhan et al. developed,
for the first time, a fluorescent method for the early exploration of idiopathic pulmonary
fibrosis through changes in viscosity (Figure 19) [85].

Probe 18 is a TICT probe with low NIR fluorescence at 703 nm, which was enhanced in
a higher viscosity solution and showed fluorescence enhancement 54.4 after transitioning
from water to glycerol solution buffered with PBS buffer. The probe has good water
solubility, NIR fluorescence emission, low toxicity, and great biocompatibility; thus, it was
applied for the monitoring of microviscosity fluctuations in living cells. More importantly,
this probe confirmed that pulmonary fibrosis has a positive correlation with an increase
in viscosity, and it was used for sensitive visualization in the early stage of idiopathic
pulmonary fibrosis in vivo in clinical patient tissue.
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Figure 19. Transformation of probe 18 in monitoring viscosity fluctuation in idiopathic pul-
monary fibrosis. In vivo imaging of bleomycin-induced IPF mice model in 14 days, λEX = 640 nm,
λF = 700 nm. Adapted with permission from [85]. Copyright (2022) Elsevier.

Abnormal intracellular viscosity also causes fatty liver and hyperlipidemia. This fact
was used by Song et al. to prepare a viscosity-sensing probe 19 for the detection of fatty
liver at the organ level (Figure 20) [86]. The TICT nature of this molecule resulted in a
low fluorescence centered at 740 nm, which was enhanced by more than 200 times in
PBS-buffered glycerol compared to the PBS buffer solution. The probe showed very low
toxicity at 30 µM using CCK-8. Moreover, the prevented rotation in this molecule was used
to study mitochondrial viscosity mutations in living mouse fatty liver disease models, and
it was found that it could distinguish fatty liver mice from normal liver mice.

Fluorescent thermometers (thermosensitive fluorescent probes) with near-infrared
(NIR) emission play an important role in the real-time visualization of intracellular tem-
perature with high resolution and the investigation of cellular functions and biochemical
activities. An approach for the construction of thermosensitive fluorescence probes was
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based on the viscosity-sensing TICT probes due to the high dependence of viscosity to-
ward temperature.
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It is well known that the temperature increase resulted in a high flow ability and low
viscosity, respectively. Based on this knowledge, Meng et al. prepared NIR fluorescent
probe 20 (Figure 21) in which an effective TICT process quenched the fluorescence emission
at 680 nm after decreased viscosity as a result of increased temperature [87]. Probe 20
showed low cytotoxicity to Hep-G2 cells through an MTS assay and good biocompati-
bility. In addition, by encapsulating thermosensitive probe 20 and Rhodamine 110 into
an amphiphilic polymer matrix F127, it was applied as excellent and reversible temper-
ature TICT fluorescent sensitive nanoparticles (20RF NPs) that could monitor cellular
temperature change from 25 to 53 ◦C of Hep-G2 cells under photothermal therapy agent
heating process. Thus, it displayed a promising potential for applications in biological
temperature measurements.
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4. Fluorescent Probes Based on Photoinduced Electron Transfer (PET)

The photoinduced electron transfer (PET) process became one of the most popular
approaches for the construction of chemosensing probes, since the works by A.P. de Silva
who developed the “fluorophore–spacer–receptor” model as rational design of fluorescent
sensing systems [88–92]. This model was distinguished by simple construction and easier
and more predictable communication between the receptor (recognition part) and the
fluorophore (signaling part). The system consists of a fluorophore linked to an electron-rich
receptor fragment (usually amino nitrogen). The fluorophore is a photonic transactions site
of excitation and emission, which produces the fluorescence signaling output. The receptor
is responsible for guest complexation and decomplexation. A spacer holds the fluorophore
and receptor close to each other, but in separated conjugated systems. After excitation of the
fluorophore, an electron transfer occurs from the HOMO of the electron-donating receptor
to the low-lying HOMO of the electron-accepting fluorophore. Thus, fluorescence does
not take place. When a cation binds to the recognition moiety, the energy of the HOMO of
the receptor is lowered so that the photoinduced electron transfer cannot happen from the
HOMO of the donor to the fluorophore (Figure 22). This results in a bright fluorescence
emission. In other words, the presence of a guest is signalized with the enhanced quantum
yield of fluorescence, and respectively, fluorescence intensity.
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Figure 22. PET mechanism.

The incorporation of trialkyl amines as PET receptor fragments in common fluo-
rophores such as 1,8-naphthalimide and perylenediimide is a classic platform for the design
of pH-sensitive fluorescent probes. However, the tertiary alkyamino containing PET probes
showed a pKa value of about nine, which makes them inappropriate for the determination
of pH fluctuations in a physiological range [93,94]. An approach to shifting these values
in the physiological range was the use of morpholine or N-methylpiperazine as recep-
tors, which, for instance, in PET probes 21 and 22, resulted in pKa = 6.4 and pKa = 6.3,
respectively (Figure 23) [95,96].
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Additionally, morpholine or N-methylpiperazine increased water solubility, which is
a serious benefit for the needs of modern biomedical applications. This encourages us to
synthesize perylenediimide 23 as an efficient PET-based probe (Figure 24) [97]. Probe 23
showed unusually high water solubility as a perylenediimide derivative and selective PET
off–on fluorescent response toward pH. In aqueous solution, the prevented PET quenching
process in acid media resulted in bright fluorescence at 550 nm as the fluorescent quantum
yield enhanced from 0.003 to 0.11. In addition, the observed pKa value of 6.35 in 23 made it
a suitable probe for pH determination in the physiological range. Probe 23 showed good
cell permeability in L929 cell lines and according to the MTT analysis; it was low cytotoxic.
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Figure 24. Perylene-3,4,9,10-tetracarboxylic diimide-based probe 23. Adapted with permission
from [97]. Copyright (2019) Elsevier.

Gunnlaugsson et al. used the “fluorophore–spacer–receptor” format in compounds
24–26 to obtain fluorescent probes for the visualization of microdamage in bones such as
cracks and scratches [98]. Probes 24–26 possessed phenyliminodiacetate as a receptor unit
that can bind Ca2+ ions selectively and completely quenched the fluorophore emissions.
These effects were applied for the visualization of cracks and scratches on bones that
generated Ca2+ sites on the bone surface capable of binding with the exposed probes 24–26,
leading to a bright fluorescent emission because of the hindered PET. It was found that the
blue-emitting probe 26 was masked by the autofluorescence from the bone matrix, while
the binding of both 24 and 25 gave significant fluorescence arising from the 4-amino-1,8-
naphthalimide fluorophore (Figure 25).
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Figure 25. Structures of PET sensors 24–26. Transverse section of the bone labeled with 24, viewed in
UV epifluorescence (365 nm); yellow arrow shows osteons with its lacunae, Haversian canal, and
canaliculi. Bar = 100 µm. Adapted with permission from [98]. Copyright (2009) Elsevier.

As a reactive dicarbonyl that is primarily produced by glycolysis in living objects,
methylglyoxal (MGO), and its increased levels, is associated with diabetes and related
complications. This encouraged Yang et al. to construct a selective probe for methylgly-
oxal (probe 27) and examine its chemosensing properties [99]. Probe 27 was designed
on PET “fluorophore–spacer–receptor” format using a 1,8-naphthalimide fluorophore and
o-phenylenediamine recognition unit. Due to the effective PET in molecule 27, it was
non-emissive. However, after exposure to methylglyoxal for 2 min, the PET quenching
o-phenylenediamine underwent chemical conversion in which the PET was inhibited. As a
result, the 1,8-naphthalimde quantum yield increased from 0.008 to 0.244. Furthermore,
probe 27 showed good bio-biocompatibility and low cytotoxicity according to MTT to
MCF-7 and HeLa cells. It was also applied to the visualization of methylglyoxal in diabetic
mice tissues (Figure 26).
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Figure 26. The recognition mechanism of 27 towards MGO. Confocal fluorescence images for
monitoring exogenous MGO. HeLa cells were incubated first with 27 (10 mM), then with different
concentrations of MGO—0 µM, (control, upper panel) and 50 µM (lower panel) for 2 h (λEX = 405 nm,
collected at 420–480 nm). Adapted with permission from [99]. Copyright (2018) The Royal Society
of Chemistry.

The great importance of intracellular ROS imaging, which is associated with different
diseases, motivated Huang et al. to design fluorescence probe 28 capable of detecting
hypochlorite as a typical ROS (Figure 27) [100].
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Figure 27. Proposed structural interconversions of probe 28 before and after the addition of ClO−.
Confocal fluorescence images of living L929 cells incubated with 28 (3 µM) for 1 h (upper panel)
and additionally treated with ClO− (9 µM) for 30 min (lower panel). Red channel at 574–638 nm.
λEX = 488 nm, Scar bars 20 µm. Adapted with permission from [100]. Copyright (2017) Elsevier.

This probe was based on fluorine fluorophore and diphenylphosphinobenzoate recog-
nition moiety using the classical PET “fluorophore–spacer–receptor” model. The presence of
diphenylphosphinobenzoate involved a PET process to the fluorine and only a very weak
fluorescence was observed. However, after exposure to hypochlorite, the recognition unit
in 28 was oxidized, the PET was cut off and strong fluorescence emissions appeared. The
probe exhibited cell membrane permeability and was used for imaging of ClO− in living
L929 cells.

As a ROS agent connected to different diseases, peroxynitrite (ONOO−) also is an
object of intracellular PET fluorescent imaging and observation. For example, the presented
in Figure 28 probe 29, comprising ferrocene functionalized carbon dots, was prepared for
the selective determination of peroxynitrite [101]. This nano-system showed a strong red
fluorescence centered at 650 nm. In the presence of peroxynitrite, the peripheral ferrocene
units were oxidized and a PET process from the periphery to the focal carbon dot occurred.
As a result, the former fluorescence was quenched efficiently by 80%. The fluorescence
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intensity of nanoprobe 29 decreased linearly in the range of 4 nM to 0.12 µM ONOO−. The
detection limit was found to be 2.9 nM, and the probe was used for the imaging of ONOO−

in MCF-7 cells. Moreover, the probe showed high biocompatibility and low cytotoxicity
according to an MTT assay against MCF-7 cells (90% cell viability after incubation with
10–50 µg/mL of the probe).
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Figure 28. Principle of the ONOO− nanoprobe 29 based on PET. Confocal fluorescence imaging of
MCF-7 cells incubated with the nanoprobe 29 (50 µg/mL) and then treated with LPS (1 µg/mL) and
IFN-γ (100 ng/mL). The fluorescence emission is collected from 555 to 780 nm. Scale bars 25 µm.
Adapted with permission from [101]. Copyright (2017) Elsevier.

A common strategy for the utilization of fluorescent probes with high selectivity is
based on enzyme-activated fluorogenic probes that “turn-on” the fluorescent signal in the
presence of targeted analytes. Based on this approach, probe 30 was successfully imple-
mented in the detection of bacterial nitroreductase, which could be used as a noninvasive
tool to diagnose bacterial infections [102]. Compound 30 was non-emissive due to the
possible PET from the fluorophore excited state to the electron-poorer nitrobenzyl group,
which played the role of a PET receptor unit. After exposure to nitroreductase, the nitro
group in recognition moiety was reduced to an electron-rich amine making the PET unfea-
sible. Owning to the prevented PET, 30 showed intensive fluorescent emissions at about
665 nm (Figure 29). A 10-fold fluorescent increase and detection limit of 36.9 ng/mL was
obtained. Meanwhile, bacterial pathogens were also imaged. Low cytotoxicity of the probe
was confirmed using MTS assays against HeLa, 293 A, and HepG2.
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Figure 29. Design strategy of probe 30 for the detection of NTR. Confocal images of Methicillin-
resistant Staphylococcus aureus (MRSA) incubated with probe 30 (10 µM) in the absence (left image)
or presence (right image) of NTR inhibitor (dicoumarin—0.1 mM), λEX = 633 nm and λEM = 700 ±
50 nm. Adapted with permission from [102]. Copyright (2019) Elsevier.
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Recently, a bright idea to apply the PET process in a fluorescent probe 31 for the moni-
toring of voltage in neurons and neural signals in real time was reported
(Figure 30) [103,104].
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Figure 30. Mechanisms of fluorescent voltage sensing by fluorescent voltage-sensitive dyes
(VSDs) [103]. Molecular wire PET 31 depends upon the voltage-sensitive electron transfer from
an electron-rich donor (orange) through a membrane-spanning molecular wire (black) to a fluorescent
reporter (green). At hyperpolarizing potentials, the electric field is aligned antiparallel to the direction
of electron transfer, resulting in efficient PET and quenched fluorescence (left). Depolarization aligns
the electric field in the direction of PET, decreasing the rate of electron transfer, and increasing
fluorescence (right).

The nerve signals were changed using rapid potential difference that was set up in a
cell membrane by an imbalance of cations such as Ca2+, Na+, and K+ across a lipid bilayer.
Miller et al. have integrated a PET fluorophore in the lipid bilayer of the neuron as the
fluorophore signaling part stayed outside on the membrane surface while the PET receptor
was placed in the membrane. The fluorescent signaling was off due to the PET process that
could be modulated from the electric field created by the membrane potential interacting
with the electron-donating amino receptor. Thus, the fluorescence intensity of 31 became
low or high depending on the accelerated or hindered PET in the membrane (Figure 30).
As a result, the changes in neural signals were visualized in real time.

5. Fluorescent Probes Based on Excited-State Intramolecular Proton Transfer (ESIPT)

The excited-state intramolecular proton transfer (ESIPT) due to increased acidity/basicity
in an excited state is a typical phenomenon in molecules, which have a proton (hydrogen)-
donating group placed closely to accepting groups [105]. For instance, the hydroxyl hydrogen in
salicylic acid decreased its electron density (generated a positive charge) in the excited state while
the neighbor carboxylic oxygen increased its electron density (generated a negative charge).
This caused a proton translocation from the hydroxyl to the carboxylic group. The general
photophysics of ESIPT is represented in Figure 31.

According to the presented photochemical process, the ESIPT fluorophores are char-
acterized by several advantages for sensing purposes, especially in living systems. First,
ESIPT probes showed unusually high Stokes shift, which reduced the influence of unwanted
self-reabsorption and inner-filter effect. In addition, most ESIPT fluorogenes exhibit dual-
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emissive signaling owing to the excited state Enol* and the excited state Keto* fluorescence,
which allows valuable insights into the bioimaging ratiometric fluorescent measurements.
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Because of ESIPT attractiveness, many fluorescent probes for different analytes have
been synthesized including physiological pH, biological important cations and anions, ROS
agents, and biomolecules [106]. Probe 32 is an example of an ESIPT-based probe for the
measurement of pH fluctuations in living organisms [107]. Compound 32 showed blue
fluorescence, which rapidly shifted into the green region under slightly basic conditions due
to its transition from the enol form to the keto form (Figure 32). This probe was non-toxic
and it was used for real-time mitochondrial imaging of Hella cells. In addition, due to the
ESIP sensing process, it was applied for the detection of Helicobacter pylori. H. Pylori can
survive under harsh acidic conditions in the stomach due to its urease, which catalyzes the
hydrolysis of urea to generate ammonia, which neutralizes the acidic microenvironment
around the pathogen. Thus, Helicobacter pylori was selectively detected from the slightly
pH-responsive probe 32.

An interesting example of the ESIPT probe for the detection of biologically relevant
cations was that prepared by Singh et al., namely, compound 33 [108]. Probe 33 has a
very weak fluorescent emission at 450 nm that was attributed to the possible ESIPT in
this molecule (Figure 33). In the presence of Zn2+ and Mg2+, due to the deprotonation
of 33 in the binding process with these cations, the ESIPT was blocked and new bright
fluorescent emissions were observed. Moreover, the different cations induced a discrim-
inative fluorescent output. After complexation with Zn2+, 33 shed yellow fluorescence
(560 nm), while Mg2+ binding was indicated by green emissions (483 nm). These differ-
ences were explained with the differently arisen chelation-enhanced fluorescence. The
abnormal concentrations of Zn2+ and Mg2+ in the living organisms were related to several
diseases including epilepsy, Alzheimer’s disease, cerebral ischemia, and cancer. That is
why the intracellular imaging of these ions could be an excellent diagnostic tool. Thus, the
chemosensing properties of probe 33 were tested after the incubation of MDA-MB cells with
20 µM of the probe. It was found that 33 showed excellent intracellular response toward
the cations Zn2+ and Mg2+. In addition, the MTT assay indicated very low cytotoxicity.
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Figure 32. ESIPT probe 32. Confocal images of E. coli and H. pylori cells were incubated with 10 µM
T2(OH)B for 30 min. Adapted with permission from [107]. Copyright (2019) Elsevier.
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Figure 33. Sensing mechanism of 33 towards Mg2+ and Zn2+ ions. Adapted with permission
from [108]. Copyright (2023) Elsevier.

Recently, Mahapatra et al. obtained compound 34, which was designed as a ratiometric
fluorescent probe for the determination of F− anions [109]. It is well known that a higher
concentration of fluoride induces apoptosis, causes fluorosis, and leads to nephrotoxic
changes and urolithiasis in humans [110–112]. Hence, the detection of F− anions plays
an important role from a diagnostic point of view. The fluorescent signaling properties
of 34 were based on the ESIPT mechanism. The TBS group protected the hydroxyl group
of 34, and due to the lack of proton, the ESIPT process was switched off. As a result, the
system showed blue fluorescence with maximum emissions at 415 nm. The introduction
of fluoride removed the TBS group through Si-O bond cleavage resulting in a proton-
containing hydroxyl fragment. Thus, the ESIPT process was switched on. The obtained
ESIPT fluorescence of 34 in the presence of F− was centered at 586 nm (Figure 34). This
dual channel response of 34 toward F− was utilized for ratiometric analysis. The detection
limit of the probe for fluoride ions was 10.18 µM. The ability of the probe for intracellular
F− imaging was also tested. The observed results revealed that the probe was low-toxic
against Vero 76 cells, and it could serve as a fluorescent recording of intracellular F−.
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Figure 34. (a) Chemical structure of 34 with the equilibrium between protonated and unprotonated
species and (b) ESIPT process of 34 in the presence of F− [109].

The ESIPT-based probe could be a useful tool for the monitoring of intracellular
ROS units. Jiang et al. designed probe 35 as an efficient fluorescent reporter for ClO− in
living cells [113]. For the detection of ClO−, diacylhydrazine moiety was introduced into
rhodamine, which selectively was oxidized into diimide by ClO− and, further, underwent
a decomposition in water. This reactive recognition mechanism was confirmed using mass
spectroscopic analysis (Figure 35).
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Figure 35. Response mechanism of probe 35 to HOCl. Confocal images of 35 responding to HOCl
in HepG2 cells. HepG2 cells were incubated with 35 (10.0 µM) for 15 min prior to incubating with
HOCl (20 equiv.) for 15 min. Adapted with permission from [113]. Copyright (2022) Elsevier.

The free probe 35 displayed a strong broad fluorescence at 515 nm and a large Stokes
shift of 155 nm, which was assigned to the ESIPT process. In the presence of NaOCl,
an emission at 585 nm with a small Stokes shift (25 nm) was observed, suggesting the
interruption of the ESIPT process. The red-shifted fluorescence was explained by the
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simultaneous ring-opening reaction in this probe. The fluorescence intensity ratio of
emission at 515 nm and 585 nm increased from 0.012 to 5.827, in addition to 0-140 µM
NaOCl. The calculated detection limit was 40 nM. Meanwhile, the probe was successfully
applied for the detection of exogenous and endogenous HOCl in HepG2 cells (Figure 35).
According to the MTT assay against HepG2 cells, 35 showed low cytotoxicity with about
90% viability at 30 µM of the probe.

Formaldehyde is a reactive carbonyl species, which plays an indispensable role in
various biological processes. The abnormally high levels of formaldehyde cause damage to
biomolecules and cellular dysfunctions and are associated with pathological diseases such
as neurodegenerative diseases, diabetes, and even cancer [114,115]. Therefore, currently,
significant attention is paid to the detection and imaging of formaldehyde in biological ob-
jects. Chen et al. were motivated to prepare selective probe 36 for formaldehyde detection,
using a naphthalene core fluorophore and hydrazone responsive unit (Figure 36) [116].
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Figure 36. Structure of probe 36 and its mechanism of the reaction to formaldehyde. Confocal
microscopy images (a–c)—endogenous, exogenous, and inhibitory experiments of formaldehyde in
HeLa cells. Adapted with permission from [116]. Copyright (2019) The Royal Society of Chemistry.

Compound 36 showed low emissive output at 510 nm. However, after a reaction
with formaldehyde, the fluorescence intensity was enhanced 14 times due to the ICT-
activated fluorescence, after the formation of an electron-withdrawing Schiff base instead
of the former electron-donating amine group. This probe was distinguished from other
hydrazone-based formaldehyde probes due to its greatly improved selectivity, which was
attributed to the presence of ESIPT, which lowered the reactivity of the hydrazone moiety.
It was found that 36 exhibited low cytotoxicity (viability over 90% using WTS-1 assay)
and was successfully used to image both endogenously generated and exogenously added
formaldehyde in Hella cells.

6. Fluorescent Probes Based on Fluorescent Resonance Energy Transfer (FRET)

Fluorescent resonance energy transfer (FRET) is another important photophysical
technique that provides a useful fluorescent signal for sensing and imaging application,
especially in biological media [18,117,118]. This process occurs by the nonradioactive,
resonant transfer of energy from an excited donor fluorophore to a closely placed acceptor
molecule in the ground state. It is important to understand that this is not the result of
emissions from the donor being absorbed by the acceptor. FRET is observable due to a
donor–acceptor dipole–dipole interaction. That is why the general requirement for FRET is
the spectral overlap between the fluorescence spectrum of the donor and the absorption
spectrum of the acceptor that generates enough energy for the dipole–dipole coupling.
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Furthermore, it should be pointed out that the FRET process is distance dependent and
requires a very close distance (usually 1–10 nm) between the donor and the acceptor.
Because of FRET, the excitation of donor fluorophore leads to fluorescent emissions of the
acceptor. (Figure 37).
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Figure 37. Specific requirements for the detection of FRET signals. The spectra of donor molecule
emission (Em.) are overlapped with the spectra of acceptor molecule excitation (Ex.). The efficiency
of FRET appears to be the highest when the energy transferred from Em. to Ex. is fallen within 10 nm
in a parallel orientation.

Similar to the ESIPT, the FRET signaling output has some benefits in the construction
of fluorescent probes for biomedical applications. First, FRET-based systems offer long
communication wavelengths (excitation energy and observed fluorescence signal) resulting
in a large pseudo-Stokes shift. Second, on the basis of fluorescence emissions of both
the donor and acceptor, ratiometric measurements can be achieved. As was mentioned
above, the long-wavelength excitation and the ratiometric signaling reduced the problems
of autofluorescence and scattering during fluorescent sensing.

An interesting FRET-based ratiometric probe 37 for imaging of Zn2+ in living or-
ganisms was designed by H. Xu et al. [119]. Probe 37 was constructed by the inte-
gration of blue emissive coumarin derivatives with an intramolecular charge transfer
(ICT) 4-aminooxadiazole fluorophore possessing yellow fluorescence. In order to obtain
the selective-sensing properties of Zn2+, the 4-aminooxadiazole was functionalized with
N,N,N′-tri(pyridin-2-ylmethyl)ethane-1,2-diamine recognition moiety. Due to the effective
spectral overlap between the emission of coumarin and 4-aminooxadiazole absorption,
a FRET process occurred in 37, which showed typical energy-acceptor yellow emissions.
However, the Zn2+ binding decreased the electron-donating ability of the 4-amino group,
which weakened the ICT effect in oxadiazole and blue shifted its absorption. Thus, the for-
mer spectral overlap was strongly reduced and the FRET was interrupted. As a result, the
blue fluorescence of the donor coumarin was observed (Figure 38). Using the fluorescence
changes at 480 nm and 560 nm, a ratiometric analysis for the quantitative determination
of Zn2+ was applied. Probe 37 was cell membrane permeable and showed localization in
the endoplasmic reticulum. It showed low toxicity and was used in 3D ratiometric Zn2+

imaging of zebrafish larvae’s heads. Based on 37, new ratiometric protocols for monitoring
labile Zn2+ homeostasis were realized.
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Figure 38. Chemical structure of 37 and schematic illustration of its ratiometric Zn2+ sensing
mechanism [119].

Copper plays an important role in many physiological processes and its aberrant home-
ostasis in lysosomes leads to serious diseases such as Wilson’s disease, Menkes disease,
Alzheimer’s disease, kidney failure, and liver diseases [120–122]. This motivated Liu et al.
to fabricate probe 38, capable of determining Cu2+ fluctuations in the lysosomes [123]. Com-
pound 38 is a bichromophoric system containing yellow-green emissive 1,8-naphthalimide
and rhodamine fluorophore. For better distribution in the lysosomes, a morpholine linker
was also bonded to 38. In the absence of Cu2+, this probe emitted yellow-green fluorescence
from the 1,8-naphthalimide unit. The authors found that the presence of Cu2+ induced
the hydrolysis of rhodamine from spirolactam to ring-opened xanthene form, which was
confirmed by ESI-MS analysis. The rhodamine spirolactam form is colorless and absorbed
at the UV region. However, the formed ring-opened xanthene has absorption in the spec-
tral region of the yellow-green fluorescence of the 1,8-naphthalimide unit. This overlap
resulted in a FRET process from 1,8-naphthalimide to the rhodamine and a red fluorescence
raised together with a fluorescent quenching of the former 1,8-naphthalimide emissions
(Figure 39). These changes resulted in a ratiometric response toward Cu2+ with a detection
limit of 1.45 nM. Due to the morpholine linker, probe 38 was selectively localized in the
lysosomes of living L929 cells. The performed imaging of L929 cells demonstrated low
toxicity and high sensitivity and selectivity for detection of intracellular Cu2+ by probe 38.
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Figure 39. Sensing mechanism of 38 in the presence of Cu2+. Fluorescence images of L929 cells with
38 (200 nM) of the green channel (λEX = 559 nm; λEM: 581-620 nm) in the absence (upper panel) and
presence (lower panel) of Cu2+ (1 µM). Adapted with permission from [123]. Copyright (2017) The
Royal Society of Chemistry.

Shen et al. used a similar strategy for the synthesis of the ratiometric probe 39 for the
selective determination of HOCl in living cells [124]. In 39, a spirolactam-closed rhodamine
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was coupled to a yellow-green emitting 1,8-naphthalimide through a thiohydrazide recog-
nition spacer. The initial yellow-green fluorescence of the 1,8-naphthalimide at 532 nm in
the presence of HOCl was red-shifted to 582 nm due to the structural transformation of a
rhodamine spirolactam form to ring-opened xanthene, which opened up through-bond
energy transfer (TBET) from the 1,8-naphthalimide unit to the rhodamine (Figure 40). It
should be noted that after the opening of a rhodamine spirolactam form, FRET is already
transformed into TBET. In the case of FRET, a non-conjugated spacer links the donor and
acceptor, while at TBET, the donor and acceptor are directly connected via an electroni-
cally conjugated bond. The obtained ratiometric signaling revealed a linear response at
concentrations of 0–5 µM and a detection limit of 14.5 nM. Meanwhile, 39 was successfully
applied to image intracellular HOCl and targeted lysosomes with low cytotoxicity.
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Figure 40. The proposed mechanism of 39 for sensing HOCl [124].

The higher molecular weight and lower water solubility were the main disadvantages
of the FRET-based multi-chromophoric systems, which seriously reduced their biomedical
applications. In other to prepare a biocompatible and water-soluble fluorescent probe for
ratiometric detection of pH, we have incorporated FRET-based probe 40 into an amphiphilic
copolymer, which, in aqueous medium, self-assembles, affording micelles (Figure 41) [125].
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Figure 41. Self-assembly of the FRET-based probe 40 into water-soluble micelles in an aqueous
solution. Photostability comparison of the stained HeLa cells by using (left panel) pure BODIPY-
labeled actin and (right panel) probe 40 micelles internalized in HeLa cells. Images were taken
after different time intervals of continually intense excitation. Adapted with permission from [125].
Copyright (2013) Elsevier.
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The formed micelles served as nano-carriers for the probe and ensured better transport
and stability in aqueous media. The pH-sensitive fluorescence response of 40 was based
exactly on the same mechanism of probes 38 and 39. In neutral and alkaline media, the
emission of the probe was yellow-green due to the 1,8-naphthalimide fluorescence. In acid
media, a rhodamine spirolactam was protonated to a xanthene form that induced FRET
from the 1,8-naphthalimide unit, whereby red rhodamine fluorescence appeared. As a
result, the fluorescent micelles with the entrapped probe 40 demonstrated a highly pH-
sensitive response in water. They are also internalized into HeLa and HEK cells and showed
low cytotoxicity and good imaging properties. Moreover, in Hella cells, the fluorescence
micelles possessed much better photostability in comparison to the pure organic dye label
such as BODIPY.

As we mentioned above, the FRET process is strongly distance dependable. This
makes the cleavage reaction another important strategy for the design of FRET-based
fluorescence probes. Compound 41 is a typical example of a cleavage reactive probe for
the detection of glutathione (GSH), which operates on FRET communication [126]. The
monitoring of glutathione in living organisms is very attractive from a diagnostic point
of view because its concentration levels in cancer cells are much higher than in normal
cells [127]. Probe 41 was designed as a FRET bichromophoric system consisting of three
modules, a BODIPY-based energy donating fluorophore, an N,N′-dimethylamino-based
BODIPY energy acceptor, and a bio-reducible disulfide linker (Figure 42).
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Figure 42. Schematic illustration of the proposed activation mechanism of probe 41. Confocal images
of HeLa cells after incubation with 41 (10 µM) for 8 h (upper image) and cells pre-treated with GSH
(5 µM) for 2 h, followed by treatment of 41 (10 µM) for another 8 h (lower image). Adapted with
permission from [126]. Copyright (2020) Elsevier.

The disulfide was used as a selective cleavage reactive recognition unit for glutathione.
The energy-accepting BODIPY had weak fluorescence emissions and an absorption at
705 nm, which well overlapped with the highly fluorescent emissions of the energy-
donating BODIPY. As a result, FRET probe 41 was low-emissive. In the presence of glu-
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tathione, the disulfide linker was cut off and both the chromophoric units were separated.
Thus, the FRET process was interrupted and the strong fluorescence of the energy-donating
BODIPY at 698 nm was emitted. The probe was successfully applied for the imaging
of cancer in mice in vivo and in different mice organs ex vivo. Moreover, the released
fluorescent BODIPY was an efficient photodynamic agent with negligible dark toxicity. The
revealed photodynamic antitumor performance at high glutathione concentrations made
this compound an excellent photosensitizer for selective cancer treatment.

7. Fluorescent Probes Based on Aggregation-Induced Emission (AIE)

Aggregation-induced emission (AIE) is a relatively new approach for the rational design
of fluorescence probes, which rapidly became very popular in the present time [128–130].
This phenomenon was observed in 2001 by Tang, who found that some silole derivatives
showed high fluorescent emissions in a solid state and were non-emissive in solutions [130].
Usually, traditional organic fluorophores possess bright emissions only in dilute solutions, while
their quantum yields of fluorescence are largely weakened in high concentrations due to the
aggregation-caused quenching, which results in a non-radiative decay. The opposite results, in
contrast with traditional organic fluorophores, inspired the research interest in the development
of a new concept for the design of fluorescent materials, particularly with practical applications
in the fields of OLED and chemosensing systems. In the past, several mechanistic pathways
including J-aggregate formation, conformational planarization, twisted intramolecular charge
transfer (TICT), excited-state intramolecular proton transfer (ESIPT), and E/Z isomerization
were suggested as the reason for this interesting phenomenon. However, none of them could
explain all of the reported AIE systems [131]. AIE compounds played an increasingly important
role in the diagnosis and treatment of diseases due to their unique fluorescence properties,
biocompatibility, and anti-photobleaching properties [132].

Compound 42 is an AIE probe that exhibited a 112 nm red shifting of its pH-dependent
emission at 503 nm to 615 nm, which is due to the enhanced intramolecular charge transfer
after protonation of the pyridine moiety (Figure 43) [133]. Based on both the changes, probe
42 showed ratiometric measurements with highly selective and reversible pH responses.
Moreover, this probe exhibited lysosome-targeting ability, good biocompatibility, and
excellent photostability. It was successfully applied to map lysosomal pH both in vitro and
in vivo. Furthermore, the lysosomal pH changes were monitored during the caudal fin
regeneration of a fish model (medaka larvae) using the fluorescent signaling properties
of 42. It was observed that during the regeneration, lysosomal acidification is required to
promote autophagic activity for cell debris degradation. These results could be used as a
platform for the visualization of various lysosome-involved biological processes such as
stress and inflammatory responses.
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Figure 43. Structure and the single crystal structure of probe 42. The ratiometric images of the
lysosomal pH distribution of HeLa cells without stimulants (left image) and stimulated with 10
mM acetic acid incubated for 8 min at 37 ◦C (right image). Adapted with permission from [133].
Copyright (2020) The Royal Society of Chemistry.

Lipid droplets are a dynamic organelle that plays a role in some pathological processes,
such as fatty liver, neurodegenerative disease, atherosclerosis, and cancer [134–137].
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The AIE probes are widely used for the effective visualization of lipid droplets [138–140].
For example, Zhang et al. prepared probes 43 and 44 to monitor lipid droplets for the diagnosis
and treatment of atherosclerotic heart diseases (Figure 44) [141]. Both probes (43 and 44) were de-
signed on the acceptor–π–donor–π–acceptor model with malononitriles as the electron-acceptor
groups, thiophene fragment as a π-bridge, and triphenylamine or 4-methoxy triphenylamine
as an electron-donor. Both compounds showed low fluorescence emission in solution or in the
aggregated state. However, in sunflower oil, due to the high viscosity of the oil, the molecular mo-
tion of these probes was limited, which reinforce AIE fluorescence. Furthermore, they exhibited
a large Stokes shift, impressive photophysical properties, great biocompatibility, and excellent
photostability. It was found that they showed the great cellular-imaging ability of lipid droplets
and were used for the visualization of lipid droplets in Hella cells and mice atherosclerosis
models. The obtained results illustrated the great potential of 43 and 44 to provide an option for
the diagnosis of atherosclerosis.
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Figure 44. Illustration of 43 and 44 and their LDs-specific cell and atherosclerosis imaging. Adapted
with permission from [141]. Copyright (2023) Elsevier.

Amyloid fibrosis of protein is abnormal self-assembly and fibrillar aggregation of
proteins, which causes excessive protein deposition in extracellular tissues and organs and
was the origin of Alzheimer’s disease, Parkinson’s disease, and diabetes [142–144].

Mei et al. prepared probes 45–47 to study amyloid fibrosis [145]. As the main protein
model, the authors chose insulin that possessed the determined structure and relatively
low molecular weight. Probes 45–47 were designed as cationic AIE fluorophores based on
different tetraarylethene frameworks (Figure 45).
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They exhibited high water solubility and weak fluorescence in solution due to a
non-radiative decay. However, they emitted strongly in an aggregated state, which was
attributed to the restricted intramolecular motion. Due to the cationic units, the three
probes bonded the negatively charged at pH = 9.0 insulin fibrils through electrostatic
interaction, which also reduced their intramolecular motion and resulted in a higher
fluorescent emission. The detection limits were calculated to be 0.64 nM for 45, 1.86 nM for
46, and 5.33 nM for probe 47. These results showed that compounds 45–47 were promising
AIE-signaling probes for fluorescence detection of amyloid fibrosis.

Recently, we reported a water-soluble nanosized probe as an interesting AIE strat-
egy for intracellular imaging [146]. This probe was obtained after the incorporation of
aggregated 1,8-naphthalimide molecules (48) in poly(acrylic acid)-block-poly(n-butyl acry-
late) micelles. Owing to the AIE emissions of the core 1,8-naphthalimide units, the mi-
celles exhibited green fluorescence at 560 nm. In acid media (pH < 5), however, the
well-defined poly(acrylic acid)-block-poly(n-butyl acrylate) micelles were destabilized and
1,8-naphthalimides 48 were released as single molecules with strong blue emissions at
450 nm (Figure 46). These fluorescence changes were utilized in a ratiometric fluorescent
measurement of pH in water, in a pH window of 3.5-5.5. In addition, the prepared nano-
probe showed high cell permeability and low cytotoxicity against living A549 cells, which
indicates its high potential for future biomedical applications. Furthermore, it was found
that at high concentrations of the micellar probe, most of the cells underwent apoptosis
and only monomers were visualized around the apoptotic cell bodies.
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Figure 46. Preparation of pH-sensitive fluorescent 48-PAA-b-PnBA micelles and internalization
in living A549 cells visualized by fluorescent microscopy. The cells were incubated for 24 h with
fluorescent micelles in different concentrations (0.155 mg/mL—upper image; 0.250 mg/mL—lower
image). Bar scale is 50 µm. Adapted with permission from [146]. Copyright (2021) Elsevier.

8. Molecular Logic Gates

The further miniaturization of semiconductors in the electronic field has reached its
limit. Therefore, the design and construction of molecular systems capable of performing
complex logic functions are now of great scientific interest [147–149]. In semiconductor
devices, the logic gates work using binary logic, where the signals are encoded as zero
and one (low and high current). This process is executable on a molecular level in several
ways, but the most common are based on the optical properties of the molecular switches
encoding the low and high concentrations of the input guest molecules and the output
fluorescent intensities with binary zero and one, respectively. The first proposal to execute
logic operations at the molecular level was made in 1988, but the field was not developed
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until five years later when de Silva [150] experimentally demonstrated the analogy between
molecular switches and logic gates. Thanks to their extremely small size, molecular logic
devices can penetrate and work in living organisms without endangering their lives. This
makes them an integral part of biomechatronics, as they can provide real-time commu-
nication between a living object and a machine or device. Molecular logic devices have
potential for real-world applications such as object coding, image reproduction, intelligent
materials for medical diagnostics, and drug release and activation [151]. Molecular compu-
tation is particularly useful for real-time rapid diagnostics in biology and medicine. Such
molecular devices can save time for doctors and can ensure safe conditions in epidemics
due to analyses performed by the molecular device itself.

The first molecular logic gate was based on anthracene fluorophore 49 that was
bounded to two different PET receptors—a tertiary alkylamine for selective recognition of
protons and a benzo-15-crown-5-ether for selective recognition of the sodium cation [150].
Due to the two possible PET channels from the receptors, this molecule displayed a strong
fluorescence output only when both PET receptors were suppressed. In other words,
compound 49 showed high emissive output in the presence of both protons and sodium
cations as chemical inputs. This mimics the AND logic gate (Figure 47).
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Figure 47. Chemical system 49 performs AND logic operation under the action of two chemical
inputs (H+ and Na+) and the corresponding truth table [150].

The AND logic gate 49 reported by de Silva could be an interesting tool in medicine for
diagnostic and therapeutic applications. Compared to normal tissues, in tumor tissues, the
pH is quite acidic and the concentrations of the intracellular sodium ions are significantly
higher than in normal tissues. Thus, probe 49, whose fluorescence was activated in the
presence of a high concentration of protons and sodium ions, could serve as a platform for
the selective imaging of cancer.

Akkaya et al. successfully applied this strategy for the fabrication of a selective
anticancer agent in photodynamic therapy 50 (Figure 48) [152]. The AND molecular logic
gate 50 was based on the BODIPY photodynamic sensitizer, whose photodynamic activity
consists in blocking protons and sodium ions through the pyridine and benzo-15-crown-5-
ether receptors bidirectional PET processes. In cancer cells, higher concentrations of proton
and sodium ions play the role of chemical inputs, which block both the PET effects, and 50
becomes excellent photodynamic-releasing singlet oxygen as a chemical output. Hence,
probe 50 could serve as a platform for the selective photodynamic treatment of cancer cells.
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Recently, Akkaya reported another unique molecular logic device as a cancer ter-
minator [153]. The molecular automaton 51 was a photodynamic sensitizer that initially
generated singlet oxygen resulting in apoptosis in cancer cells, and then shuts off singlet
oxygen generation and produces fluorescent emissions as a result of its interaction with the
phosphatidylserines of the changed apoptotic cell membranes. This behavior can be inter-
preted as a molecular demultiplexer that used light as an input and phosphatidylserines as
the switch between the two alternative outputs, which were represented as singlet oxygen
and fluorescent emission (Figure 49).

Pharmaceuticals 2023, 16, x FOR PEER REVIEW 35 of 51 
 

 

 

Figure 49. Compound 51 induces apoptosis and then switches to diagnostic mode and fluores-

cently tags apoptotic cells. Adapted with permission from [153]. Copyright (2018) Springer Na-

ture. 

Another logic gate with potential as a diagnosing tool was that reported by Magri et 

al., a three-input AND logic gate 52 [154]. The AND logic gate 52 was based on the recep-

tor1–spacer1–fluorophore–spacer2–receptor2–spacer3–redox donor format according to 

PET principles. Similar to probe 49, it contained tertiary alkilamine receptors and benzo-

15-crown-5-ether receptors for the detection of protons and sodium cations. As a third 

receptor, a ferrocene unit was introduced, whose PET quenching could be interrupted 

after oxidation by Fe3+. Logic gate 52 possesses a high fluorescent output only upon oxi-

dation with Fe3+, protonation with methanesulfonic acid, and complexation with sodium 

ions, simultaneously. This behavior satisfied the three-input AND logic gate (Figure 50). 

This logic gate represents an improved platform for the detection of cancer in comparison 

with 49 using sodium ions and protons as inputs because labile redox-active iron has also 

been attributed to various forms of cancer [155]. 

 

Figure 50. The color-coded design concept of the three-input AND logic gate 52 for Na+ (15-crown-

5 receptor1), pH (tertiary amine receptor2), and pE (ferrocene redox unit) and the corresponding 

truth table [154]. 

Compound 53 was designed as a water-soluble pH-sensitive probe based simultane-

ously on PET and ICT [156]. In alkaline solution, probe 53 exhibited a green color and low 

fluorescence at 520 nm owing to the PET quenching from the tertiary alkylamine receptor 

fragment. At neutral solution, in pH window 6-7, the PET was blocked and 53 showed 

bright yellow-green emissions. In acidic solution, protonation of the imine nitrogen (C=N) 

caused fluorescence quenching again and changed the probe color to red due to enhanced 

ICT (Figure 51). 

Figure 49. Compound 51 induces apoptosis and then switches to diagnostic mode and fluorescently
tags apoptotic cells. Adapted with permission from [153]. Copyright (2018) Springer Nature.

Another logic gate with potential as a diagnosing tool was that reported by Magri
et al., a three-input AND logic gate 52 [154]. The AND logic gate 52 was based on the
receptor1–spacer1–fluorophore–spacer2–receptor2–spacer3–redox donor format according
to PET principles. Similar to probe 49, it contained tertiary alkilamine receptors and benzo-
15-crown-5-ether receptors for the detection of protons and sodium cations. As a third
receptor, a ferrocene unit was introduced, whose PET quenching could be interrupted after
oxidation by Fe3+. Logic gate 52 possesses a high fluorescent output only upon oxidation
with Fe3+, protonation with methanesulfonic acid, and complexation with sodium ions,
simultaneously. This behavior satisfied the three-input AND logic gate (Figure 50). This
logic gate represents an improved platform for the detection of cancer in comparison with
49 using sodium ions and protons as inputs because labile redox-active iron has also been
attributed to various forms of cancer [155].
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Figure 50. The color-coded design concept of the three-input AND logic gate 52 for Na+ (15-crown-5
receptor1), pH (tertiary amine receptor2), and pE (ferrocene redox unit) and the corresponding truth
table [154].

Compound 53 was designed as a water-soluble pH-sensitive probe based simultane-
ously on PET and ICT [156]. In alkaline solution, probe 53 exhibited a green color and low
fluorescence at 520 nm owing to the PET quenching from the tertiary alkylamine receptor
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fragment. At neutral solution, in pH window 6–7, the PET was blocked and 53 showed
bright yellow-green emissions. In acidic solution, protonation of the imine nitrogen (C=N)
caused fluorescence quenching again and changed the probe color to red due to enhanced
ICT (Figure 51).

Pharmaceuticals 2023, 16, x FOR PEER REVIEW 36 of 51 
 

 

 

Figure 51. Photophysical behavior of probe 53 as a function of pH and truth table for operation of 

53-based digital comparator [156]. 

Starting from neutral media and using H+ and OH- as chemical inputs, the monitoring 

of fluorescence and red color as outputs gave rise to a magnitude digital comparator based 

on probe 53. The magnitude digital comparator is a combinational logic circuit, whose 

function is to compare two binary numbers. When both inputs were equal (H+ = OH-), the 

output fluorescence is one. When adding the acid, i.e., H+> OH-, the output red color was 

one. The addition of base, i.e., H+< OH-, resulted in zero for both inputs (Figure 51). Mo-

lecular magnitude digital comparators can be a very helpful tool for diagnostics because 

they show in which direction the abnormal analyte concentrations were placed—the 

higher concentrations were related to certain diseases, while the lower concentrations 

were related to others. Moreover, 53 could be of particular interest because it compared 

pH levels to the physiological pH. 

9. Fluorescent–Drug Conjugates for Diagnostic and Therapy 

Cancer is one of the leading causes of death worldwide. For this reason, major bio-

medical science efforts are focused on increasing the effectiveness of anticancer therapies. 

Promising in this direction are two scientific areas under active investigation—advanced 

chemotherapy and targeted drug delivery. It is only in the last ten years that the idea of 

combining these within a multifunctional “theranostics” system, combining diagnostic 

and therapeutic capabilities, has emerged and developed, showing promising results. 

Theranostic agents are capable of delivering, and subsequently releasing, drug molecules 

into target tissues and monitoring therapeutic outcomes in real-time. This intelligent form 

of “all-in-one“ treatment, aims to allow a multifold higher concentration of the imaging 

agent and/or drug to be achieved in the areas of interest, which strongly influences both 

the diagnostic potential and the therapeutic effect and ensures the destruction of tumors 

without affecting healthy tissues and organs, at the right time, with the right dose. Its main 

advantages over classical methods of diagnosing or treating tumors are the real-time de-

tection of cancer-associated biomarkers, reduction in the side effects of chemotherapeutic 

agents, due to their poor pharmacokinetic properties and non-specific distribution in the 

body, and minimizing the likelihood of overtreatment. 

Figure 51. Photophysical behavior of probe 53 as a function of pH and truth table for operation of
53-based digital comparator [156].

Starting from neutral media and using H+ and OH− as chemical inputs, the monitoring
of fluorescence and red color as outputs gave rise to a magnitude digital comparator based
on probe 53. The magnitude digital comparator is a combinational logic circuit, whose
function is to compare two binary numbers. When both inputs were equal (H+ = OH−),
the output fluorescence is one. When adding the acid, i.e., H+ > OH−, the output red color
was one. The addition of base, i.e., H+ < OH−, resulted in zero for both inputs (Figure 51).
Molecular magnitude digital comparators can be a very helpful tool for diagnostics because
they show in which direction the abnormal analyte concentrations were placed—the higher
concentrations were related to certain diseases, while the lower concentrations were related
to others. Moreover, 53 could be of particular interest because it compared pH levels to the
physiological pH.

9. Fluorescent–Drug Conjugates for Diagnostic and Therapy

Cancer is one of the leading causes of death worldwide. For this reason, major
biomedical science efforts are focused on increasing the effectiveness of anticancer therapies.
Promising in this direction are two scientific areas under active investigation—advanced
chemotherapy and targeted drug delivery. It is only in the last ten years that the idea of
combining these within a multifunctional “theranostics” system, combining diagnostic
and therapeutic capabilities, has emerged and developed, showing promising results.
Theranostic agents are capable of delivering, and subsequently releasing, drug molecules
into target tissues and monitoring therapeutic outcomes in real-time. This intelligent form
of “all-in-one“ treatment, aims to allow a multifold higher concentration of the imaging
agent and/or drug to be achieved in the areas of interest, which strongly influences both
the diagnostic potential and the therapeutic effect and ensures the destruction of tumors
without affecting healthy tissues and organs, at the right time, with the right dose. Its
main advantages over classical methods of diagnosing or treating tumors are the real-time
detection of cancer-associated biomarkers, reduction in the side effects of chemotherapeutic
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agents, due to their poor pharmacokinetic properties and non-specific distribution in the
body, and minimizing the likelihood of overtreatment.

Theranostic agents are macromolecular conjugates including a covalently bonded
antitumor drug, imaging marker, and targeting component. As targeting agents use high-
affinity molecules, such as antibodies, peptides or peptide fragments, aptamers, etc., their
role is to target theranostics to specific molecular targets present in cancer cells. The
imaging agents are needed to identify and locate the tumor before treatment, provide
imaging information about the delivery and distribution of the theranostic platform in
the tumor, and obtain feedback on the therapeutic effect after treatment [157]. Among
the imaging agents, fluorescent compounds provide promising opportunities to elucidate
the drug delivery pathway and intracellular release of the drug molecule due to their
non-invasiveness, radiation-free, high sensitivity, and real-time monitoring [23]. The recent
advances in the design and synthesis of drug conjugates for fluorescent monitoring in drug
delivery and tumor therapy are discussed in several reviews [22–24,157,158].

In drug-delivery systems, the drug is bound to a fluorescent molecule by means of a
non-degradable linkage in a drug-fluorescent dye conjugate (non-cleavable conjugates) or
with a biodegradable linker to form cleavable conjugates (Figure 52). Compared to the first
group of conjugates, which do not degrade in biological conditions—neither upon transport
in the bloodstream nor while being delivered in target or normal tissues, the cleavable
conjugates significantly change their spectral properties when the linker is ruptured, and
thus the signal drug is released. When the fluorescent dye is bound to the drug, it exists
in a non-fluorescent “off” state, whereas when the drug is released, the dye generates a
fluorescent signal and switches to a fluorescent “on” form [23].
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cleavable conjugates; (B) cleavable conjugates; (C) Design principle of fluorogenic and release-based
cleavable conjugates [24].

Typical examples of non-cleavable fluorescent-drug delivery systems are heptamethine
cyanine dye (HMCD)-drug conjugates [159]. The development of non-invasive and effective
technologies for imaging tumors based on HMCDs began more than a decade ago with the
work of Yang et al., who reported that the heptamethine cyanine dyes 54 and 55 (Figure 53),
with near-infrared fluorescence emission profiles, can detect tumors at metastatic sites and
cancer cells in biological fluids, without uptake and retention by normal cells [160].
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In this regard, Wu and colleagues synthesized the conjugate 56 (Figure 54), by cova-
lently linking gemcitabine to the carboxyl group of the dye and explored its potential for
the detection and treatment of brain tumor xenografts and prostate tumor metastasized in
mouse brain [161].
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This conjugation with an appropriate modification of one side chain of the heptame-
thine carbocyanine dye did not change the electronic properties of the aromatic backbones
in order to maintain the fluorescence and tumor-specific targeting properties. On the other
hand, the conjugation of gemcitabine at the 4-(N)-amino group in the pyrimidine ring
via amide bond has emerged as one of the most versatile methods for producing gemc-
itabine prodrugs without compromising drug activity [162]. The 56 conjugate penetrates
the blood–brain barrier and blood–tumor barrier and increases the bioavailability of the
drug in the tumor. Ex vivo NIR imaging has confirmed significantly increased retention
of the conjugate in mice brains relative to other organs with an increase of up to eightfold
in signal intensity. Furthermore, treatment with it has resulted in significantly reduced
growth of intracranial U87 tumors in mice.

Conjugates 57–59 (Figure 55), obtained by the nucleophilic substitution of the meso-Cl
atom in the molecule of four HMCDs with gemcitabine, are localized in glioblastoma tumor
cells, have absorption maxima in the NIR region, similar to the parent dyes, and show a
similar therapeutic effect to gemcitabine but at one-third the molar dose [163]. It is easily
metabolized to gemcitabine and a modified HMCD intermediate within 3 h, with an in vivo
half-life of only 1 h. This suggests that meso-Cl conjugates are cleared from the tumor
faster than their meso-Cl intact counterparts because they cannot form covalent adducts
with albumin.
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The meso-Cl conjugate 60 (Figure 56) showed 100-fold enhanced cytotoxicity over
the parent anaplastic lymphoma kinase inhibitor [164]. This improvement is even more
pronounced (492-fold) when the above conjugate is combined with temozolomide—a
standard drug for the treatment of glioblastoma.
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Choi and co-workers [165] synthesized a new drug–dye conjugate 61 (Figure 56),
which is a combination of the poly ADP ribose polymerase (PARP) inhibitor rucaparib and
heptamethine cyanine dye 60. The resulting compound demonstrated strong cytotoxic
activity with nanomolar potency in three different patient-derived glioblastoma cell lines.
The observed potency is at least 780-fold higher than the modified rucaparib. The potency
of the conjugate was positively influenced by the addition of temozolomide; although,
temozolomide itself did not have any effect in reducing the cell number due to the inherited
resistance of these cell lines to temozolomide treatment.

Kong Y. co-workers have developed disulfide-based fluorescent-drug conjugate 62
by conjugating on NIR fluorescent molecule DCM-NH2, glutathione (GSH)-activatable
disulfide linker, and Combretastatin A-4 [166]. The conjugate has no NIR emissions. This
is due to the loss of the electron-donating ability of the amine group of DCM-NH2 when
attached to the linker. However, the disulfide bond in the conjugate is rapidly cleaved by
GSH, which is relatively abundant in MDA-MB-231 cancer cells, leading to the release of
free Combretastatin A-4, along with DCM-NH2 that emitted a NIR fluorescence emission
at 650 nm (Figure 57).
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The first NIR fluorescence-based prodrug of podophyllotoxin (PPT) 63 is a promising
theranostic agent for treating and monitoring the progress of cancer therapy with high effi-
cacy and reduced adverse effects, in which both the NIR fluorescence of dicyanomethylene-
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4H-pyran (DCM-NH2) and the cytotoxicity of drug molecule PPT are quenched when
covalently connected [167]. The endogenic GSH induces 63 to generate PPT and DCM-
NH2, resulting in enhanced NIR fluorescence in living cells. Compound 63 showed much
lower cytotoxicity to the 293T cells compared to the PPT because of its low concentration of
intracellular GSH. By encapsulating 63 in the hydrophobic part of biodegradable copolymer
1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000]
(mPEG-DSPE) and the assembled mPEGDSPE/63 micelles acquired aqueous solubility and
tumor-targeting ability (Figure 58).
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Figure 58. PPT release mechanism of the activatable prodrug by treatment of GSH. In vivo imaging of
nude mice bearing tumor after intravenous injection of (A) 63 (1 mg/kg PPT) and (B) mPEG-DSPE/63
(1 mg/kg PPT) at various time points (0.5, 1, 2, 6, and 24 h). Ex vivo fluorescence images of the
different organs of mice, including kidney, lung, spleen, liver, heart, and tumor, which were sacrificed
at 24 h post-injection with (C) 63 and (D) mPEG-DSPE/63. Adapted with permission from [167].
Copyright (2017) American Chemical Society.

Prodrug 64 of camptothecin (CPT) linked to a cyanine dye via a disulfide bond exhibits
a NIR fluorescence emission feature at 825 nm [168]. The cleavage of the disulfide bond
in 64 by endogenous GSH activates the CPT and induces a fluorescence shift to 650 nm,
thereby providing dual fluorescent channels to real-time track the prodrug biodistribution
and activation in vivo (Figure 59). Through this dual-channel NIR fluorescence, bioimaging
can overcome the “blind spot” in the metabolic kinetics of the prodrugs in a particular
organ or tissue (Figure 60) [168].

Hypoxia, a state of poor oxygen supply to cells (with O2 levels <0.1 mmHg), is a
common feature of solid tumors, which is associated with disease progression as well
as resistance to radiotherapy and chemotherapy, and is one of the main targets in the
development of new antitumor drugs and theranostics [169,170].

A reduction in the number of compounds containing azo bonds, nitroaromatic hetero-
cyclics (nitrobenzyl, nitrofuran, imidazole, etc.), N-oxides, and quinones by overexpressed
enzymes (nitroreductases, oxidoreductases, and flavoproteins) in the tumor hypoxia envi-
ronment can be used to disclose the active form of a prodrug, hence providing a chemother-
apeutic effect [158]. Accordingly, azo bonds, nitroaromatic, nitroheteroaromatic, and
quinonic units all can consider hypoxia-sensitive linkers [24,159].
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Figure 60. Cellular uptake and intracellular trafficking of prodrugs 64 (Cy-S-CPT) in BCap-37 cells:
flow cytometry analysis of the cellular uptake and activation for 64 (A,B) with and without 2.5 mM
GSH, and images of BCap-37 cells cultured with 64 with (C) or without (D) GSH for 2 h. Red
signal indicates the fluorescence from cyanine dye (λEX = 530 nm, λEM = 650 nm) representing the
prodrug activation by GSH. Adapted with permission from [168]. Copyright (2016) The Royal Society
of Chemistry.

Kumar R. et al. developed an antitumor theranostic agent 65, bearing biotin (as
a tumor-targeting unit), and the fluorescent anticancer drug SN38, which is activated
in hypoxic conditions and showed high therapeutic activity and enhanced fluorescence
emission in A549 and HeLa cells and spheroids, which exhibit high expression levels
of biotin receptors [171]. The elevated nitroreductase (NRD) activity in the tumor cells
under hypoxic conditions served to reduce the nitrobenzyl group in the conjugate to the
corresponding aniline derivative, which is inherently unstable and releases the active form
of SN38 as a result of an electronic rearrangement (Figure 61).

In another study, the theranostic 66 embodies a diazo motif as a hypoxia-responsive
cleavable group. When the azo linker is cleaved under hypoxia, a chromophore (66-NH2)
is generated with red-shifted absorption and the active drug nitrogen mustard (a classic
alkylating agent) is released as well. 66-NH2 shows prominent absorption at around
680 nm and strong fluorescence at about 710 nm, which makes it an ideal contrast agent for
detecting and imaging tumor hypoxia both fluorescently and optoacoustically. Molecule
66, encapsulated into liposomes with particle sizes in the range of 60 ≈ 100 nm, ensures
permeability and a retention effect. For example, for the mouse treated with Lipo-66-NH2,
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the fluorescence signal appeared in almost the whole body but mainly in the liver and
the tumor site, at 24 h post-injection. In contrast, for the mice treated with the molecular
fluorophore 66-NH2, the fluorescence mainly resided in the kidneys and was cleared out of
the body more quickly (Figure 62) [172].
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Figure 62. Illustration of the response of 66 toward hypoxia in tumor-bearing mice model. Typical
fluorescence images of HepG2 xenograft tumor-bearing mice upon intravenous injection of 66-NH2

(in PBS containing 1 % DMSO), Lipo-66 (in PBS), and Lipo-66-NH2 (in PBS) for 4 h and 24 h. Adapted
with permission from [172]. Copyright (2019) Ivyspring International Publisher.

A distinctive cancer feature is the lower extracellular pH in the cancer tissues
(pH ≈ 6.6–5) compared to the extracellular pH in normal tissues (pH ≈ 7.4), and this
hallmark is widely used for the development of acid-labile theranostic systems. Typically,
these agents are designed to be readily hydrolyzed in acidic tumor environments to furnish
active optical signals and release the drug [159].

Recently, Zhang C. and co-workers constructed a pH-responsive drug delivery system
67 based on a conjugated polymer for effective synergistic chemo-/PDT antitumor therapy
(Figure 63) [173].
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Figure 63. Schematic diagram of pH-responsive drug release and the mechanism of synergistic
chemo-/PDT antitumor therapy. Adapted with permission from [173]. Copyright (2023) MDPI.

The anticancer hydrophobic drug doxorubicin (DOX), is covalently attached to the
side chain of the water-soluble polymer poly(fluorene-co-ethynylene) (PFE) via the acid-
sensitive acylhydrazone bond in conjugate 67. The fluorescence of the conjugated PEE is
effectively quenched by the energy/electron transfer (ET) between DOX and the polymer.
In addition, the amphiphilic polymer skeleton as the drug delivery vehicle contributes to
the uptake of the hydrophobic drug by cancer cells. The acidic microenvironment of cancer
cells ensures the effective drug release induced by the breakage of the acylhydrazone bond,
which results in the fluorescence recovery of the conjugated polymer, contributing to the
monitoring of the drug release process. The cytotoxicity of conjugate 67 against MCF-7
cells under white-light irradiation is significantly higher than that of light-irradiated free
DOX at the same concentrations, proving the excellent synergistic chemo-/PDT therapeutic
effect of 67.

Jang et al. proposed the phototheranostic small molecule 68 (meso-carboxylate-
BODIPY—chlorambucil), which is chemically stable under assay conditions [174]. Upon
light activation of the conjugate in water, both the drug molecule and the dye are re-
leased, which leads to an increase in luminescence by about 1250 times; no toxic nitroso
photoproducts products are formed in this process (Figure 64).

Here, we have briefly discussed recent developments of fluorophore–drug conjugates
for use in cancer therapy. Fluorescent imaging in theranostics gives new insights into cancer
therapy at cellular and molecular levels because it illuminates pathways of drug transport,
distribution, and accumulation.
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10. Conclusions and Perspectives

Currently, significant progress has been made in the development of fluorescent probes
for in vitro and in vivo real-time detection and the study of different diseases. Despite the
exciting progress in this field, there are still some unresolved challenges to overcome. Most
works have carefully examined the toxicity of probes in vitro, but safety assessment on
long-term accumulation and toxicity upon in vivo applications is lacking. Furthermore, a
lot of the reported probes are insoluble in water and require the use of organic solvents,
which increased their toxicity. That is why the design of highly water-soluble probes is very
significant for biomedical applications. In diagnostic studies, the analyte-related output
signals, dependent on the optical properties of the probes, are vital for the diagnosis of
diseases. However, most of the reported fluorescent probes absorb and emit in the visible
or NIR I light region. This limits their utility in terms of the in-depth in vivo studying
of organ diseases. The development of highly emissive fluorescent probes within the
NIR II wavelength region is expected to facilitate the development of systems suitable for
the in-depth monitoring of diseases in living organisms. Many fluorescent probes have
poor photostability and can be consumed by other active substances. Hence, through
fluorescent dye screening and rational design strategy, chemists can cleverly construct
functional fluorescent probes with great photostability and chemical stability. In addition,
enhancing sensitivity against analytes is another crucial issue to accelerate the progress
of clinical application, in order to avoid competition from the cellular microenvironment.
The reversibility is another important parameter. Usually, the microenvironments during
a pathophysiological process fluctuate with time. The irreversible probe just reflects the
microenvironmental changes in one direction, upregulation or downregulation, which
cannot fulfill the real dynamic monitoring. Therefore, reaction-based probes are indeed
unsuitable for dynamic imaging during a long-term process. It should be pointed out that
most fluorescent probes are essentially monochromatic, and such probes are susceptible to
interference from external factors. The single-parameter input model of traditional imaging
cannot accurately reflect the interactions between multianalyte changes in physiological
and pathological-state complicacy and dynamic variation in living organisms. Synchronous
imaging for multiple analytes during a certain pathophysiological process can provide
cross information on the pathology that is highly desirable. Therefore, the rational design
of probes for the synchronous imaging of multiple analytes can be achieved.

In this review, we discussed the main mechanisms and approaches for the rational
design of fluorescent probes, finding applications in medical diagnosis and drug delivery
systems. In addition, an overview focusing on recent achievements in the development
of fluorescence probes and molecular logic devices with potential applications in biology
and medicine was presented. We hope that the herein-discussed reports will inspire the
researchers working in the field of fluorescence sensing compounds and drug delivery to
develop new chemosensing materials with improved practical biomedical applications.
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