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Abstract: Chirality is a major theme in the design, discovery, and development of new drugs.
Historically, pharmaceuticals have been synthesized as racemic mixtures. However, the enantiomeric
forms of drug molecules have distinct biological properties. One enantiomer may be responsible
for the desired therapeutic effect (eutomer), whereas the other may be inactive, interfere with the
therapeutic form, or exhibit toxicity (distomer). Classical chemical synthesis usually leads to a racemic
mixture unless stereospecific synthesis is employed. To meet the requirements of single-enantiomeric
drugs, asymmetric synthesis has evolved at the forefront of drug discovery. Asymmetric synthesis
involves the conversion of an achiral starting material into a chiral product. This review emphasizes
the methods used for synthesizing FDA-approved chiral drugs during 2016–2020, with a special
focus on asymmetric synthesis by means of chiral induction, resolution, or chiral pool.
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1. Introduction
1.1. Background

Chirality is an all-encompassing phenomenon [1]. The earliest scientific evidence for
chirality was found by Biot in 1815 while discovering the optical rotation of camphor [2].
In 1848, Louis Pasteur discovered that two tartaric acid molecules with the same properties
differed in the sign of their optical rotation [3]. In general, this fundamental discovery was
the basis for the development of stereochemistry and, particularly, the phenomenon of
“chirality”. In nature, both macroscopic as well as microscopic objects can be chiral [4]. A
molecule is described as chiral when it can exist in two forms, enantiomers, which have the
same chemical structure but are non-superimposable mirror images of each other [5]. The
human body is naturally composed of chiral amino acids, sugars, enzymes or receptors, and
nucleic acids. Enzymes that are chiral only bind to the enantiomer that has the exact groups
that fit into their binding site. Hence, each enantiomer, with respect to its configuration, has
a specific action in the body and is selectively metabolized [6]. For instance, thalidomide
was initially sold as a racemic drug for the treatment of women with morning sickness;
however, it also had a teratogen effect and was subsequently withdrawn from the market.
The R-enantiomer showed a positive therapeutic effect, whereas the S-enantiomer resulted
in the development of birth defects [7] (Figure 1).

1.2. Chirality in FDA Drugs

Our understanding of the concept of chirality has played an essential role in the ap-
plication of chiral bioactive compounds in pharmaceuticals, agrochemicals, flavors, and
fragrances [8–10]. Chiral drugs offer several benefits, including that (1) chiral drugs can
have higher potency compared to their non-chiral counterparts due to better pharmacoki-
netic and pharmacodynamic properties; (2) by isolating a specific enantiomer, chiral drugs
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can reduce unwanted side effects; (3) chiral drugs can enhance drug delivery by targeting
specific enzymes or receptors; and (4) using a single enantiomer can reduce the cost of
production and lead to lower drug prices for patients. In recent years, the trend in chiral
drug discovery has shifted toward the development of single enantiomer drugs. This trend
is driven by several factors: increased understanding of the importance of chirality in drug
action and toxicity; advancements in analytical techniques that enable the separation and
characterization of enantiomers; the need for more effective and safer drugs, as well as the
potential for improved patent protection and market exclusivity; and increased regulatory
focus on the safety and efficacy of chiral drugs. Overall, the trend in chiral drug discovery is
toward the development of single enantiomer drugs, which offer the potential for improved
safety, efficacy, and cost-effectiveness.
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Since the FDA’s 1992 policy [11], the synthesis of single enantiomers has gained more
attention than that of racemic drugs. About 56% of the pharmaceuticals available in the
market and used in therapy are chiral, and amongst those drugs, 88% are administered
as racemates [12]. As of 2001, racemic drugs can no longer be registered. As drugs can
have structural homology across similar biological targets [13], it is widely believed that
knowledge of new chemical entities and approaches to their construction will enhance our
ability to discover new drugs more efficiently. In order to reduce the toxicity and side effects
associated with the inactive enantiomer, the synthesis of enantiomerically pure compounds
is essential. In this context, chirality has become an important challenge in the synthesis of
drugs [14]. This review presents the synthetic routes for 89 new molecular entities approved
by the FDA within the period of 2016–2020. The synthetic sequences described in this review
have all been previously reported in patents or articles and represent the process scale
or discovery routes of potential chiral drugs. In recent years, the number of chiral drugs
approved has been growing in number. For instance, 20 out of the 35 pharmaceuticals
approved by the FDA in 2020 are chiral [15]. A chiral drug can be synthesized from
commercially available substrates (with stereocenters) or a chiral pool (naturally occurring
substrates). Other ways to develop a chiral drug candidate are by employing a chiral
auxiliary, using a chiral reagent, or by resolving the racemic precursor. The purpose of
this review article is to analyze the recent chiral drugs and highlight the importance of
asymmetric synthesis in biologically active compounds, and pharmaceuticals in particular.
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2. Methodology

Data for the study were collected from the online database of the FDA under the
category of novel drug approval from 2016 to 2020. All drugs are listed under the following
parameters: name of the drug, active ingredient, pharmaceutical class of drug, indication
for use in the patient, and number of chiral centers. In addition, a literature search was
conducted using electronic databases such as PubMed, Annual Reports, Science Direct, and
Drug Bank. The structures of the chiral drugs by year are shown in Figures 2–6.

These drugs were categorized based on the method by which chirality was induced
during the manufacturing process, as follows (Figure 7):

1. Chiral pool approach: Synthesis from naturally occurring or chiral substrates;
2. Chiral resolution: Resolving the racemic mixture at any stage of synthesis;
3. Asymmetric synthesis: By adopting a chiral auxiliary, a chiral catalyst, or a chiral

reagent.
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discussed here. Starting from drugs with one chiral center, a year-wise classification is
presented.

3. Discussion
3.1. Drugs with One Chiral Center
3.1.1. Lifitegrast (2016)

Lifitegrast, developed by SARcode Bioscience (Brisbane, CA 94005 USA) [16], is
marketed for the treatment of dry eye disease [17]. The total synthesis of Lifitegrast is
carried out in 10 steps, starting from the commercially available chiral substrate 3-bromo-L-
phenylalanine (A1). Lifitegrast is obtained in 88% yield (Scheme 1) [18].
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Scheme 1. Synthesis of Lifitegrast.

3.1.2. Acalabrutinib (2017)

Acalabrutinib, developed by Acerta Pharma, is used for the treatment of mantle
cell lymphoma (MCL) [19]. Starting from the 4-bromo benzoic acid (A3), four steps are
carried out to obtain the intermediate, A4. Commercially available chiral proline derivative,
A5, undergoes amidation with A4 via acid chloride to yield acalabrutinib in 86% yield
(Scheme 2) [20,21].

Pharmaceuticals 2023, 16, x FOR PEER REVIEW 8 of 62 
 

 

 
Figure 7. Classification of drugs on basis of their chiral induction. 

Chirality can be induced at any stage, either as a fragment or from an achiral sub-
strate. Due to the large size of the dataset, only the step where chirality is being introduced 
is discussed here. Starting from drugs with one chiral center, a year-wise classification is 
presented. 

3. Discussion 
3.1. Drugs with One Chiral Center 
3.1.1. Lifitegrast (2016) 

Lifitegrast, developed by SARcode Bioscience (Brisbane, CA 94005 USA) [16], is mar-
keted for the treatment of dry eye disease [17]. The total synthesis of Lifitegrast is carried 
out in 10 steps, starting from the commercially available chiral substrate 3-bromo-L-phe-
nylalanine (A1). Lifitegrast is obtained in 88% yield (Scheme 1) [18]. 

 
Scheme 1. Synthesis of Lifitegrast. 

3.1.2. Acalabrutinib (2017) 
Acalabrutinib, developed by Acerta Pharma, is used for the treatment of mantle cell 

lymphoma (MCL) [19]. Starting from the 4-bromo benzoic acid (A3), four steps are carried 
out to obtain the intermediate, A4. Commercially available chiral proline derivative, A5, 
undergoes amidation with A4 via acid chloride to yield acalabrutinib in 86% yield (Scheme 
2) [20,21]. 

 
Scheme 2. Synthesis of Acalabrutinib. Scheme 2. Synthesis of Acalabrutinib.

3.1.3. Pemafibrate (2017)

Pemafibrate, developed by Kowa Pharmaceuticals, is used for the treatment of hyperlipi-
demia [22]. Chiral fragment A9 is synthesized from enantiopure (S)-2-hydroxybutyrolactone
(A7) via a ring-opening reaction in the presence of trimethylsilyl iodide. The hydrogena-
tive reduction of A8 and triflate addition using 2,6-lutidine produces A9. A9 undergoes
inversion of the configuration using potassium carbonate and acetonitrile, resulting in the
formation of pemafibrate in 75% yield (Scheme 3) [23].

3.1.4. Letermovir (2017)

AiCuris developed letermovir for the treatment of cytomegalovirus infections [24].
A stereogenic center is installed in letermovir during the urea cyclization step. Urea
(A11) undergoes cyclization in a biphasic mixture of aqueous K3PO4 and toluene in the
presence of a cinchona-alkaloid-based phase-transfer catalyst and results in the formation
of quinazolinone racemate (A12) (Scheme 4) [25].
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3.1.5. Netarsudil (2017)

Aerie Pharmaceuticals developed netarsudil for the treatment of ocular hyperten-
sion [26]. The Evans oxazolidinone (A15) acts as a chiral auxiliary and is later removed in
the presence of hydrogen peroxide. Diester A14 undergoes regioselective hydrolysis, fol-
lowed by acid chloride formation and amidation to give the ester derivative, A16. Treatment
of Evans oxazolidinone compounds with LiHMDS and Boc-protected benzotriazolylmethy-
lamine produces A17, through which essential stereochemistry for netarsudil is installed
(Scheme 5) [27].

3.1.6. Niraparib (2017)

Niraparib, discovered by Merck & Co. (Rahway, NJ, USA) and developed by Tesaro,
is used for the treatment of peritoneal cancer [28]. Niraparib, having one chiral center,
is obtained from piperidine subunit A23, which is synthesized from bromobenzene (A19).
The bisulfite adduct, A21, undergoes a transaminase reaction catalyzed by the ATA-302
enzyme and co-catalyzed by pyridoxal-5-phosphate (PLP), yielding chiral piperidine (A22)
(Scheme 6) [29–32].
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3.1.7. Lorlatinib (2018)

Lorlatinib, developed by Pfizer, is an oncological drug [33]. Lorlatinib, a macrocycle,
is constructed from chiral alcohol intermediate A25. This key step involves enantioselective
reduction using a biocatalyst (Scheme 7) [34].
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3.1.8. Elobixibat Hydrate (2018)

EA Pharma and Mochida developed elobixibat hydrate for the treatment of chronic id-
iopathic constipation [35]. The single chiral carbon is generated during acid-ester coupling
in the presence of TBTU and methyl (R)-2-amino-2-phenylacetate (A28) (Scheme 8) [36].
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3.1.9. Tezacaftor (2018)

Discovered and developed by Vertex Pharmaceuticals [37,38], tezacaftor is a broad-
acting cystic fibrosis transmembrane conductance regulator (CFTR). The scaled synthesis of
tezacaftor (Scheme 9) [39] begins with 3-fluoro-4-nitroaniline (A31). Regioselective bromi-
nation with N-Bromosuccinimide (NBS) produces the intermediate, A32. Commercially
available (R)-glycidyl benzyl ether (A33) induces chirality on aniline by acid-catalyzed ring
opening, followed by reduction of the nitro group to give A34. Subsequent steps, including
Sonogashira coupling, Larock-type cyclization, and acid-amine coupling, give tezacaftor in
84% yield.
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3.1.10. Pyrotinib Maleate (2018)

Hengrui Pharmaceuticals developed pyrotinib maleate [40], a pan-ErbB receptor
tyrosine kinase inhibitor, which is used for the treatment of metastatic breast cancer. The
kilogram-scale synthesis of pyrotinib maleate is shown in Scheme 10. Chiral fragment A37
is synthesized from N-Boc-D-prolinol (A36) in four steps [41].
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3.1.11. Encorafenib (2018)

Encorafenib, in combination with binimetinib, is used for the treatment of metastatic
melanoma [42]. Currently, encorafenib is marketed by Pfizer. Chirality is introduced as
follows: (S)-(−)-1,2-diaminopropane dihydrochloride (A39) is treated with benzyl chloro-
formate and methyl chloroformate in the presence of a base, resulting in the carbamate
derivative, A40. Upon hydrogenation, the chiral subunit, A41, is obtained (Scheme 11) [43].

3.1.12. Duvelisib Monohydrate (2018)

Duvelisib monohydrate, initially developed by Intellikine and later licensed to Ve-
rastem Oncology [44], is used in the treatment of both chronic lymphocytic leukemia and
small lymphocytic lymphoma [45,46]. The kilogram-scale synthesis of duvelisib disclosed
by Intellikine is discussed in Scheme 12 [47]. Weinreb amide A44 treated with n-hexyl
lithium is combined with benzamide A43 to form the chiral isoquinoline A45 in four steps.
In the last step, salt resolution is performed with D-tartaric acid in methanol, and then with
ammonium hydroxide to enhance the enantiopurity of A45.
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3.1.13. Elagolix Sodium (2018)

Elagolix sodium, used for treating women with endometriosis, was developed by
Abbvie and Neurocrine Biosciences [48]. Similar to duvelisib monohydrate, chirality is
induced during the alkylation of uracil with mesylate derivative; the latter compound
is synthesized by the reaction of (−)-N-Boc-D-α-phenylglycinol with methanesulfonyl
chloride (Scheme 13) [49].

3.1.14. Tegoprazan (2018)

Tegoprazan, initially discovered by Pfizer and further developed by RaQualia Phar-
maceuticals and CJ Healthcare, is used for the treatment of gastroesophageal reflux disease
(GERD) [50]. The scalable synthesis of tegoprazan is given in Scheme 14 [51]. The in-
troduction of an enantiopure chromanol side chain A53 on the benzimidazole ring is
the key step of the synthesis that occurs in the presence of tri-n-butylphosphine with
1,1′-(azodicarbonyl)dipiperidine (ADDP). Then, 3,5-difluorophenol (A50) undergoes con-
densation with methyl propiolate to afford enol ethers (A51) in both the E and Z forms
(1:1 mixture). Hydrogenation, followed by intramolecular Friedel–Crafts acylation and
asymmetric reduction with ozaborolidine catalyst (A52), produces chromanol (A53). Finally,
recrystallization of the latter compound yields the enantiopure chiral subunit, A53.
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3.1.15. Alpelisib (2019)

Novartis Pharmaceuticals developed alpelisib [52,53]. It is used for the treatment of
metastatic breast cancer. The chiral center is introduced by L-proline amide A56 on the
imidazole ring of A55 in the presence of triethylamine during the final step of synthesis
(Scheme 15) [54–56].

3.1.16. Solriamfetol (2019)

Solriamfetol, developed by SK Biopharmaceuticals [57], is used for the treatment
of Ehlers–Danlos syndromes (EDS) associated with obstructive sleep apnea (OSA) and
narcolepsy [58]. The kilogram-scale synthesis of solriamfetol is shown in Scheme 16 [59].
Solriamfetol is synthesized in 89% yield in a single step from D-phenylalaninol (A58) and
sodium cyanate in the presence of acid.
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3.1.17. Pretomanid (2019)

Pretomanid, an antimycobacterial agent, is used to treat tuberculosis (TB). It is the first
TB drug to be developed by TB Alliance [60]. Epoxide (A61) plays its role as a chiral sub-
strate by coupling with prochiral nitroimidazole (A60) in the presence of DIPEA, affording
A62 (Scheme 17) [61].
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3.1.18. Zanubrutinib (2019)

BeiGene, Inc. (Cambridge, MA, USA) developed zanubrutinib for the treatment
of mantle cell lymphoma [62]. In contrast to the chiral pool approach discussed above,
Zanubrutinib is the first drug that is produced by chiral resolution. Zanubrutinib is
obtained in its pure enantiomeric form via resolution methodology by treating it with
L-dibenzoyltartaric acid (LDBTA) (Scheme 18) [63].
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3.1.19. Darolutamide (2019)

Darolutamide is used in the treatment of non-metastatic castrate-resistant prostate
cancer [64]. It was developed by Orion Corporation and Bayer Healthcare [65]. The key
step in the asymmetric synthesis of darolutamide is the insertion of chiral isopropylamine
fragment, A67, into the biaryl scaffold in A66, followed by acid-mediated deprotection of
the Boc group to generate an intermediate A68 (Scheme 19) [66].
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3.1.20. Cenobamate (2019)

SK Pharmaceuticals developed cenobamate [67] for the treatment of partial-onset
seizures. The enzymatic catalysis presented in Scheme 20 [68] outlines its asymmetric
catalytic hydrogenation in the presence of Rhodotorula mucilaginosa, an oxidoreductase.
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3.1.21. Avapritinib (2020)

Blueprint Medicines developed avapritinib [69] for the treatment of metastatic gas-
trointestinal tract cancers. The chiral resolution by means of supercritical fluid chromato-
graphic separation of intermediate, A73, produces enantiopure avapritinib in 68% yield
(Scheme 21) [70].
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3.1.22. Berotralstat (2020)

Berotralstat is used to treat the prophylaxis of hereditary angioedema (HAE) at-
tacks [71]. Following the same procedure as avapritinib, berotralstat is synthesized in its
pure enantiomeric form by means of supercritical fluid chromatography in the final step
(Scheme 22) [72].
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3.1.23. Lonafarnib (2020)

Lonafarnib is used for the treatment of Hutchinson–Gilford progeria syndrome
(HGPS) [73]. Unlike berotralstat, chirality in lonafarnib is obtained by chiral separation.
Intermediate A77 upon reduction with diisobutylaluminium hydride (DIBAL) followed by
chiral separation resulted in the formation of the chiral subunit, A78, with one stereocenter.
These successive steps yield lonafarnib (Scheme 23) [74].

3.1.24. Osilodrostat (2020)

Osilodrostat, used for treating Cushing’s disease, is a 11β-hydroxylase inhibitor [75].
Chiral osilodrostat is generated in a manner similar to that of berotralstat. Chiral HPLC
separation of the intermediate A80 directly results in drug formation (Scheme 24) [76].
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3.1.25. Oliceridine (2020)

Oliceridine, a central nervous system (CNS) drug, is used to treat moderate-to-severe
acute pain [77]. In the total synthesis of oliceridine, the chiral intermediate A83 is obtained
by the decarboxylic reaction of A82, followed by SFC chiral separation (Scheme 25) [78].
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3.1.26. Remimazolam (2020)

Acacia Pharma developed remimazolam, an ultrashort-acting benzodiazepine [79].
Treatment of A85 with the chiral substrate, A86 in chloroform generated the substituted
product, which upon base-promoted F-moc deprotection and acetic acid promoted conden-
sation resulted in the formation of cyclized intermediate A87 in three steps (Scheme 26) [80].
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3.1.27. Ozanimod (2020)

Ozanimod is used to treat relapsing multiple sclerosis [81]. The chiral sulfinamide
fragment, A90, acts as a chiral auxiliary group by inserting a chiral center on the in-
dene derivative, A89. Ozanimod is synthesized in successive steps from intermediate
A91 (Scheme 27) [82].
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3.2. Drugs with Two Chiral Centers
3.2.1. Nemonoxacin (2016)

Nemonoxacin was originally developed by Procter & Gamble Pharmaceuticals [83]
(P&GP) and co-developed by TaiGen Biotechnology (Asia) and Warner Chilcott (US and
Europe). Scheme 28 describes the process-scale synthesis of nemonoxacin [84]. Proline
derivative B1, upon esterification, gives an intermediate (B2), which, on treatment with
Bredereck’s reagent and hydrogenation, gives chiral subunit B3. Then, simultaneous
reduction and treatment with CaCl2 form the diol B4. Aminopiperidine B5 is obtained from
this intermediate via sequential mesylation, cyclization, and hydrogenation.
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3.2.2. Brivaracetam (2016)

UCB Pharma developed both brivaracetam and levetiracetam. Brivaracetam is an
antiepileptic drug used to treat partial-onset seizures [85,86]. The kilogram-scale synthesis
shown in Scheme 29 [87] shows that chirality is achieved by enzymatic resolution with
protease C to form fragment B8. Another chiral pool substrate, (S)-2-aminobutanamide
(B10), is inserted into the chiral subunit, B9 to form brivaracetam B11.
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3.2.3. Beclabuvir (2016)

Bristol Myers Squibb discovered and developed beclabuvir [88]. It is used to treat HCV
infections. The chiral cyclopropyl fragment, B13, is generated by the Corey–Chaykovsky
reaction using NaH, followed by chiral separation. Beclabuvir is synthesized from interme-
diate B13 in successive steps (Scheme 30) [89].
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3.2.4. Inotuzumab Ozogamicin (2017)

Inotuzumab Ozogamicin, discovered by Lederle Laboratories, is used for the treatment
of refractory B-cell precursor acute lymphoblastic leukemia (ALL) [90]. Scheme 31 provides
an overview of the chiral pool synthesis of inotuzumab ozogamicin. Fermentation of
Micromonospora echinospora sp. Calichenis gave Calicheamicin (B15) [91,92]. The linker (B16)
is then coupled to chiral substrate B15 to produce B17. Later, it is conjugated with anti-CD22
mAb G-544 to obtain inotuzumab ozogamicin in 60% yield [93].
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3.2.5. Deutetrabenazine (2017)

Deutetrabenazine has been approved for the treatment of chorea (abnormal involun-
tary movements) associated with Huntington’s disease [94]. The synthesis of deutetra-
benazine is described in Scheme 32 [95]. The reaction of dihydroisoquinoline fragment
B19 and quaternary ammonium salt B20 in the presence of a base resulted in the formation
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of the desired product. Unfortunately, deutetrabenazine is obtained as a racemic mixture
(cis-diastereomer) in 67% yield.
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3.2.6. Vaborbactam (2017)

Rempex Pharmaceuticals discovered vaborbactam, and it was then developed by
The Medicines company. Vaborbactam, in combination with meropenem, is used to treat
complicated urinary tract infections [96]. The key step in its synthesis is obtaining a
pure enantiomeric form by enantioselective lipase resolution of the racemic substrate, B22.
Subsequently, the chiral centers are inserted via Matteson homologation (Scheme 33) [97].
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3.2.7. Telotristat Ethyl (2017)

Lexicon Pharmaceuticals developed telotristat ethyl, which has two chiral carbons, for
the treatment of carcinoid syndrome diarrhea [98]. One of the chiral carbons is implanted
from commercially available N-Boc-tyrosine methyl ester B33 and the other, shown in
B32, from asymmetric transfer hydrogenation using an Iridium catalyst and ligand B31
(Scheme 34) [99,100].
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3.2.8. Larotrectinib (2018)

Array BioPharma and LOxo Oncology discovered larotrectinib, which was further
developed in collaboration with Bayer AG. It is used to treat solid tumors with neurotrophic
receptor tyrosine kinase gene fusions [101]. Ellman’s auxiliary (B36) is responsible for the
chirality in larotrectinib. The second stereogenic center is derived from a commercially
available pyrrolidinol fragment (Scheme 35) [102].
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3.2.9. Glasdegib (2018)

Glasdegib was developed by Pfizer and is used for the treatment of acute myeloid
leukemia [103]. Glasdegib is a good example of chiral resolution in drug synthesis. The
key chiral substrate, B46, (anti-form) is obtained by dynamic kinetic resolution of the
racemic mixture, B44, with transaminase enzyme ATA-306 in the presence of borate buffer
(Scheme 36) [104].
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3.2.10. Talazoparib (2018)

Talazoparib, discovered by BioMarin and developed by Pfizer, is used to treat germline
BRCA-mutated HER2-negative metastatic breast cancer [105]. Unlike glasdegib, the
synthesis of talazoparib employs supercritical fluid chromatography (SFC) chiral sep-
aration to obtain the essential 1,2,4-triazole subunit, B49, which has two chiral centers
(Scheme 37) [106–108].
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3.2.11. Ivosidenib (2018)

Agios Pharmaceuticals developed ivosidenib for the treatment of relapsed or refractory
acute myeloid leukemia [109]. The Ugi reaction between isonitrile (B51), imine (B52), and
chiral acid (B53) results in a racemic intermediate. Crystallization, followed by piperidine
treatment, affords diastereomer B54. The crystallization step is considered crucial because
the final synthesis of the drug relies on the diastereomer alone (Scheme 38) [110].
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3.2.12. Evocalcet (2018)

The Mitsubishi Tanabe Pharma corporation discovered evocalcet and Kyowa Kirin
further developed the drug for secondary hyperparathyroidism (SHPT) treatment [111].
The diastereomeric mixture, B58, obtained from N-Boc pyrrolidinol (B56), is treated with
triphosgene and tert-butanol to obtain both syn (B59) and anti (B60) diastereomers. These
two compounds are separated by chromatography. For this drug, the chromatography
approach is predominantly used over the chiral pool approach, as evocalcet, with two
chiral centers, is synthesized from the syn-pyrrolidine derivative, B59 (Scheme 39) [111].

Pharmaceuticals 2023, 16, x FOR PEER REVIEW 26 of 62 
 

 

The diastereomeric mixture, B58, obtained from N-Boc pyrrolidinol (B56), is treated with 
triphosgene and tert-butanol to obtain both syn (B59) and anti (B60) diastereomers. These 
two compounds are separated by chromatography. For this drug, the chromatography 
approach is predominantly used over the chiral pool approach, as evocalcet, with two 
chiral centers, is synthesized from the syn-pyrrolidine derivative, B59 (Scheme 39) [111]. 

 
Scheme 39. Synthesis of Evocalcet. 

3.2.13. Baloxavir Marboxil (2018) 
Baloxavir marboxil was first approved by Pharmaceuticals and Medical Devices 

Agency (PMDA) and was further developed by Shionogi Inc. for the treatment of influ-
enza A and B infections [112]. Baloxavir marboxil is constructed from different subunits, 
including chiral piperazine (B64), benzothiepine (B65), and alkyl chloride side chains. Res-
olution is carried out via the reaction of piperazine fragment B62 with chiral acid B63. Sub-
sequent recrystallization results in B64 (Scheme 40) [113]. 

 
Scheme 40. Synthesis of Baloxavir marboxil. 

3.2.14. Fosravuconazole L-Lysine Ethanolate (2018) 
Eisai Co., Ltd. (Bunkyo City, Tokyo) discovered fosravuconazole L-lysine ethanolate 

[114], a prodrug of ravuconazole and broad-spectrum antifungal agent. The process-scale 
synthesis of fosravuconazole is outlined in Scheme 41 [115]. The chiral pool synthesis of 
fosravuconazole L-lysine ethanolate starts with a single chiral center in lactate (B68) and 
another is induced from intermediate B69 by Corey–Chaykovsky epoxidation and 

Scheme 39. Synthesis of Evocalcet.



Pharmaceuticals 2023, 16, 339 26 of 61

3.2.13. Baloxavir Marboxil (2018)

Baloxavir marboxil was first approved by Pharmaceuticals and Medical Devices
Agency (PMDA) and was further developed by Shionogi Inc. for the treatment of influenza
A and B infections [112]. Baloxavir marboxil is constructed from different subunits, includ-
ing chiral piperazine (B64), benzothiepine (B65), and alkyl chloride side chains. Resolution
is carried out via the reaction of piperazine fragment B62 with chiral acid B63. Subsequent
recrystallization results in B64 (Scheme 40) [113].
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3.2.14. Fosravuconazole L-Lysine Ethanolate (2018)

Eisai Co., Ltd. (Bunkyo City, Tokyo) discovered fosravuconazole L-lysine ethanolate [114],
a prodrug of ravuconazole and broad-spectrum antifungal agent. The process-scale syn-
thesis of fosravuconazole is outlined in Scheme 41 [115]. The chiral pool synthesis of
fosravuconazole L-lysine ethanolate starts with a single chiral center in lactate (B68) and
another is induced from intermediate B69 by Corey–Chaykovsky epoxidation and sequen-
tial ring opening in a single step. Ravuconazole is converted into fosravuconazole in three
successive steps (Scheme 41) [116].
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3.2.15. Lumateperone (2019)

Lumateperone is an antipsychotic drug used to treat schizophrenia [117]. In the nine-
step synthesis of lumateperone, stereocenters are generated during the reduction of tricyclic
indole intermediate B73 with triethylsilyl hydride, followed by treatment with (R)-mandelic
acid in methanol. Thus, the formed (S)-mandelic acid diastereomeric salt undergoes free-
basing with aqueous NaOH to afford chirally pure cis-indoline B74 (Scheme 42) [118].
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3.2.16. Tenapanor (2019)

Tenapanor was developed by Ardelyx Inc. to treat irritable bowel syndrome with con-
stipation [119]. Scheme 43 describes the synthesis of tenapanor. The tetrahydroisoquinoline
intermediate, B76, generated during the synthesis reacts with linker B77, followed by chiral
resolution (SFC separation), resulting in the formation of chiral fragment B78 [120].
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3.2.17. Lemborexant (2019)

Lemborexant, developed by Eisai Co., Ltd. is used for the treatment of insomnia [121].
Starting with 2-(3-fluorophenyl) acetonitrile (B80), chirality is induced from epoxide B81
by step-by-step substitution, hydrolysis, ring-opening, and ring-closure reactions. Thus,
the generated intermediate B82 undergoes reduction with NaBH4, followed by lipase-
induced transesterification, eventually leading to the synthesis of lemborexant in five steps
(Scheme 44) [122].
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3.2.18. Cefiderocol (2019)

Shionogi et al. developed cefiderocol, a cephalosporin antibacterial drug. It is used
for the treatment of complicated urinary tract infections (cUTI) [123]. Linear synthesis
of cefiderocol is shown in Scheme 45 [124]. Chirality is induced by azetidinone ring B88,
which was previously synthesized from the phthalimide derivative, B84.
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3.2.19. Upadacitinib (2019)

Upadacitinib is used to treat rheumatoid arthritis [125]. Chiral pyrrolidine fragment
B94, which is essential for the synthesis of upadacitinib, is obtained by asymmetric hy-
drogenation of B93 in the presence of a ruthenium catalyst. The latter compound B93 was
obtained by the condensation of Cbz-protected glycine ethyl ester B91 and ethyl acrylate
B92 in the presence of sodium tertiary butoxide (Scheme 46) [126].
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3.3. Drugs with Three Chiral Centers
3.3.1. Tenofovir Alafenamide Fumarate (2016)

Tenofovir alafenamide fumarate was discovered and developed by Gilead for the
treatment of chronic hepatitis B viral infections [127]. The reaction of adenine (C1) with (R)-
propylene carbonate (C2) affords intermediate C3, with a single chiral center. In successive
steps, the monophosphonate ester, C5, is treated with thionyl chloride, and the L-alanine
derivative, C6, affords racemic intermediate C7, with two chiral centers. Simulated moving
bed chromatography is employed to resolve the racemic mixture and obtain diastereomers.
Tenofovir alafenamide fumarate is synthesized from diastereomer C8 and fumaric acid
(Scheme 47) [128].

3.3.2. Bictegravir (2018)

A combination of bictegravir, emtricitabine, and tenofovir alafenamidecan be used to
treat HIV-1 infections [129]. The process-scale synthesis of bictegravir was reported and
developed by Gilead (Scheme 48) [130,131]. The late-stage installation of chiral substrate
C13 to the pyridone derivative results in bictegravir in three steps. Synamino pentanol (C13)
is previously obtained from commercially available cyclopentanoic acid (C10) in six steps.
Acid C10 is converted to amide C11, which then undergoes oxidation to form the chiral
alcohol subunit, C13.
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3.3.3. Relebactam (2019)

Relebactam was developed by Merk Sharp & Dohme [132]. Relebactam, imipenem,
and cilastin is a drug combination used for the treatment of complicated urinary tract and
intra-abdominal infections [133]. Chiral substrate 5-hydroxypiperidine-2-carboxylic acid
(C15) undergoes sulfonylation and intramolecular esterification to form the bridged inter-
mediate, C16. Later, ring opening followed by substitution and cyclization with triphosgene
gives the chiral bridged intermediate, C20, with three chiral centers (Scheme 49) [134].
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3.3.4. Fam-Trastuzumab Deruxtecan-Nxki (2019)

Daiichi Sankyo and AstraZeneca developed fam-trastuzumab deruxtecan-nxki, an
antibody–drug conjugate. The structure is composed of the GGFG linker C23, polycyclic
chiral fragment C27, and anti-HER2 monoclonal antibody (mAb). Various stages of inducing
chirality in a single drug are shown in Scheme 50 and described below [135]:

1. The linker C23 with one chiral center is obtained by a chiral pool approach (i.e., amino
acid derivative C22 imparts its stereocenter to the drug);

2. The polycyclic chiral fragment C27 is prepared by [4 + 2] cycloaddition, followed by
chiral resolution adopting supercritical fluid chromatography of the racemic interme-
diate, C26.

3.3.5. Pralsetinib (2020)

Pralsetinib, developed by Blueprint Medicines, is used in the treatment of metastatic
non-small cell lung cancer [136]. The key step during its synthesis is the benzotriazole-1-yl-
oxytripyrrolidinophosphonium hexafluorophosphate (PyBOP)-stimulated amide coupling
between the ester intermediate C29 and the chiral amine fragment C30, to result in a
mixture of diastereomers. The last step involves the isolation of pralsetinib by superfluid
chromatography (Scheme 51) [137].
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3.3.6. Rimegepant (2020)

Biohaven developed rimegepant for the treatment of migraines [138]. The asymmetric
synthesis of rimegepant is carried out by the following step-by-step process (Scheme 52) [139]:

1. Rhodium-catalyzed reduction of pyridine derivative C32 followed by hydroxyl pro-
tection with triisopropylsilyl trifluoromethanesulfonate (TIPSOTf) results in a chiral
intermediate C33;

2. Chiral fragment C33 then undergoes coupling with 1-bromo-2,3-difluorobenzene C34
resulting in an intermediate C35 with two stereocenters;

3. The last chiral center in C36 is obtained by lithium-mediated reduction.
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3.4. Drugs with Four Chiral Centers
3.4.1. Migalastat Hydrochloride (2016)

Migalastat, also known as D-1-deoxygalactonojirimycin, is used to treat Fabry dis-
ease [140]. The kilogram-scale synthesis depicted in Scheme 53 [141] provides a clear
example of the chiral pool synthesis of migalastat hydrochloride (D4) from D-galactose (D1).
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3.4.2. Midostaurin (2017)

Midostaurin is used for the treatment of FLT3 mutation-positive Acute Myeloid
Leukemia (AML) [142]. Its chiral pool synthesis begins with staurosporine (D5), a molecule
produced by fermentation. Acylation of chiral substrate D5 with benzoic anhydride (D6)
results in the formation of midostaurin in a single step (Scheme 54) [143].
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3.4.3. Naldemedine (2017)

Shionogi & Co., Ltd. (Osaka, Japan) developed naldemedine for the treatment of
opioid-induced constipation [144]. In addition to naturally occurring compounds initiating
chiral synthesis, commercially available naltrexone hydrochloride (D8) affords naldemedine
tosylates in 66% yield (Scheme 55) [145].
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3.4.4. Valbenazine (2017)

Neurocrine Biosciences developed valbenazine for the treatment of tardive dyskinesia
in adults [146]. The well-known resolving agent L-tartaric acid (DPTTA) is used to separate
(±)-tetrabenazine (D12) to yield (+)-amine D13, which is essential for the formation of
valbenazine (Scheme 56) [147].
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3.4.5. Eravacycline (2018)

Eravacyclin, a tetracycline, is used to treat complicated intra-abdominal infections.
Tetraphase Pharmaceuticals discovered and developed eravacycline [148–150]. Eravacy-
cline is composed of a chiral isoxazole fragment, D20, and a dibenzyl amine derivative. The
D20 preparation involves the two following methods (Scheme 57) [151]:

1. Ellman sulfinamide auxiliary (D16) is used to convert aldehyde (D15) to sulfinimine
(D17), which eventually leads to the formation of the chiral tartarate derivative, D18;

2. Recrystallization with isopropanol provides pure chiral tricyclic fragment D20 from
the corresponding enone derivative, D19.
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3.4.6. Sarecycline Hydrochloride (2018)

Paratek Pharmaceuticals discovered sarecycline; however, the drug was solely de-
veloped by Allergan. It belongs to the tetracycline class of antibiotics and is used for the
treatment of inflammatory lesions of acne vulgaris [152]. A semi-synthetic tetracycline
antibiotic, sancycline (D22), upon iodination with N-iodosuccinimide and further purifi-
cation provided the iodosancycline salt, D23, is required for the synthesis of sarecycline
hydrochloride (Scheme 58) [153–155].
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3.4.7. Omadacycline (2018)

Discovered and developed by Paratek Pharmaceuticals [156], omadacycline, a tetra-
cycline antibiotic, is used to treat acute bacterial skin infections and community-acquired
pneumonia. Analogous to sarecycline, the tetracyclic antibiotic drug minocycline (D25)
initiates the synthesis of omadacycline. Condensation with N-(hydroxymethyl)phthalimide
in the presence of triflic acid affords a mixture of D26 upon hydrolysis with methyl amine
to generate the chiral intermediate, D27 (Scheme 59) [157].
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3.4.8. Vibegron (2018)

Vibegron was discovered by Merck and developed by Kyorin Pharmaceutical Co., Ltd.
(Tokyo, Japan) and Kissei Pharmaceutical Co., Ltd. (Matsumoto, Japan). It is used for the
treatment of overactive bladder [158]. The key step in the synthesis of vibegron is to facili-
tate both the epimerization and reduction of racemic mixtures D30 and D31. Ketoreductase
and the cofactor NADPNa are used to form the (R)-isomer D32 (Scheme 60) [159].
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3.4.9. Ubrogepant (2019)

Ubrogepant was developed by Allergan, Inc. It is used to treat migraines in adults [160].
Resolution by means of SFC separation, focused on racemic spiro intermediate D34 resulted
in the formation of mono-configurational fragment D35, as depicted in Scheme 61 [161].
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3.4.10. Cedazuridine (2020)

Cedazuridine, in combination with decitabine, is used for the treatment of myelodys-
plastic syndrome [162]. Chiral chromatographic separation of racemic intermediate D38
affords the chiral cedazuridine, D39, in a three-step synthesis (Scheme 62) [163].
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3.4.11. Vibegron (2020)

Vibegron is used to treat overactive bladder with symptoms, such as urge urinary
incontinence and urinary frequency [158]. Large-scale synthesis of the drugs is outlined
in Scheme 63. Chiral amine, D40, generated from hexynoic acid, undergoes acid-amine
coupling with another chiral acid, D41, followed by chiral SFC separation, to give the drug
in pure form (Scheme 63) [164].

Pharmaceuticals 2023, 16, x FOR PEER REVIEW 39 of 62 
 

 

 
Scheme 63. Synthesis of Vibegron. 

3.5. Drugs with Five Chiral Centers 
3.5.1. Narlaprevir (2016) 

Narlaprevir was developed by Schering-Plough Corporation and the Texas Liver In-
stitute and succeeded by R-Pharm Pharmaceuticals. It is an anti-infective drug used for 
the treatment of hepatitis C virus (HCV) genotype 1 infections [165]. The kilogram-scale 
synthesis of narlaprevir is presented in Scheme 64 [166,167]. Chirality is induced during 
the conversion of the acid intermediate E1 to the urea derivative, E2, in the presence of 
leucine. Another three chiral centers from the bicyclic amine, E3, are introduced by peptide 
coupling conditions. 

 
Scheme 64. Synthesis of Narlaprevir. 

  

NH

O

H
N

H

OH

H

N N
O

NH2N

H

OH

H

BoC

HO

O N N
O

2. Chiral resolution
3. TFA, DCM

1. EDC, HOAT, DIPEA, DMF

NH

O

H
N

H

OH

H

N N
O

Vibegron

D40

D41

D42

Scheme 63. Synthesis of Vibegron.

3.5. Drugs with Five Chiral Centers
3.5.1. Narlaprevir (2016)

Narlaprevir was developed by Schering-Plough Corporation and the Texas Liver
Institute and succeeded by R-Pharm Pharmaceuticals. It is an anti-infective drug used for
the treatment of hepatitis C virus (HCV) genotype 1 infections [165]. The kilogram-scale
synthesis of narlaprevir is presented in Scheme 64 [166,167]. Chirality is induced during
the conversion of the acid intermediate E1 to the urea derivative, E2, in the presence of
leucine. Another three chiral centers from the bicyclic amine, E3, are introduced by peptide
coupling conditions.
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3.5.2. Elbasvir (2016)

Merck developed the combination of elbasvir and grazoprevir for the treatment of
chronic HCV infections [168]. Elbasvir, which contains five chiral carbons, is shown in
Scheme 65. The key step in the synthesis of elbasvir is the asymmetric reduction of imine
derivative E6 in the presence of a ruthenium catalyst, E7 [169].
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3.5.3. Latanoprostene Bunod (2017)

Latanoprostene bunod was discovered by the NicOx–Pfizer collaboration and de-
veloped by Bausch and Lomb. It is used to reduce intraocular pressure in patients
with open-angle glaucoma or ocular hypertension [170]. In this chiral pool approach,
latanoprost acid (E10) is treated with 4-bromobutyl nitrate in the presence of K2CO3 and KI
(Scheme 66) [171,172].
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3.5.4. Danoprevir (2018)

InterMune Inc. and Array Biopharma Inc. developed danoprevir for the treatment of
non-cirrhotic genotype 1b chronic HCV infections [173]. Dialkylation of imine intermediate
E12 with 2-butene-1,4-dibromide afforded racemic vinylcyclopropane E13, which upon
enzymatic resolution with alcalase 2.4L resulted in the formation of desired enantiomer
E14. E14 is the key chiral fragment in the synthesis of danoprevir (Scheme 67) [174].
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3.6.1. Velpatasvir (2016)

Velpatasvir, an antiviral drug developed by Gilead Sciences, is used, in combination
with sofosbuvir, for the oral treatment of chronic HCV genotypes (1–6) [175]. The combina-
tion of chiral subunits in velpatasvir is shown in Scheme 68 [176]. Of all the chiral centers
present in the drug, only the initial chiral induction by means of crystallization is high-
lighted. Commercially available glutamate (F1) undergoes intramolecular condensation
to form dihydropyrrole (F2). The reduction of ester functionalities, followed by alkylation
and crystallization, results in the cis form, F4.
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3.6.2. Obeticholic Acid (2016)

Obeticholic acid, in combination with ursodeoxycholic acid, is used in the treatment
of primary biliary cholangitis [177]. This drug was discovered at the Universita de Perugia
and developed by Intercept Pharmaceuticals. In this chiral pool strategy, hydrogenation
of the olefin intermediate F6, followed by heating to reflux, resulted in the epimerized
fragment α-ethyl ketone F7 (Scheme 69) [178,179].

3.6.3. Grazoprevir Hydrate (2016)

Merck discovered grazoprevir hydrate, a drug that, in combination with elbasvir, has
been used to treat HCV infections. Similar to danoprevir, the key chiral subunit, F12, is
formed by enzymatic resolution of the racemic cyclopropyl intermediate, F11. Commercially
available boronate (F9) is converted to the cyclopropane derivative, F10, under Simmons–
Smith conditions. Finally, the enantiomer is produced by resolution with a novozyme,
followed by crystallization [180]. The remaining subunits are successively inserted in a
step-by-step sequence (Scheme 70).
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3.6.4. Ertugliflozin-L-pyroglutamic Acid (2017)

Ertugliflozin, discovered by Pfizer and co-developed by Pfizer and Merck, is used for
the treatment of type II diabetes mellitus [181]. The synthesis of ertuglifozin commences
from a chiral pool of glucose derivative F14 (Scheme 71) [182]. Oxidation, amidation, and
treatment under Parikh–Doering conditions (SO3. Py) affords the chiral intermediate, F15.
Oxalate salt (F18) formation occurs via a series of reactions, viz., pivalate group removal
and protection of the hindered OH group.
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3.6.5. Voxilaprevir (2017)

Voxilaprevir, in combination with sofosbuvir and velpatasvir, is used to treat chronic
HCV genotypes [183]. Gilead described the synthesis of voxilaprevir in nine steps from the
pyrrolidinol derivative, F23. The enone formed by the reaction of pyrrolidinone (F20) with
Grignard reagent, followed by hydrogenation, results in the addition of an ethyl group on
the pyrrolidine ring (F21). Reduction, subjection to citric acid, and Boc protection introduce
three stereocenters to the alcohol derivative, F23. Chiral centers are inserted in such a way
that three are from the pyrrolidinol fragment (F20); three are from the cyclopropyl fragment,
and two are from the cyclopropyl amine fragment (Scheme 72) [184].
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3.6.6. Pibrentasvir (2017)

Pibrentasvir, in combination with glecaprevir, was discovered and developed by
Abbvie and Enanta Pharmaceuticals and is used for the treatment of chronic HCV genotypes
(1–6) [185]. Pibrentasvir is formed via the union of different chiral subunits at various stages
of synthesis. The very first stereogenic formation is initiated by the chiral diol fragment,
F26, which was synthesized by asymmetric bis reduction in the presence of (R)-(+)-α,α-
diphenyl-2-pyrrolidinemethanol by the Corey–Bakshi–Shibata (CBS) reduction mechanism
(Scheme 73) [186].
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3.6.7. Glecaprevir (2017)

Glecaprevir was first discovered and developed by Abbvie and Enanta Pharmaceuti-
cals. Glecaprevir, in combination with pibrentasvir, has been used to treat chronic HCV
infections. Glecaprevir is an assembly of chiral fragments. Of these, one notable step is
the resolution of the cyclopropane intermediate, F28, utilizing esterase as a resolving agent
(Scheme 74) [187].

3.6.8. Segesterone Acetate (2018)

The Population Council developed segesterone acetate, a progestin hormonal contra-
ceptive. The chiral pool substrate, 19-norandrostenedione (F31), is converted into an alcohol
intermediate (F33) through the hydration of the alkyne derivative, F32. Inversion of the
configuration is observed at C-17 (F34) via 2,3-sigmatropic rearrangement (Scheme 75) [188].

3.6.9. Plitidepsin (2018)

Plitidepsin, a natural marine product, is a potent antiproliferative drug [189]. The
combination of different subunits comprises the synthesis of plitidepsin in seven steps.
The chiral fragment necessary for the synthesis of the drug is generated starting from the
conversion of N-Boc isoleucine F36 to keto ester F37, followed by the sequential reduction,
silylation, and deprotection of the ester to give plitidepsin carboxylic acid F38 in good yield
(Scheme 76) [190].
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3.6.10. Moxidectin (2018)

The Medicines Development for Global Health (MDGH) developed moxidectin. It is
used for the treatment of onchocerciasis, also known as river blindness [191]. Moxidectin
belongs to the milbemycin class comprised of 16-membered macrocyclic lactones. The chiral
pool substrate nemadectin (F40), obtained by fermentation of Streptomyces cyanogriseus ssp.
noncyanogenus, is converted to the ketone intermediate, F41, which then undergoes oxime
formation and selective saponification of the ester-protecting group to afford moxidectin
F42. It is worth mentioning that the oxime F42 retains (E)-configuration throughout the last
two steps. (Scheme 77) [192].
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3.6.11. Plazomicin (2018)

Ionis Pharmaceuticals, Inc. discovered plazomicin, which was then further developed
by Achaogen. It is used for the treatment of complicated urinary tract infections [193].
Unlike the chiral pool syntheses, commercially available and natural sisomicin commences
the synthesis of plazomicin. The key intermediate F44 was synthesized by converting
sisomicin to protected amine F43 in three step sequences and incorporation of Boc-(S)-
HABA to amine (Scheme 78) [194–199].
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3.6.12. Tecovirimat (2018) 
SIGA Technologies and the United States Department of Health Services Biomedical 

Advances Research and Development Authority developed tecovirimat [200]. Cycloaddi-
tion of cycloheptatriene (F46) and maleic anhydride (F47) delivers mixtures F48 and F49, 
which then undergo recrystallization with methyl tert-butyl ether (MTBE) to isolate the 
endo isomer, F49 (Scheme 79) [201]. 
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3.6.12. Tecovirimat (2018)

SIGA Technologies and the United States Department of Health Services Biomedical
Advances Research and Development Authority developed tecovirimat [200]. Cycload-
dition of cycloheptatriene (F46) and maleic anhydride (F47) delivers mixtures F48 and F49,
which then undergo recrystallization with methyl tert-butyl ether (MTBE) to isolate the
endo isomer, F49 (Scheme 79) [201].
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3.6.12. Tecovirimat (2018) 
SIGA Technologies and the United States Department of Health Services Biomedical 

Advances Research and Development Authority developed tecovirimat [200]. Cycloaddi-
tion of cycloheptatriene (F46) and maleic anhydride (F47) delivers mixtures F48 and F49, 
which then undergo recrystallization with methyl tert-butyl ether (MTBE) to isolate the 
endo isomer, F49 (Scheme 79) [201]. 
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3.6.13. Lefamulin (2019)

Nabriva Therapeutics developed lefamulin for the treatment of community-acquired
bacterial pneumonia [202]. The total synthesis of lefamulin is performed in five steps,
beginning with pleuromulin F51. The key subunit involved in the synthesis, F52, is
obtained by the reaction with cyclohexanethiol in the presence of sodium hydroxide
and benzyl(tributyl)ammonium chloride (BTBAC) in methyl tert-butyl ether (MTBE)
(Scheme 80) [203].
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3.6.14. Afamelanotide (2019)

Afamelanotide was developed by Clinuvel Pharmaceuticals. It is used to treat ery-
thropoietic protoporphyria [204]. Afamelanotide, with the amino acid sequence Ac-Ser-Tyl-
Ser-Nle-Glu-His-D-Phe-Arg-Trp-Gly-Lys-Pro-Val-NH2, is synthesized in 31 steps from the
commercially available resin, F54 (Scheme 81) [205,206].
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3.6.15. Brexanolone (2019)

Sage Therapeutics developed brexanolone, which is used in the treatment of postpar-
tum depression [207]. Pregnenolone (F56) initiates the linear synthesis of brexanolone (F57)
in a sequential hydrogenation reduction and Mitsunobu reaction with diethylazodicarboxy-
late (DEAD) and triphenylphosphine (Scheme 82) [208].
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3.6.16. Bremelanotide (2019)

Bremelanotide is used in the treatment of hypoactive sexual desire disorder in pre-
menopausal women [209]. Similar to afamelanotide, the synthesis begins with Rink-Amide-
AM-resin (F58) and continues with the successful linkage of chiral amino acid deriva-
tives, removal of N-Fmoc protecting group, and condensation with Fmoc-Trp(Boc)-OH
(Scheme 83) [210].

3.6.17. Lurbinectedin (2020)

Lurbinectedin is used in the treatment of metastatic small-cell lung cancer in patients
who have undergone platinum-based chemotherapy [211]. The total synthesis of lurbinecte-
din is carried out in 27 steps starting from the chiral pool L-tyrosine, F61 (Scheme 84) [212].

3.6.18. Lactitol (2020)

Pizensy developed lactitol, a β-D-galactopyranosyl-D-glucitol. It is used to treat
chronic idiopathic constipation [213]. The chiral pool synthesis of lactitol from lactose (F63)
is achieved in a single step (Scheme 85) [214].
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3.6.19. Setmelanotide (2020) 
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mercially available arginine (F65) and phenyl alanine (F66) derivatives (Scheme 86) [216]. 
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3.6.19. Setmelanotide (2020)

Chronic weight management can be treated with setmelanotide [215]. Setmelanotide
is synthesized in ten steps with successive insertion of chiral centers, starting from com-
mercially available arginine (F65) and phenyl alanine (F66) derivatives (Scheme 86) [216].
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3.6.20. Clascoterone (2020)

Cassiopea developed clascoterone. It is widely used for the treatment of acne [217].
Hydrocortisone (F69) induces chirality in clascoterone in two steps (Scheme 87) [218].
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3.6.21. Artesunate (2020)

Arnivas developed artesunate for the treatment of severe malaria. The semi-synthesis
of artesunate is accomplished using a chiral pool of artesimin (F72) isolated from Artemisia
annua (Scheme 88) [219].
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3.6.22. Remdesivir (2020)

Remdesivir was developed by Gilead Sciences [220]. It is used for the treatment
of Ebola virus disease. The triazine intermediate, F75, generated from the hemiacetal
derivative undergoes chiral SFC separation to form chiral fragment F76, which is essential
for the development of remdesivir drugs (Scheme 89) [221].

Pharmaceuticals 2023, 16, x FOR PEER REVIEW 54 of 62 
 

 

 
Scheme 89. Synthesis of Remdesivir. 

4. Conclusions 
The concept of chirality has gained considerable attention owing to its importance in 

the field of medicinal chemistry. The importance of chirality is evidenced by the fact that 
most of the new drugs introduced annually into the market are single enantiomers. In 
general, drugs have structural homology across similar biological targets, and it is widely 
believed that knowledge of new chemical entities and approaches to their construction 
will enhance our ability to discover new drugs more efficiently. Incorporating chirality 
into drug discovery is a promising approach to better engage biological targets with en-
hanced drug properties. Chirality has the efficacy to remedy the challenges of drug opti-
mization by exploiting the three-dimensional nature of biology. Moreover, chiral small 
molecules are upsurging as an attractive clinical advantage in drug discovery. Our quest 
to find the way by which chirality is induced led us to summarize the asymmetric synthe-
sis of 89 FDA drugs approved from 2016 to 2020. The majority of the drugs were employed 
for the treatment of infectious diseases (28 drugs), oncology (20 drugs), metabolic and 
gastrointestinal disorders (14 drugs), central nervous system disorders (12 drugs), and 
others (15 drugs). With 89 new drugs approved by the FDA in hand, we extracted a sub-
group of small molecules featuring one or more chiral centers, and analyzed their syn-
thetic profile. The recent major progress in new asymmetric synthetic methodologies and 
enantiomeric separation techniques encourage the effort of chiral drug development. 
With regard to the methods routinely utilized to check the enantiomeric purity at the dif-
ferent stages of the discovery process, the term “chiral SFC” proved to emerge in the list 
of the synthesized drugs. Furthermore, we found out that all the drugs have been ap-
proved as single enantiomers with a well-defined absolute stereochemistry. 

It has since become clear that the individual enantiomers can have vastly different 
effects on the body, leading to a shift toward the development of single enantiomers as 
drugs. This trend is driven by advances in analytical techniques that allow for the separa-
tion and characterization of individual enantiomers, as well as a growing understanding 
of the pharmacology of chiral compounds. Additionally, the increasing focus on person-
alized medicine and the development of targeted therapies has led to a greater apprecia-
tion of the importance of chirality in drug discovery and development. Chiral drugs are 
now a major area of research and development in the pharmaceutical industry, with many 
companies investing heavily in the discovery and development of new chiral drugs. In 
terms of the costs of drug substances, the asymmetric synthesis of chiral drugs is still 

O

HO OH

CN
O

P
O

HN

O

O

N
N

N

NH2

Remdesivir

O

BnO OBn

CN
BnO N

N
N

NH2

O

HO OH

CN
HO N

N
N

NH2

Chiral resolution

O

F75 F76

Scheme 89. Synthesis of Remdesivir.



Pharmaceuticals 2023, 16, 339 53 of 61

4. Conclusions

The concept of chirality has gained considerable attention owing to its importance
in the field of medicinal chemistry. The importance of chirality is evidenced by the fact
that most of the new drugs introduced annually into the market are single enantiomers. In
general, drugs have structural homology across similar biological targets, and it is widely
believed that knowledge of new chemical entities and approaches to their construction will
enhance our ability to discover new drugs more efficiently. Incorporating chirality into
drug discovery is a promising approach to better engage biological targets with enhanced
drug properties. Chirality has the efficacy to remedy the challenges of drug optimization
by exploiting the three-dimensional nature of biology. Moreover, chiral small molecules
are upsurging as an attractive clinical advantage in drug discovery. Our quest to find
the way by which chirality is induced led us to summarize the asymmetric synthesis of
89 FDA drugs approved from 2016 to 2020. The majority of the drugs were employed
for the treatment of infectious diseases (28 drugs), oncology (20 drugs), metabolic and
gastrointestinal disorders (14 drugs), central nervous system disorders (12 drugs), and
others (15 drugs). With 89 new drugs approved by the FDA in hand, we extracted a
subgroup of small molecules featuring one or more chiral centers, and analyzed their
synthetic profile. The recent major progress in new asymmetric synthetic methodologies
and enantiomeric separation techniques encourage the effort of chiral drug development.
With regard to the methods routinely utilized to check the enantiomeric purity at the
different stages of the discovery process, the term “chiral SFC” proved to emerge in the list
of the synthesized drugs. Furthermore, we found out that all the drugs have been approved
as single enantiomers with a well-defined absolute stereochemistry.

It has since become clear that the individual enantiomers can have vastly different
effects on the body, leading to a shift toward the development of single enantiomers as
drugs. This trend is driven by advances in analytical techniques that allow for the separation
and characterization of individual enantiomers, as well as a growing understanding of the
pharmacology of chiral compounds. Additionally, the increasing focus on personalized
medicine and the development of targeted therapies has led to a greater appreciation of the
importance of chirality in drug discovery and development. Chiral drugs are now a major
area of research and development in the pharmaceutical industry, with many companies
investing heavily in the discovery and development of new chiral drugs. In terms of
the costs of drug substances, the asymmetric synthesis of chiral drugs is still expensive.
So, technological advances in asymmetric synthesis and chiral resolution/separation are
continuously required.
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