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Abstract: The date palm (Phoenix dactylifera L.) is a popular edible fruit consumed all over the world
and thought to cure several chronic diseases and afflictions. The profiling of the secondary metabo-
lites of optimized ripe Ajwa date pulp (RADP) extracts is scarce. The aim of this study was to
optimize the heat extraction (HE) of ripe Ajwa date pulp using response surface methodology (RSM)
and artificial neural network (ANN) modeling to increase its polyphenolic content and antioxidant
activity. A central composite design was used to optimize HE to achieve the maximum polyphenolic
compounds and antioxidant activity of target responses as a function of ethanol concentration, ex-
traction time, and extraction temperature. From RSM estimates, 75.00% ethanol and 3.7 h (extraction
time), and 67 ◦C (extraction temperature) were the optimum conditions for generating total phenolic
content (4.49 ± 1.02 mgGAE/g), total flavonoid content (3.31 ± 0.65 mgCAE/g), 2,2-diphenyl-1-
picrylhydrazyl (11.10 ± 0.78 % of inhibition), and cupric-reducing antioxidant capacity (1.43 µM
ascorbic acid equivalent). The good performance of the ANN was validated using statistical met-
rics. Seventy-one secondary metabolites, including thirteen new bioactive chemicals (hebitol II,
1,2-di-(syringoyl)-hexoside, naringin dihydrochalcone, erythron-guaiacylglycerol-β-syringaresinol
ether hexoside, erythron-1-(4′-O-hexoside-3,5-dimethoxyphenyl)-2-syrngaresinoxyl-propane-1,3-diol,
2-deoxy-2,3-dehydro-N-acetyl-neuraminic acid, linustatin and 1-deoxynojirimycin galactoside), were
detected using high-resolution mass spectroscopy. The results revealed a significant concentration of
phytoconstituents, making it an excellent contender for the pharmaceutical and food industries.

Keywords: Ajwa dates; antioxidant; artificial neural network; polyphenolics; response surface
methodology

1. Introduction

Extraction is the first and most significant step in recovering and purifying bioactive
chemicals from plant sources, and it is often accomplished using maceration, distillation,
or Soxhlet reflux extraction, but long extraction times and low extraction effectiveness limit
these approaches [1]. For large-scale extraction, the best approach should provide high
efficiency with minimal processing time. In general, either empirical or statistical methods
can be used to optimize a process [2,3]. The one-factor-at-a-time technique is an empirical
system that involves changing one element at a time while maintaining all other variables
constant [4]. The main limitation of this strategy is that it neglects the interplay between the
factors, and hence, it cannot account for all the effects of a parameter on the response. One
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more burden is that it requires numerous trials to finish the study, thereby increasing the
time, costs, and reagent and material consumption [5]. To solve this challenge, multivariate
statistical approaches were adopted for optimizing analytical procedures. One of the most
prominent multivariate strategies used in analytical optimization is the response surface
methodology (RSM) [4]. RSM is a collection of statistical and mathematical methodologies
for constructing, developing, and adjusting procedures in which many variables impact
a desired response, with the purpose of optimizing that response. It can be used to
develop, formulate, and create new products, as well as refining the design of current
ones. It describes how the independent variables influence the processes, either singly
or together. This experimental approach provides a mathematical model that illustrates
the chemical or biological procedures in addition to assessing the impact of independent
factors [5,6]. However, any nonlinear relationship between the variables may reduce the
forecast accuracy of RSM [7]. Artificial neural networks (ANNs) are rapidly being utilized
as prediction tools in a variety of disciplines, including engineering, owing to their capacity
to use learning algorithms to identify input–output links for nonlinear complex systems [8].

The date palm (Phoenix dactylifera L., Arecaceae family) is a popular edible fruit
consumed all over the world. The Ajwa date is only cultivated in Medina, Saudi Arabia. It
is one of the most expensive and valued cultivars on the market owing to religious and
ethnomedical beliefs regarding its health-promoting qualities [9]. The beneficial properties
of Ajwa dates are mentioned in the Old Testament, “Hadith”, and Islamic literature, and
eating these dates is thought to cure several chronic diseases and afflictions [9]. It is regarded
to have cardioprotective [10], hepatoprotective [11], nephroprotective [12], and constipation-
relieving [13] properties and antioxidant, anti-inflammatory [14], anticancer [15], antifungal,
antibacterial, and antiviral activities [16]. The fruit is rich in dietary fiber, minerals, organic
acids, and vitamins and has great nutritional and therapeutic value [13]. Carbohydrates
constitute more than 70% of the fruit [17]. In addition, it contains abundant bioactive
components such as polyphenols, including phenolic acids, flavonoids, and lignans [13].

The optimization of the extraction of various dates from Tunisia, Algeria, Egypt,
and other locations and their polyphenolic content as well as antioxidant activities were
described in the prior literature; however, no systematic statistical technique was ap-
plied [1,18,19]. Additionally, the majority of the optimization of the extraction process was
performed solely using RSM methodology, but the illustrious scientists made no attempt
to compare the efficacy of predictive modeling with alternative, more effective methods
such as ANN. Furthermore, to the best of our knowledge, this is the first study to use
heat extraction (HE) with RSM and ANN to enhance the polyphenolic components and
antioxidant activity of ripe Ajwa date pulp (RADP) extracts. The aim was to use the RSM
central composite design (CCD) tool to investigate and optimize extraction parameters
such as extraction temperature, time, and ethanol concentration to acquire the maximum
polyphenolic content and antioxidant potentiality from RADP. We argue that the projected
values generated by the RSM-CCD approach correspond to the actual results and that this
statistical tool is an effective model to optimize RADP polyphenolic compound extraction
and antioxidant activity. The estimating capabilities and modeling effectiveness of the RSM
and ANN models were also statistically examined. Additionally, we have also profiled the
secondary metabolites of RADP using high-resolution mass spectrometry analysis.

2. Results and Discussion
2.1. Fitting of the RSM and ANN Models

Table 1 summarizes the experimental parameters and findings of 20 extraction situa-
tions. All response variables were transformed into second-order quadratic polynomial
equations to account for the difference in the various replies as functions of the extraction
factors. The statistical significance of the fitted second-order quadratic model equations
were determined using ANOVA (Table 2). To improve the model fit and prediction, non-
significant terms (p > 0.05) were removed from the models. The p-values were used to
determine the importance of each coefficient. The model terms were considered significant,
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very significant, and strikingly significant when the p-values were less than 0.05, 0.01, and
0.001, respectively; the model terms were not significant when the p-values were greater
than 0.05 [20].

Table 1. Central composite design (CCD) for independent variables and corresponding response
values (experimental).

Run
Independent Variables Responses

(X1) (X2) (X3) TPC (Y1) TFC (Y2) DPPH (Y3) CUPRAC
(Y4)

1 75 4 70 4.30 ± 0.68 3.16 ± 0.73 10.81 ± 0.72 1.38 ± 0.05
2 25 2 50 3.81 ± 0.83 2.55 ± 0.52 10.25 ± 0.39 1.47 ± 0.02
3 75 2 50 3.90 ± 0.34 2.55 ± 0.25 9.75 ± 0.37 1.16 ± 0.16
4 100 3 60 4.30 ± 0.26 3.44 ± 0.65 10.11 ± 0.24 1.12 ± 0.10
5 75 2 70 3.50 ± 0.41 2.56 ± 0.32 9.95 ± 1.00 1.17 ± 0.07
6 50 3 60 4.53 ± 0.82 3.10 ± 0.21 10.45 ± 0.10 1.40 ± 0.08
7 0 3 60 3.01 ± 1.02 2.52 ± 0.25 9.57 ± 0.56 0.91 ± 0.06
8 75 4 50 4.31 ± 0.49 2.95 ± 0.45 9.88 ± 0.26 0.88 ± 0.04
9 50 3 60 4.30 ± 0.42 3.15 ± 0.54 10.40 ± 0.95 1.46 ± 0.08
10 50 3 60 4.51 ± 0.23 3.09 ± 0.98 10.42 ± 0.35 1.43 ± 0.04
11 50 3 80 3.78 ± 0.62 2.26 ± 0.10 9.50 ± 0.26 1.11 ± 0.02
12 50 3 60 4.46 ± 0.06 3.01 ± 1.02 10.48 ± 0.33 1.45 ± 0.06
13 50 3 60 4.48 ± 0.04 3.12 ± 0.56 10.41 ± 0.53 1.43 ± 0.16
14 25 4 70 3.15 ± 0.08 2.16 ± 0.46 9.60 ± 0.35 1.00 ± 0.13
15 50 3 60 4.51 ± 0.06 2.95 ± 0.29 10.20 ± 0.15 1.45 ± 0.19
16 50 3 40 3.85 ± 0.24 2.48 ± 0.37 9.60 ± 0.60 0.92 ± 0.15
17 25 2 70 3.25 ± 0.68 2.15 ± 0.19 9.36 ± 0.72 1.12 ± 0.07
18 50 1 60 2.87 ± 0.68 2.03 ± 0.49 9.80 ± 0.39 1.32 ± 0.10
19 50 5 60 2.90 ±0.64 2.50 ± 1.05 9.90 ± 0.72 0.86 ± 0.02
20 25 4 50 2.96 ± 0.80 2.38 ± 1.06 9.53 ± 0.39 0.75 ± 0.08

X1: ethanol concentration (%); X2: time (h); X3: temperature (◦C). TPC: total phenolic content (mg gallic acid
equivalent/g dry weight extract); TFC: total flavonoid content (mg catechin equivalent/g dry weight extract);
DPPH: DPPH radical scavenging activity (% inhibition); CUPRAC: cupric-reducing antioxidant capacity (µM
ascorbic acid equivalent).

The statistical test known as the F-value, which compares the source mean square to
the residual square, is frequently employed in conjunction with the p-value. The better
the F-value, the more significant the model [21]. Table 2 outlines the model F-value range,
which runs from 34.85 to 154.89. Adjusted R2 adjusts for the number of terms in the
model, whereas projected R2 measures the variation in new data explained by the model.
The various R2 values represent the degree of interpretation concerning the mean that the
model can explain. For a fair level of agreement, the maximum expected difference between
adjusted R2 and predicted R2 is 0.2; otherwise, it may indicate a problem with the model or
the experimental data used to create the model [22]. The model is more accurate if adjusted
R2 and projected R2 values are near 1. The constructed regression models, therefore,
have a high level of statistical significance, as shown by their R2 values (0.9691–0.9929),
adjusted R2 value (0.9413–0.9865), and predicted R2 value (0.8432–0.9580). It is important
to note that R2 is ineffective for establishing the effectiveness or validity of a nonlinear
model [23]. Contrarily, the most widely used metrics among the numerous model selection
techniques are the predicted residual sum of squares (PRESS), the Akaike information
criterion (AIC), and the Bayesian information criterion (BIC) [24]. The PRESS measures a
model’s propensity to predict; hence, the lower the PRESS score, the greater the model’s
prediction [25]. The PRESS value range in the current study is between 0.0464 and 0.5369,
which supports the claim. Furthermore, it is generally known that Schwarz’s Bayesian
information criterion (BIC) and Akaike information criterion (AIC) are both penalized-
likelihood information criteria. In contrast to BIC, which is an estimate of the posterior
probability of a model being authentic in a specific Bayesian setup, AIC is an estimate of
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a constant plus the distance between the fitted likelihood function of the model and the
unknown actual likelihood function of the data [26]. The lower AICc and BIC model is
typically considered the “best” model. AICc and BIC values, in this case, vary from −55.62
to−4.85 and−70.11 to−19.33, respectively, and indicate that the intended responses can be
predicted with great accuracy. Furthermore, the appropriate precision value is an indicator
of the signal-to-noise ratio. It is preferable to have a ratio >4 [27]. Here, the ratio was
between 18.9896 and 34.9882, suggesting a sufficient signal, indicating that the model is
suitable for this procedure. The coefficient of variation (CV) is a measure of a model’s
reproducibility; in general, if CV < 10%, the model is reproducible [28]. In this study the CV
values range from 0.9981 to 3.44. The modified R2 (R2 ≥ 0.80) was well within acceptable
limits in this study, showing that the experimental data fits second-order polynomial
equations satisfactorily [29]. To demonstrate the interactions between the independent
variables, 3D surfaces and contour plots were constructed using multiple linear regression
equations. The main and cross-product effects of the independent variables on the response
variables are more easily understood from these 3D charts (Figure 1A–D).

There is growing body of evidence that ANN modeling is superior and more sophisti-
cated than RSM and that ANNs are an emerging viable alternative to the RSM system for
complicated nonlinear multivariate modeling. In terms of fitting experimental responses,
prediction, and modeling of biological processes, ANNs are more precise than RSM [30,31].
The experimental values were subjected to ANN modeling for further model verification.
The predicted values obtained after training the ANN model are given in supplementary
data Table S1.

Table 2. ANOVA for quadratic model (transfer function: none).

ANOVA for Quadratic Model for TPC

Source RC SS DF MS F-Value p-Value

Model 7.18 9 0.7975 81.83 <0.0001 Significant
Intercept 4.45

Linear terms

X1 0.3400 1.85 1 1.85 189.79 <0.0001 Significant
X2 0.0200 0.0064 1 0.0064 0.6567 0.4366 Non-significant
X3 −0.0575 0.0529 1 0.0529 5.43 0.0421 Significant

Interaction terms

X1X2 0.2700 0.5832 1 0.5832 59.84 <0.0001 Significant
X1X3 −0.0050 0.0002 1 0.0002 0.0205 0.8889 Non-significant
X2X3 0.1425 0.1625 1 0.1625 16.67 0.0022 Significant

Quadratic terms

X1
2 −0.2089 1.10 1 1.10 112.55 <0.0001 Significant

X2
2 −0.4001 4.03 1 4.03 413.02 <0.0001 Significant

X3
2 −0.1676 0.7064 1 0.7064 72.48 <0.0001 Significant

Lack of Fit 0.0617 5 0.0123 1.73 0.2819 Non-significant
Pure error 0.0358 5 0.0072

R2 0.9866
Adjusted R2 0.9745
Predicted R2 0.9262

Adeq
Precision 23.5003

C.V. % 2.58
PRESS 0.5369

BIC −19.77
AICc −5.28
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Table 2. Cont.

ANOVA for quadratic model for TFC

Model 3.11 9 0.3454 39.85 <0.0001 significant
Intercept 3.05

Linear terms

X1 0.2388 0.9120 1 0.9120 105.24 <0.0001 Significant
X2 0.1113 0.1980 1 0.1980 22.85 0.0007 Significant
X3 −0.0525 0.0441 1 0.0441 5.09 0.0477 Significant

Interaction terms

X1X2 0.1450 0.1682 1 0.1682 19.41 0.0013 Significant
X1X3 0.1050 0.0882 1 0.0882 10.18 0.0097 Significant
X2X3 0.0475 0.0180 1 0.0180 2.08 0.1795 Non-significant

Quadratic terms

X1
2 −0.0328 0.0271 1 0.0271 3.13 0.1073 Non-significant

X2
2 −0.2116 1.13 1 1.13 129.89 <0.0001 Significant

X3
2 −0.1853 0.8637 1 0.8637 99.66 <0.0001 Significant

Lack of Fit 0.0585 5 0.0117 2.07 0.2213 Non-significant
Pure error 0.0282 5 0.0056

R2 0.9729
Adjusted R2 0.9485
Predicted R2 0.8432

Adeq
Precision 21.4961

C.V. % 3.44
PRESS 0.5009

BIC −22.11
AICc −7.63

ANOVA for quadratic model for DPPH

Model 3.12 9 0.3470 34.85 <0.0001 Significant
Intercept 10.39

Linear terms

X1 0.1706 0.4658 1 0.4658 46.77 <0.0001 Significant
X2 0.0444 0.0315 1 0.0315 3.16 0.1057 Non-significant
X3 0.0069 0.0008 1 0.0008 0.0759 0.7885 Non-significant

Interaction terms

X1X2 0.1837 0.2701 1 0.2701 27.12 0.0004 Significant
X1X3 0.2437 0.4753 1 0.4753 47.73 <0.0001 Significant
X2X3 0.2112 0.3570 1 0.3570 35.85 0.0001 Significant

Quadratic terms

X1
2 −0.1399 0.4920 1 0.4920 49.40 <0.0001 Significant

X2
2 −0.1374 0.4746 1 0.4746 47.65 <0.0001 Significant

X3
2 −0.2124 1.13 1 1.13 113.88 <0.0001 Significant

Lack of Fit 0.0505 5 0.0101 1.03 0.4887 Non-significant
Pure error 0.0491 5 0.0098

R2 0.9691
Adjusted R2 0.9413
Predicted R2 0.8504

Adeq
Precision 18.9896

C.V. % 0.9981
PRESS 0.4822

BIC −19.33
AICc −4.85
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Table 2. Cont.

ANOVA for quadratic model for CUPRAC

Model 1.10 9 0.1218 154.89 <0.0001 Significant
Intercept 1.43

Linear terms

X1 0.0419 0.0281 1 0.0281 35.68 0.0001 Significant
X2 −0.1144 0.2093 1 0.2093 266.19 <0.0001 Significant
X3 0.0481 0.0371 1 0.0371 47.13 <0.0001 Significant

Interaction terms

X1X2 0.0963 0.0741 1 0.0741 94.25 <0.0001 Significant
X1X3 0.0762 0.0465 1 0.0465 59.15 <0.0001 Significant
X2X3 0.1363 0.1485 1 0.1485 188.87 <0.0001 Significant

Quadratic terms

X1
2 −0.1074 0.2899 1 0.2899 368.74 <0.0001 Significant

X2
2 −0.0886 0.1975 1 0.1975 251.22 <0.0001 Significant

X3
2 −0.1086 0.2967 1 0.2967 377.37 <0.0001 Significant

Lack of Fit 0.0055 5 0.0011 2.37 0.1827 Non-significant
Pure error 0.0023 5 0.0005

R2 0.9929
Adjusted R2 0.9865
Predicted R2 0.9580

Adeq
Precision 34.9882

C.V. % 2.36
PRESS 0.0464

BIC −70.11
AICc −55.62

RC: regression coefficient; SS: sum of squares; MS: mean square.

The ANN model predicted values that were reasonably close to the observed values,
indicating the appropriateness of our model. The nonlinear correlations between the
extraction parameters (X1, X2, and X3) and response variables (Y1, Y2, Y3, and Y4) were
predicted using the ANN model. By comparing the error between network training and
testing, the number of neurons in the hidden layer was modified using the hit-and-trial
strategy. During development, the input layer was not triggered using the transfer function,
but the output and hidden layers were activated using pure line (purelin) and tangent
sigmoid transfer (tansig) functions in MATLAB. In the experiment, the lowest feasible
error between training and testing was evaluated, and the minimum number of epochs to
prevent model overfitting was considered; the results were consistent with the findings
of previous works [32]. Training the network with the Levenberg–Marquardt technique
yielded the best validation performance for all dependent variables: TPC (Y1), TFC (Y2),
DPPH (Y3), and CUPRAC (Y4) (supplementary data Figures S1–S4).

2.2. Comparison of the Prediction Abilities of the RSM and ANN Models

The predictive and estimate capabilities of RSM and ANN models were compared.
Comparative similarity plots were used to examine the projected values of the four target
responses (Y1, Y2, Y3, and Y4) obtained using the ANN model. The results indicate that
compared to the RSM model, the ANN model was more correct, precise, and capable of
assessment in terms of fitting the experimental data to all target responses (supplementary
data Table S1). The RSM model had a greater degree of divergence between the projected
and actual data than the ANN model, whereas the ANN model had stable residuals with
low variation.
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Figure 1. The three-dimensional (3D) response surface plots of RADP extraction on ethanol con-
centration, time, and temperature for TPC (A), TFC (B), DPPH radical scavenging activity (C), and
CUPRAC (D) as a function of significant interaction factors for RSM.

The values of the correlation coefficient (R2), root-mean-square error (RMSE), absolute
average deviation (AAD), and standard error of prediction (SEP) were calculated to com-
pare the RSM and ANN models (Table 3). Better modeling requires lower RMSE, AAD, and
SEP, and greater R2. The calculated R2 values of the trained ANN model were higher than
those of the RSM model, indicating the superiority of the ANN model in terms of predicting
all four dependent variables. The AAD is a measure of the projected data’s divergence
from the actual data, whereas the RMSE numbers demonstrate the model’s absolute fit.
The ANN model performed better than the RSM model, as seen by the former’s lower
AAD and RMSE values. In addition, the ANN model had low SEP values, in the range
of 0.0449–0.2903. The ANN model has a substantially stronger predictive capacity than
the RSM model because the former can approximate nonlinear systems, but the latter is
only successful if the system is constrained to second-order polynomial regression. The
ANN model is likewise unaffected by experimental design, and it is faster at calculating
many responses in a single run than the RSM model, which requires multiple runs for
multi-response optimization in a typical experimental design [33]. Unlike the RSM model,
building an ANN model requires many iterative calculations and long computation time.
Moreover, ANNs are also useful as they are flexible for the addition of new experimental
data for model generation [33].
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Table 3. Comparison of the prediction abilities of the RSM and ANN models.

Parameters
TPC TFC DPPH CUPRAC

RSM ANN RSM ANN RSM ANN RSM ANN

R2 0.9866 0.9899 0.9729 0.9859 0.9691 0.9828 0.9929 0.9954
RMSE 0.8053 0.4475 0.1663 0.1134 0.2586 0.1635 0.1063 0.0903

AAD (%) 4.079 2.052 6.011 3.753 0.8815 0.7011 6.764 3.738
SEP (%) 0.2225 0.1518 0.4591 0.2903 0.0529 0.0449 0.3710 0.2728

2.3. Effect of HE Parameters on the TPC and TFC

The TPC and TFC in the RADP extracts varied from 2.87 to 4.53 mgGAE/g and 2.03
to 3.44 mgCAE/g, respectively (Table 1). The linear effect of ethanol concentration (X1),
temperature (X3), and the quadratic component of (X1

2), (X2
2), and (X3

2) as well as the
interaction of (X1X3) and (X2X3) were significant for TPC. The linear effect of (X1), (X2),
and (X3); the quadratic component of (X2

2) and (X3
2); and the interaction of (X1X2) and

(X1X3) were significant for TFC (Table 2). The following second-order polynomial equations
shown in Equations (1) and (2) demonstrate the relationships among TPC, TFC, and their
variables.

TPC(Y1) = 4.45 + 0.3400X1 + 0.0200X2 − 0.0575X3 − 0.2089X2
1 − 0.4001X2

2 − 0.1676X2
3 + 0.2700X1X2

−0.0050X1X3 + 0.1425X2X3
(1)

TFC(Y2) = 3.05 + 0.2388X1 + 0.1113X2 − 0.0525X3 − 0.0328X2
1 − 0.2116X2

2 − 0.1853X2
3 + 0.1450X1X2

+0.1050X1X3 + 0.0475X2X3
(2)

The lack of fit values for TPC and TFC (F = 1.73 and 2.07, respectively) were non-
significant, indicating that the model accurately predicted R2 = 0.9866 (TPC) and 0.9729
(TFC) and Adj.R2 = 0.9745 (TPC) and 0.9485 (TFC) (Table 2). The RSM model adequately
predicted the effects of parameters on the TPC and TFC of the RADP extract. As shown
in Figure 1A,B, when the temperature (X3) was fixed (60 ◦C), the maximum TPC and TFC
were achieved when the ethanol concentration (X1) was 50%, and time was 3 h. This could
be because a medium concentration of ethanol may make the solvent more polar and
dissolve more polyphenols, both polar and moderately polar ones [1]. Experiments in a
previous comparative study revealed that the extraction of polyphenols from green tea
leaves using a high hydrostatic pressure procedure augmented as the percentage of ethanol
in the solvent, which peaked at 50% ethanol and dropped after that [34]. Hence, extraction
of polyphenols in hydroalcoholic solution is highly efficient as the polyphenols are highly
soluble in these solutions [1]. Furthermore, when ethanol is present at a moderate quantity
in water, it can disrupt and break the architecture and structure of phospholipids that
make up the lipid bilayer of membranes, affecting the penetrability of plant cells, thereby
allowing better extraction and diffusion of the polyphenolic compounds [34].

2.4. Effect of HE Parameters on the In Vitro Antioxidant Capacity (AC)

DPPH radical scavenging activity and CUPRAC analysis revealed a linear significant
effect of ethanol concentration (X1) and the quadratic effect of temperature (X3) on antioxi-
dant activity. The fitted second-order polynomial equations for DPPH (% inhibition) and
CUPRAC (ascorbic acid equivalent µM) are shown in Equations (3) and (4):

DPPH(Y3) = 10.39 + 0.1706X1 + 0.0444X2 − 0.0069X3 − 0.1399X2
1 − 0.1374X2

2 − 0.2124X2
3 + 0.1837X1X2

+0.2437X1X3 + 0.2112X2X3
(3)

CUPRAC(Y4) = 1.43 + 0.0419X1 − 0.1144X2 + 0.0481X3 − 0.1074X2
1 − 0.0886X2

2 − 0.1086X2
3

+0.0963X1X2 + 0.0762X1X3 + 0.1363X2X3
(4)

The AC values ranged from 9.36% to 10.81% inhibition of DPPH and from 0.75 to
1.47 µM ascorbic acid equivalent (Table 1). The ANOVA results show that the data fitted
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the model results for DPPH (R2 = 0.9691 and Adj. R2 = 0.9413) and CUPRAC response
(R2 = 0.9929 and Adj. R2 = 0.9865), and the lack of fit was non-significant (F = 1.03 for DPPH
and 2.37 for CUPRAC) (Table 2). From the 3D response surface plots shown in Figure 1C,D,
both DPPH radical scavenging activity and CUPRAC activity increase with increasing
ethanol concentration to reach the maximum values at 100% and 75% ethanol, respectively.
This means that the greater the quantity of the organic solvent, the better the electron and
proton donation capacities are. This result is consistent with the prior finding for TFC that
100% ethanol is required for maximum extraction [34]. Increasing the ethanol concentration
allows for the extraction of significant polyphenolics in RADP, both in terms of quality
and quantity. There is increasing evidence that the quality and quantity of polyphenolic
compounds and antioxidant activity differ with the ethanol concentrations [35,36].

2.5. Model Validation

The desirability function optimizes responses for polyphenolic content (TPC and
TFC) and antioxidant activity (DPPH and CUPRAC) concurrently. The parameters were
forecasted using Derringer’s desirability function, allowing a multivariate analysis to
discover the ideal level for all responses in a single extraction [37]. In this study, the
following conditions were used to achieve the maximal overall desirability D = 0.934 (on
a scale of 0 to 1): X1, 75%; X2, 3.7 h; and X3, 67 ◦C. Figure 2 shows the contour plot as a
function of ethanol concentration, extraction time, and temperature at optimum condition.
To verify the sufficiency of the model equations, a duplicate experiment was conducted
in the optimal conditions predicted by Derringer’s desire model. The following results
were obtained: TPC = 4.49 ± 1.02 mgGAE/g, TFC = 3.31 ± 0.65 mgCAE/g, % inhibition
of DPPH = 11.10% ± 0.78%, and µM ascorbic acid equivalent CUPRAC = 1.43 ± 0.43. As
stated in Table 4, the relative standard deviations (RSDs) of TPC, TFC, DPPH, and CUPRAC
showed that the predicted values for all groups were very similar to the experimental results.
This result is also supported by prior research [29].

Table 4. Experiment data of the validation of predicted values at optimal extraction conditions of
RADP.

Response Exp. Pred. Std RSD (%)

TPC (mgGAE/g) 4.49 ± 1.02 4.53 0.028 0.006
TFC (mgCAE/g) 3.31 ± 0.65 3.30 0.007 0.002

DPPH (% inhibition) 11.10 ± 0.78 10.69 0.290 0.027
CUPRAC (µM ASCE) 1.43 ± 0.43 1.41 0.014 0.010

Optimal condition: ethanol concentration (%), 75 %; time (h), 3.7; temperature (◦C), 67. Exp.: experimental value;
Pred.: predicted value; Std: standard deviation; RSD: relative standard deviation.

2.6. Identification of Secondary Metabolites in RADP with High-Resolution Mass Spectrometry

Secondary metabolites in the RADP extracts were identified using ESI-MS/MS in
the positive and negative ionization modes. As indicated in Table 5, 71 compounds
were identified in the negative mode using MSn data from the mass of the precursor ion,
fragments, recognized fragmentation patterns for the given classes of compounds, and
neutral mass loss, and from comparison with the existing literature and searches in online
databases. Furthermore, the significance of these results was determined by finding the
confidence level. Level 3 denotes a tentative candidate, whereas level 2 indicates the
probable structure of the identified compound [38].
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Table 5. List of possible identified compounds of the optimized extract of ripe Ajwa date pulp (RADP) by electrospray ionization mass spectrometry (ESI-MS)/MS.

No. Compound Name EF OM (m/z)−/+ CM (m/z)−/+ MS/MS (Negative Mode) CE CL

Ph
en

ol
ic

ac
id

s
an

d
de

ri
va

ti
ve

s

1 Coumalic acid # C6H4O4 139.0050 139.0031 111.01, 95.01 20 3
2 Hydroxybenzoylhexose C13H16O8 299.0876 299.0884 281.06, 237.04, 179.03, 163.06, 137.02 20 2
3 Coumaroyl hexose C15H18O8 325.0929 325.0923 163.03, 147.04 10 2
4 Caffeoylshikimic acid C16H16O8 335.0776/337.0932 335.0772 179.01, 161.03, 155.03, 137.05 20 2
5 Caffeic acid hexoside C15H18O9 341.1100 341.0872 215.03, 179.06, 161.04 20 2
6 Caffeic acid derivatives C18H18O9 377.0885 377.0878 341.10, 215.03, 179.06, 161.04 10 2
7 Dicaffeoyl shikimic acid C22H26O13 497.1297 497.1295 335.01, 178.02, 135.02 20 2
8 Hebitol II # C21H30O14 505.1603 505.1557 341.08,325.09, 179.03, 163.03 30 3
9 1,2-di-(syringoyl)-hexoside # C24H28O14 539.1377/541.1533 539.1401 359.09, 341.08, 197.04, 153.05 30 3

Fl
av

on
oi

ds
an

d
de

ri
va

ti
ve

s

10 Chrysoeriol C13H16O8 299.0561/301.0717 299.0555 285.03, 255.02, 153.01, 147.04, 135.03, 125.03 20 2
11 Quercetin C15H10O7 301.0354/303.0510 301.0348 273.02, 257.03, 229.05, 179.01, 151.01 20 2
12 Dihydrokaempferol hexoside C21H22O11 449.1089 449.1083 287.04, 269.05, 259.06, 169.01, 151.01 20 2
13 Isoquercitrin C21H20O12 463.0878 463.0876 301.05, 268.01, 179.02, 151.01 20 2
14 Isorhamnetin hexoside C22H22O12 477.1035/479.1191 477.1033 315.05, 300.01, 271.02, 255.05, 179.05, 151.02 20 2
15 Luteolin hexosyl sulfate C21H20O14S 527.0491/529.0647 527.0495 447.05, 285.01, 241.06 20 2
16 Chrysoeriol hexosyl sulfate C22H22O14S 541.0645/543.0801 541.0652 299.05, 284.05, 241.02 20 2
17 Isoquercitrin sulfate C21H20O15S 543.0441/545.0597 543.0444 463.05, 301.01, 268.01, 179.02, 151.01 20 2
18 Apigenin-8-C-(pentosyl) hexoside C26H28O14 563.1655 563.1400 473.01, 443.02, 413.05, 340.08, 311.02 30 2
19 Naringin dihydrochalcone # C27H34O14 581.1863 581.1870 436.13, 274.08, 167.03, 149.06, 133.06, 30 3
20 Afzelin gallate C28H24O14 583.1093 583.1087 297.05, 285.04, 169.01 20 2
21 Luteolin rhamnosyl hexoside C27H30O15 593.1507 593.1506 447.09, 285.03, 153.01, 135.04 20 2
22 Chrysoeriol rhamnosyl hexoside C28H32O15 607.1669 607.1663 461.10, 299.05, 284.03, 153.01, 149.05 20 2
23 Quercetin rhamnosyl glucoside C27H30O16 609.1459 609.1455 463.08, 447.09, 301.02, 151.04 20 2
24 Isorhamnetin rhamnosyl glucoside C28H32O16 623.1617/625.1773 623.1612 477.10, 315.05, 299.05, 165.05 20 2
25 Quercetin diglucoside C27H30O17 625.1410/627.1566 625.1404 463.08, 301.01 20 2
26 Isorhamnetin diglucoside C28H32O17 639.1563/641.0612 639.1561 447.01, 315.01 20 2
27 Luteolin dihexosyl sulfate C27H30O19S 689.1029 689.1023 519.11, 489.10, 471.09, 399.07, 369.06, 339.05 20 2
28 Luteolin rhamnosyl dihexoside C33H40O20 755.2046 755.2034 709.16, 593.10, 575.05, 285.01 20 2
29 Chrysoeriol rhamnosyl dihexoside C34H42O20 769.2189 769.2191 623.16, 461.10, 299.05, 284.03, 153.02 20 2
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Table 5. Cont.

No. Compound Name EF OM (m/z)−/+ CM (m/z)−/+ MS/MS (Negative Mode) CE CL

Li
gn

an
s 30 Erythro-guaiacylglycerol-β-syringaresinol

ether hexoside # C38H48O17 775.2821 775.2813 613.22, 417.14, 181.05, 151.03 30 3

31
Erythro-1-(4”-glucoside-3,5-
dimethyoxyphenyl)-2-syringaresinoxyl-
propane-1,3-diol #

C39H50O18 805.2926 805.2919 643.23, 417.14, 181.05, 151.03 30 3

Si
al

ic
ac

id
s 32 2-Deoxy-2,3-dehydro-N-acetylneuraminic

acid # C11H17NO8 290.0879 290.0876 230.06, 200.05, 171.01, 128.07 20 3

33 N-acetyl-α-neuraminic acid # C11H19NO9 308.0987/310.1143 308.0987 290.09, 219.06, 200.05, 146.08, 128.07 20 3
34 6′-Sialyllactose # C23H39NO19 632.2039 632.2044 290.09, 200.05, 128.07 30 3

A
m

in
o

ac
id

s

35 L-proline C5H9NO2 114.0570 114.0561 70.06 10 2
36 Pyroglutamic acid C5H7NO3 128.0360/130.0416 128.0353 82.3, 71.9 10 2
37 L-aspartic acid C4H7NO4 132.0329 132.0302 116.03, 88.04 10 2
38 Allysine # C6H11NO3 144.0682 144.0666 127.04, 126.05, 100.07 20 3

Su
ga

r
m

ol
ec

ul
es

39 Ribonic acid C5H10O6 165.0421 165.0418 149.04, 105.01, 87.00, 75.00 10 2
40 L-Galactose C6H12O6 179.0572 179.0561 161.04, 143.03, 113.02, 101.02, 10 2
41 Mannitol C6H14O6 181.0725 181.0718 165.01, 147.03, 129.05, 111.00 20 2
42 Gluconic acid C6H12O7 195.0522 195.0504 177.05, 159.02, 129.05, 98.90 10 2
43 Sedoheptulose C7H14O7 209.0679 209.0680 191.05, 179.05, 149.04, 20 2
44 Hexose derivative C12H19O10 323.0977 323.0978 179.05, 161.04, 143.03, 113.02, 101.02 10 2
45 Maltitol C12H24O11 343.1255 343.1240 283.10, 265.09, 179.05, 161.04, 143.03 20 2
46 Unsaturated digalacturonate # C12H16O12 351.0574/353.0730 351.0569 291.07, 273.06, 175.02, 131.03 20 3
47 Xylosmaloside # C18H20O9 379.1027/381.1183 379.1029 343.08, 217.05, 179.05, 161.04 20 3

C
ar

bo
xy

lic
ac

id
s

48 Fumaric acid C4H4O4 115.0050 115.0037 71.01 10 2
49 Glutaconic acid C5H6O4 129.0203 129.0203 111.00, 85.02 10 2
50 Glutaric acid C5H8O4 131.0355 131.0350 113.00, 87.02 10 2
51 3-Methylglutaconic acid C6H8O4 143.0367 143.0361 99.03 20 2
52 Methyl glutaric acid C6H10O4 145.0521 145.0506 127.02, 101.02 10 2
53 2-Hydroxyglutaric acid C5H8O5 147.0301 147.0299 129.01, 99.03 10 2
54 Hydroxymethyl glutaric acid C6H10O5 161.0459 161.0455 143.03, 117.05, 99.04 10 2
55 Citric acid C6H8O7 191.0197/193.0353 191.0197 173.00, 129.01, 111.00 20 2
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Table 5. Cont.

No. Compound Name EF OM (m/z)−/+ CM (m/z)−/+ MS/MS (Negative Mode) CE CL

Fa
tt

y
ac

id
s

56 Palmitic acid C16H32O2 255.2330 255.2330 237.23, 211.24, 197.22 20 2
57 Linolenic acid C18H30O2 277.2165 277.2169 259.20, 233.22, 205.21, 179.25, 165.23 10 2
58 α-Linoleic acid C18H32O2 279.2331 279.2330 261.22 10 2
59 Oleic acid C18H34O2 281.2487 281.2486 263.25, 181.21, 127.25 10 2
60 Hydroxy octadecatrienoic acid # C18H30O3 293.2120 293.0216 275.22 20 3
61 Hydroxy octadecadienoic acid C18H32O3 295.2276 295.2273 277.23 20 2
62 Hydroxy octadecenoic acid C18H34O3 297.2433 297.2429 279.23 20 2
63 Dihydroxy octadecadienoic acid C18H32O4 311.2246/313.2402 311.2239 293.22, 275.23 20 2
64 Dihydroxy octadecenoic acid C18H34O4 313.2381/315.2537 313.2378 295.23, 277.25, 183.32 20 2
65 Dihydroxy octadecanoic acid C18H36O4 315.2538/317.2694 315.2535 297.23, 279.25 20 2
66 Trihydroxy octadecadienoic acid C18H32O5 327.2176 327.2171 309.23, 291.25, 273.23 20 2
67 Trihydroxy octadecenoic acid C18H34O5 329.2346/331.2502 329.2333 311.25, 293.26, 275.23 20 2

O
th

er
s

68 Linustatin # C16H27NO11 408.151/410.1666 408.1506 318.11, 246.09, 228.08, 214.07 20 3
69 Norbellidifodin # C13H8O6 259.024/261.0396 259.0248 241.01, 215.12, 187.05, 171.03 30 3
70 1-Deoxynojirimycin hexoside # C12H23NO9 324.1293 324.1295 161.04, 144.06, 143.03, 113.02 30 3

71 Oxycoumarin-4-acetic acid methyl ester
hexoside # C18H20O10 395.0962 395.0978 233.04, 205.05, 161.02, 133.02 30 3

EF: elemental formula; OM: observed mass; CM: calculated mass; CE: Collision Energy (eV); CL: confidence level; −/+: negative mode/positive mode. # First time identification in Ajwa
date fruits.
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2.6.1. Phenolic Acids

A phenolic acid may lose its methyl (15 Da), hydroxyl (18 Da), or carboxyl (44 Da)
moiety to form a specific fragment ion. The fragmentation of a phenolic acid glycoside
begins with the cleavage of the glycosidic link to yield the m/z of the phenolic acid
and the corresponding loss of the sugar molecule (neutral mass loss of 162 Da). Thus,
compounds 2–7 were tentatively identified as hydroxybenzoylhexose, coumaroyl hexose,
caffeoylshikimic acid, caffeic acid hexoside, caffeic acid derivatives, and dicaffeoyl shikimic
acid, respectively [17,39,40]. Among these, coumaroyl hexose (IC50 value: 37.7 µM), caf-
feoylshikimic acid (IC50 value: 2.9 µM), caffeic acid hexoside (IC50 value: 0.55 µM), and
dicaffeoyl shikimic acid (IC50 value: 0.38 µM) were found to have DPPH-scavenging activ-
ity [41–43]. Additionally, coumaroyl glucoside severely inhibits glycogen phosphorylase,
a crucial target for producing antihyperglycemic medicines [44]. The formation of ad-
vanced glycation end products (AGEs) and the activity of the angiotensin-converting and
acetylcholinesterase enzymes are all inhibited by caffeine acid glucoside [45]. In addition,
compound 1 yielded a precursor ion [M–H]− at m/z 139.0050, generated characteristic
ions at m/z 111.01 and 95.01 by loss of neutral molecules of CO and COO, respectively,
and was provisionally identified as coumalic acid; this is the first time that this compound
was identified in Ajwa dates (supplementary data Figure S5A). Furthermore, compound 8
produced a monoisotopic ion [M–H]− at m/z 505.1603 and yielded fragment ions at m/z
325.09 [M-H-181 Da], m/z 341.08 [M-H-165 Da], and MS2 ion at m/z 341.08. Further loss of
glucosyl moiety (162 Da) led to the generation of an ion at m/z 179.03, and the following
loss of water molecules yielded an ion at m/z 161.02, thereby confirming the presence
of caffeoyl hexoside. Based on the fragmentation behavior, compound 8 was tentatively
confirmed as hebitol II, which has been identified in RADP for the first time (Figure 3A).
According to Wang et al., hebitol II prevented the growth of Plasmodium falciparum 3D7,
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a malarial parasite line [46]. Moreover, compound 9 was tentatively identified as 1,2-di-
(syringoyl)-hexoside with molecular formula C24H28O14, which yielded a deprotonated ion
at m/z 539.1377 and generated the following fragment ions: m/z at 359.09 ([M-H-syringoyl
moiety]), 341.08 ([M-H-syringoyl moiety-H2O]), 197.04 (syringic acid), and 153.05 because
of the loss of water molecule from ion m/z 197.04 (Figure 3B). Compound 9 too has been
identified for the first time in RADP.
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2.6.2. Flavonoids

A previous review demonstrated that each subgroup of flavonoids exhibits a different
fragmentation behavior in MS2 analysis. The cleavage of the C-ring bonds (retro-Diels-
Alder, i.e., RDA mechanism) produces ions with the A- or B-ring and some part of the
C-ring, which is the most common fragmentation of flavonoids [47]. Notable losses of
small neutral molecules, such as CO (28 Da), C2H2O (42 Da), COO (44 Da), 2CO (56 Da),
CO + COO (72 Da), and 3CO (84 Da), may also occur [48]. Based on a comparison of the
fragmentation patterns with those previously published in the literature, compounds 10, 11,
and 20 were identified as chrysoeriol, quercetin, and afzelin gallate, respectively [1,17,40].
Along with their antioxidant properties, quercetin, and chrysoeriol have shown potent anti-
cancer, anti-inflammatory, antidiabetic, and antihyperlipidemic effects [49,50]. Flavonoids
are frequently glycosylated. The typical fragmentation of O-glycosides produces neutral
species corresponding to sugar units (hexoses, 162 Da; deoxyhexoses, 146 Da; pentoses,
132 Da) and an aglycone ion. Conversely, C-glucosides produce a sequence of fragments be-
cause of the cleavage of the C-C bonds with the sugar moiety; examples of such fragments
are [M-H-60]−, [M-H-90]−, and [M-H-120]−, which serve as the hallmark diagnostic ions
of glycone [51,52]. Compounds 12–18 and 21–29 were identified as dihydrokaempferol
hexoside (aromadendrin hexoside), isoquercitrin, isorhamnetin hexoside, luteolin hexosyl
sulfate, chrysoeriol hexosyl sulfate, isoquercitrin sulfate, apigenin-8-C-(pentosyl)-hexoside
(vitexin rhamnoside), luteolin rhamnosyl hexoside, chrysoeriol rhamnosyl hexoside (chryso-
eriol rutinoside), quercetin rhamnosyl glucoside (rutin), isorhamnetin rhamnosyl glucoside
(isorhamnetin rutinoside), quercetin diglucoside, isorhamnetin diglucoside, luteolin dihexo-
syl sulfate, luteolin rhamnosyl dihexoside (luteolin rutinoside), and chrysoeriol rhamnosyl
dihexoside (chrysoeriol rutinoside), respectively, based on the similarities observed in
the comparison of their fragmentation behaviors and with the behaviors reported in the
literature [1,13,17,40]. The flavonoid glycosides’ DPPH-scavenging action is as follows:
isorhamnetin rutinoside > isoquercitrin > isorhamnetin hexoside > chrysoeriol rutinoside
> rutin > vitexin rhamnoside ∼= luteolin rutinoside [53–56]. The deprotonated molecular
ion [M–H]− at m/z 581.1863 exhibited MS2 fragment ions at m/z 436.13 and 274.08 by loss
of rhamnosyl (145 Da) and rhamnosyl-glucosyl moieties (309 Da). The ion at m/z 274.08
further yielded MS3 ion at m/z 167.03 and 149.06 through cleavage of the α-β bond and loss
of the phloroglucinol moiety (125 Da); hence, compound 19 was tentatively identified as
naringin dihydrochalcone, which has been identified for the first time in RADP (Figure 3C).
Naringin dihydrochalcone has more excellent antioxidant activity than naringin [57]. It
was proposed as a potential therapeutic agent for Alzheimer’s disease treatment due to its
ability to combat several effects that increase neurogenesis, suppress neuroinflammation,
and decrease Aβ levels [58].

2.6.3. Lignans

The monoisotopic mass [M–H]− at m/z 775.2821 yielded a characteristic fragment ion
at m/z 613 by loss of hexosyl moiety (162 Da) and m/z 417.155, confirming the presence
of syringaresinol. The MS2 ion at m/z 417.15 underwent further cleavage of the furfuran
ring followed by the loss of two molecules of CH3 generated ion at m/z 181.05 and 151.00,
respectively; compound 30 was tentatively confirmed as a furfuran-type lignan compound,
namely erythro-guaiacylglycerol-β-syringaresinol ether hexoside (Figure 4A). Furthermore,
the deprotonated ion [M–H]− of compound 31 was obtained at m/z 805.2926, and it yielded
a fragment ion at m/z 643.23 by the loss of the hexosyl moiety, which was 31 Da higher
than that of compound 30. This suggests that the compound has one more methoxy group.
The other fragmentation behavior observed was similar to that of the quasimolecular
ion of compound 30, suggesting that compound 31 was erythro-1-(4′-O-hexoside-3,5-
dimethoxyphenyl)-syringaresinoxyl-propane-1,3-diol (supplementary data Figure S5B).
Both lignans were identified for the first time in RADP. The biological activities of these
lignans remain unknown [59,60].
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Figure 4. Possible mass fragmentation behavior of identified compounds in RADP. (A) erythron-
guaiacylglycerol-β-syringaresinol ether hexoside, (B) 2-deoxy-2,3-dehydro-N-acetyl-neuraminic acid,
(C) linustatin, and (D) 1-deoxynojirimycin galactoside.
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2.6.4. Sialic Acid and Derivatives

The deprotonated ion [M–H]− of No. 32 was observed at m/z 290.0879, and diagnostic
ions were generated at m/z 230.06 and 200.05 by the loss of 61 and 91 Da, respectively. Both
MS2 ions further generated fragment ions at m/z 146.08 ([M-H-230.06-COO-H2O]) and
128.07 ([M-H-200.05-COO-CO]), suggesting that the compound was 2-deoxy-2,3-dehydro-
N-acetyl-neuraminic acid (DANA) (Figure 4B). The monoisotopic mass [M–H]− at m/z
308.0987 and 632.2039 with molecular formulas C11H19NO9 and C23H39NO19 suggested
that compounds 33 and 34 were N-acetyl-neuraminic acid and 3′-sialyllactose (SL), re-
spectively, as their mass fragmentation behaviors were quite similar to the behavior of
the quasimolecular ion of compound 32 (supplementary data Figure S5C,D). This is the
first time that sialic acid has been identified in RADP. DANA is a glucose-dependent
potentiator of insulin secretion [61]. The positive effects of SL on inflammation and im-
munological homeostasis by altering the gut microbiota profile have been documented
in numerous investigations. It also slows the progression of rheumatoid arthritis by re-
ducing chemokines and cytokines, and it relieves osteoarthritis by promoting cartilage
regeneration and preventing cartilage from being destroyed [62–64].

2.6.5. Amino Acids, Carboxylic Acids, and Fatty Acids

From comparisons of the mass and the fragmentation behaviors of the precursor ion
based on mass spectroscopic analysis reported in the literature and various online databases,
compounds 35–38, 48–55, and 56–67 were identified as amino acids, carboxylic acids, and
fatty acids, respectively (Table 5) [17,40,47,48,65–67]. Pyroglutamic acid is utilized as a
humectant in products for dry skin and hair and has potential anti-angiotensin-converting
enzyme activity [68].

2.6.6. Sugar Molecules

From the monoisotopic ion [M–H]— at m/z 351.0569, the diagnostic ions yielded at
m/z 291.07 ([M-H-COO-H2O]), 273.06 ([M-H-291.07-H2O]), 175.02 ([M-H-glucoronyl]), and
131.03 ([M-H-175.02-COO]). Compound 46 was tentatively identified as unsaturated di-
galacturonate; this is the first time that this compound was found in RADP (supplementary
data Figure S6A). Furthermore, compound 47 was tentatively identified as xylosmaloside
with the molecular formula C18H20O9, and this compound generated the deprotonated
ion [M–H]− at m/z 379.1027 and the following mass fragmentation pattern: m/z 343.08
([M-H-36 Da]), 217.05 ([M-H-162 Da]), 179.05 (xylose), and 161.04 ([M-H-179.05-18 Da])
(supplementary data Figure S6B). This compound too was identified for the first time in
RADP. Compounds 39–45 were confirmed as sugar molecules from comparison of their
deprotonated ion mass and fragmentation behaviors with those reported in the literature
and online databases [47,48,65–67,69]. Maltitol, one of the sugar molecules, inhibits Strep-
tococcus mutans DMST 18777, and xylosmaloside has greater antioxidant properties than
ascorbic acid [70,71].

2.6.7. Others

Compound 68 yielded a monoisotopic mass [M–H]− at m/z 408.1510 and generated
a diagnostic ion at m/z 246.09 by loss of the glucosyl moiety (162 Da). Furthermore, a
prominent ion peak was observed at m/z 228.08 with the neutral loss of glucose moiety. In
the MS3 spectra of m/z 228, ions at m/z 214.07 were observed owing to the loss of CH2,
suggesting that the compound was linustatin, a cyanogenic glucoside, which has also been
identified for the first time in RADP (Figure 4C). The deprotonated ion [M–H]− at m/z
324.1293 and the characteristic ions at m/z 144.06 ([M-H-galactosyl moiety]) and 161.04
([M-H-162 Da]) were observed. The fragment ion at m/z 161.04 further yielded ions at
m/z 143.03 and 113.02 through the consecutive loss of H2O and CO. Based on the mass
fragmentation behavior, compound 69 was tentatively identified, for the first time in RADP,
as 1-deoxynojirimycin galactoside (Figure 4D). Although 1-deoxynojirimycin galactoside’s
pharmacological role is unknown, its aglycone component (1-deoxynojirimycin) has a
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powerful antihyperglycemic and anti-obesity activity [72]. Compound 70 was tentatively
identified as oxycoumarin-4-acetic acid methyl ether hexoside, with the molecular formula
C18H20O10, and it yielded a deprotonated ion [M–H]− at m/z 395.0968. It gave a prominent
peak at m/z 233.04, owing to the loss of galacotosyl moiety (162 Da). In the MS3 spectra of
233.04, ions at m/z 205.05 and 161.02 were generated through the loss of CO and acetic acid
methyl ether moiety (supplementary data Figure S6C).

3. Materials and Methods
3.1. Sample Collection and Preparation

Ripe Ajwa dates were collected from an Ajwa date farm located in Medina, Saudi
Arabia, and were identified by a scientific officer at the National Herbarium and Genebank
of Saudi Arabia. A voucher specimen (No. NHG005) has been stored in our laboratory
for further investigation. Heat extraction (HE) was performed in a temperature-controlled
heater using a round-bottom flask with a condenser to prevent solvent evaporation (Soxlet
water bath C-WBS-D6, Changshin Science, Seoul, Republic of Korea). The dry powder
samples (10.0 g) were extracted thrice with 100 mL solvent according to the investigational
design shown in supplemental data Tables S1 and S2. After extraction, the samples were
filtered using Whatman No. 1 filter paper (Schleicher & Schuell, Keene, NH, USA), concen-
trated to dryness in a rotary evaporator (Tokyo Rikakikai Co. Ltd., Tokyo, Japan) at 40 ◦C
and 50 rpm, and then lyophilized using a freeze-dryer (Il-shin Biobase, Goyang, Republic
of Korea). The RADP extract was kept at −20 ◦C before subsequent experiments.

3.2. Antioxidant Activities

The total phenolic content (TPC) and total flavonoid content (TFC) in ripe Ajwa date
pulp (RADP) extracts were determined using the Folin–Ciocalteu test and the aluminum
chloride colorimetric method, respectively [45]. The TPC (y = 0.0512x + 0.0018; r2 = 0.9835)
and TFC (y = 0.014x + 0.0021; r2 = 0.9994) were determined using the corresponding
regression equations for the calibration curves. The TPC was expressed in terms of the
gallic acid equivalent (mg)/dry weight sample (g), and the TFC in terms of the catechin
equivalent (mg)/dry weight sample (g). The DPPH radical scavenging assay and the cupric-
reducing antioxidant capacity (CUPRAC) assay were applied to assess the antioxidant
activity of RADP extracts [28].

3.3. Experimental Design of Response Surface Methodology (RSM) for the Extraction Process

The RSM model was developed for the extraction of phenolic compounds from RADP;
the independent process factors were ethanol concentration (X1), time (X2), and temperature
(X3), and the response variables were TPC (Y1), TFC (Y2), DPPH-scavenging activity (Y3),
and CUPRAC (Y4). The extractions were carried out using a central composite design (CCD)
with three components and five layers. The response variables were fitted to the second-
order polynomial model equation shown in Equation (5), which specifies the relationship
between the independent variables and responses.

Y = β0 + ∑n
i=1 βiXi + ∑n

i=1 βiiX2
ii + ∑n−1

i ∑n
j βijXij (5)

where Y is the response variable, and Xi and Xj are the independent coded variables; β0 de-
notes the constant coefficient, and βi, βii, and βij denote the coefficients of linear, quadratic,
and interaction effects, respectively. Design Expert 11 was used for the RSM analysis and
multiple linear regression (Stat-Ease, Minneapolis, MN, USA). To select the best model, the
function parameter was selected as “None” and various R2 (coefficient of determination)
values, PRESS (the predicted residual sum of squares), BIC (the Bayesian information
criterion), and AICc (the Akaike information criterion–second-order) were considered.
The F-values with p < 0.05 indicated statistical significance. The interaction outcome of
each factor on the response value was represented in the form of three-dimensional (3D)
surface plots.
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3.4. Artificial Neural Networks (ANN) Modeling

An ANN was used to predict a nonlinear relationship between RADP’s input param-
eters (X1, X2, and X3) and response variables (Y1, Y2, Y3, and Y4). The Neural Network
ToolboxTM of MATLAB was used for the nonlinear analysis, and the multilayer percep-
tron (MLP) was utilized to map layers of independent and response variables using a
back-propagation feed-forward ANN model [28]. The hit-and-trial method was used to
calculate the required number of neurons in the hidden layer, which ranged from 1 to
15, to minimize discrepancies between the predicted and experimental results of RADP.
Figure 5 depicts the three-layered fundamental architecture (MLP topology) of the ANN
model. The model’s fundamental architecture consists of three layers: a three-neuron input
layer representing the three independent factors (ethanol concentration, extraction time,
and temperature); a six-neuron hidden layer; and an output layer representing the four
response variables (TPC, TFC, DPPH-scavenging activity, and CUPRAC value) of RADP.
The investigational dataset used to create the RSM model was also used to develop an
ANN model: network training (70%: 20 points), validation (15%: 5 points), and network
testing (15%: 5 points). In the ANN design, the output signal was made by sending the
weighted sum of the input variables to each neuron through an activation function. This
function was usually nonlinear and was represented by the hidden layer.

Pharmaceuticals 2023, 16, x FOR PEER REVIEW 20 of 26 
 

 

outcome of each factor on the response value was represented in the form of three-dimen-
sional (3D) surface plots. 

3.4. Artificial Neural Networks (ANN) Modeling 
An ANN was used to predict a nonlinear relationship between RADP’s input param-

eters (X1, X2, and X3) and response variables (Y1, Y2, Y3, and Y4). The Neural Network 
ToolboxTM of MATLAB was used for the nonlinear analysis, and the multilayer percep-
tron (MLP) was utilized to map layers of independent and response variables using a 
back-propagation feed-forward ANN model [28]. The hit-and-trial method was used to 
calculate the required number of neurons in the hidden layer, which ranged from 1 to 15, 
to minimize discrepancies between the predicted and experimental results of RADP. Fig-
ure 5 depicts the three-layered fundamental architecture (MLP topology) of the ANN 
model. The model’s fundamental architecture consists of three layers: a three-neuron in-
put layer representing the three independent factors (ethanol concentration, extraction 
time, and temperature); a six-neuron hidden layer; and an output layer representing the 
four response variables (TPC, TFC, DPPH-scavenging activity, and CUPRAC value) of 
RADP. The investigational dataset used to create the RSM model was also used to develop 
an ANN model: network training (70%: 20 points), validation (15%: 5 points), and network 
testing (15%: 5 points). In the ANN design, the output signal was made by sending the 
weighted sum of the input variables to each neuron through an activation function. This 
function was usually nonlinear and was represented by the hidden layer. 

 
Figure 5. Optimal topology of a developed ANN model. 

3.5. Comparison of the Prediction Ability of the RSM and ANN Models 
The following equations (Equations (6)–(9)) were used to calculate various statistical 

parameters, including the correlation coefficient (R2), root-mean-square error (RMSE), ab-
solute average deviation (AAD), and standard error of prediction (SEP), to compare the 
estimation capabilities of RSM and ANN for improving the extraction procedure with 
better TPC, TFC, and antioxidant potential of RADP. 

Figure 5. Optimal topology of a developed ANN model.

3.5. Comparison of the Prediction Ability of the RSM and ANN Models

The following equations (Equations (6)–(9)) were used to calculate various statistical
parameters, including the correlation coefficient (R2), root-mean-square error (RMSE),
absolute average deviation (AAD), and standard error of prediction (SEP), to compare
the estimation capabilities of RSM and ANN for improving the extraction procedure with
better TPC, TFC, and antioxidant potential of RADP.

R2 = 1− ∑n
i=1
(
Yp −Ye

)2

∑n
i=1(Ym −Ye)

2 (6)
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RMSE =

√
∑n

i=1
(
Yp −Ye

)2

n
(7)

AAD =

[
∑n

i=1
(∣∣Yp −Ye

∣∣/Ye
)

n

]
× 100 (8)

SEP =
RMSE

Ym
× 100 (9)

where Yp is the predicted response; Ye is the observed response; Ym is the average response
variable; n is the number of experiments.

3.6. Validation of the Model

Derringer’s desire function was used to find the ideal conditions for maximizing
all replies in a single experiment. Each response is turned into a unique desirability
function ranging from 0 to 1 during this procedure (in the order of the lowest to the highest
desirability). The component functions are then combined to create a total desirability
function. The total desirability function is constructed using the following equation [1].

D =
(

dw1
1 dw2

2 . . . .dwn
n

)1/ ∑ wi
(10)

Response surface and desirability function analyses were used to determine the opti-
mal RADP extraction parameters, which were 75% ethanol concentration, 3.7 h of extraction
time, and 67 ◦C temperature with D = 0.934. A triple experiment was conducted under
the best possible circumstances to validate the existing model. The average experimental
results were then compared to the predicted results. The experimental data were also
compared to the values that the model indicated. To compare the observed and anticipated
outcomes of RADP, Equation (11) was utilized to calculate the relative standard deviation
(RSD).

RSD (%) =
Standard deviation between predicted and experimental values

Mean values between predicted and experimental values
× 100 (11)

The resulting data were analyzed and optimized for all response circumstances when
the RSD% was <10. Additionally, the electrospray ionization mass spectrometry (ESI-
MS)/MS profiles of bioactive compounds were found under ideal circumstances of RADP.

3.7. Analysis of Chemical Compounds by ESI-MS/MS

The Q-Exactive Orbitrap mass spectrometer (Thermo Fisher Scientific INC., San Jose,
CA, USA) was used to conduct the positive (+) and negative (−) mode ESI-MS investi-
gations of RADP. A 500 µL graded syringe (Hamilton Company Inc., Reno, NV, USA)
and a 15 µL/min syringe pump (Model 11, Harvard, Holliston, MA, USA) were used
to immerse the RADP in the ESI source. The normal negative mode ESI-MS conditions
were as follows: mass resolution of 140,000 (full width at half maximum, FWHM), sheath
gas flow rate of 5, seep gas flow rate of 0, auxiliary gas flow rate of 0, spray voltage of
4.20 kV, capillary temperature of 320 ◦C, S-lens Rf level, and automatic gain control of 5 E 6.
The MS/MS experiments were conducted on the same instrument utilizing three unique
stepwise normalized collision energies (10, 30, and 40) to produce better fragmentations of
each peak, hence facilitating the confirmation of RADP for each compound [48].

The Xcalibur 3.1 with Foundation 3.1 (Thermo Fisher Scientific Inc. Rockford, IL,
USA) was used to process the collected mass spectral data. The m/z peaks were tentatively
identified by comparing their calculated (exact) masses of protonated and/or deprotonated
(M–H) adducts with the m/z values and ESI-MS/MS fragmentation patterns from the
in-house MS/MS database and online databases such as METLIN [65], CFM-ID 4.0 [66]
and FooDB [67]. The chemical structure was drawn using ChemDraw Professional 15.0
(PerkinElmer, Waltham, MA, USA).
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3.8. Statistical Analysis

The experimental results were statistically analyzed using Design Expert 11 and
MATLAB software. All data were reported as the mean ± standard deviation of at least
three independent experiments (n = 3), each with three sample replicates. Differences were
considered significant at p < 0.001, p < 0.01, and p < 0.05.

4. Conclusions

This work was the first to use two modeling methodologies (RSM and ANN) to
optimize the heat extraction (HE) conditions for achieving the highest amount of TPC,
TFC, and antioxidant potential of RADP. The ANN model is more accurate and reliable
for optimizing the extraction conditions of RADP for improved attainment of TPC, TFC,
and antioxidant characteristics, as evidenced by the greater R2 and lower RMSE, AAD, and
SEP compared to the RSM model. The optimal conditions (75% ethanol, extraction time of
3.7 h, and extraction temperature of 67 ◦C) were determined to maximize the TPC, TFC,
and antioxidant potential of RADP. Under optimum conditions, TPC, TFC, DPPH radical
scavenging effect, and ascorbic acid equivalent CUPRAC value were obtained as 4.53 mg
GAE/g, 3.30 mg CAE/g, 10.69% inhibition, and 1.41 µM, respectively. RADP contains
phenolic acids, flavonoids, sialic acids, lignans, etc., as determined by high-resolution mass
spectrometry analysis. Sialic acids and lignans were described for the first time in RADP
as bioactive substances. Based on these data, we can infer that RADP, a viable candidate
for an antioxidant functional food, could be used extensively in the nutraceutical and
pharmaceutical industries.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ph16020319/s1. Figure S1: The R2 value of training, validation, test,
and overall for TPC during ANN. Figure S2: The R2 value of training, validation, test, and overall for
TFC during ANN. Figure S3: The R2 value of training, validation, test, and overall for DPPH during
ANN. Figure S4: The R2 value of training, validation, test, and overall for CUPRAC during ANN.
Figure S5: Possible mass fragmentation behavior of identified compounds in RADP. (A) Coumalic acid,
(B) Erythro-1-(4”-O-β-D-glucopyranoside-3,5-dimethyoxyphenyl)-2-syringaresinoxyl-propane-1,3-
diol, (C) N-acetyl-α-neuraminic acid, and (D) 6′-sialyllactose. Figure S6: Possible mass fragmentation
behavior of identified compounds in RADP. (A) Unsaturated digalacturonate, (B) Xylosmaloside, and
(C) Oxycoumarin-4-acetic acid methyl ester hexoside. Table S1: Central composite design (CCD) for
the independent variables and corresponding response value in RSM and ANN (predicted). Table S2:
Independent process variables with experimental ranges and levels for heat reflux extraction of ripe
Ajwa date pulp (RADP).
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