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Abstract: Counterfeit or substandard drugs are pharmaceutical formulations in which the active
pharmaceutical ingredients (APIs) have been replaced or ingredients do not comply with the drug
leaflet. With the outbreak of the COVID-19 pandemic, fraud associated with the preparation of
substandard or counterfeit drugs is expected to grow, undermining health systems already weakened
by the state of emergency. Analytical chemistry plays a key role in tackling this problem, and in
implementing strategies that permit the recognition of uncompliant drugs. In light of this, the present
work represents a feasibility study for the development of a NIR-based tool for the quantification
of dexamethasone in mixtures of excipients (starch and lactose). Two different regression strategies
were tested. The first, based on the coupling of NIR spectra and Partial Least Squares (PLS) provided
good results (root mean square error in prediction (RMSEP) of 720 mg/kg), but the most accurate was
the second, a strategy exploiting sequential preprocessing through orthogonalization (SPORT), which
led (on the external set of mixtures) to an R2

pred of 0.9044, and an RMSEP of 450 mg/kg. Eventually,
Variable Importance in Projection (VIP) was applied to interpret the obtained results and determine
which spectral regions contribute most to the SPORT model.

Keywords: dexamethasone; active pharmaceutical ingredients quantification; dexamethasone/lactose
/starch mixtures; near infrared (NIR) spectroscopy; regression; partial least squares (PLS); sequential
preprocessing through orthogonalization (SPORT); counterfeit drugs; substandard drugs; COVID-19

1. Introduction

Counterfeit or substandard drugs are pharmaceutical formulations in which the active
pharmaceutical ingredients (APIs) have been replaced or are present in quantities other
than those declared, contain the appropriate quantity of API but other defects, including
unacceptable by-products or contaminations, or have been produced without patent.

In recent years, the distribution of counterfeit medicines has grown considerably; the
Pharmaceutical Security Institute (PSI) noted that, since 2018, a sharp increase in this type
of fraud has been observed in the USA, Asia, and Europe [1], and the U.S. Food and Drug
Administration (FDA) estimates that the percentage of counterfeit drugs in the world is
10%.

With the outbreak of the COVID-19 pandemic, this phenomenon is expected to grow,
undermining health systems already weakened by the state of emergency. From this point
of view, the need to have tools for the authentication of circulating medicines is even
more important, in particular for all those drugs that are administered for the treatment of
patients suffering from COVID-19.

Analytical chemistry plays a key role in tackling the problem of counterfeit pharmaceu-
tical formulations, as it allows the implementation of strategies that permit the recognition
of uncompliant drugs. Over the years, various analytical techniques have been refined for
this purpose; in particular, liquid chromatography strategies are commonly exploited to
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achieve this goal [2–13]. Although efficient, they have a number of disadvantages linked to
the fact that they are destructive, require complex sample pretreatment prior to the analysis,
and are time-consuming. A valid alternative is represented by spectroscopic techniques,
which could be non- or semi-destructive, faster, and more environmental-friendly. Several
works in the literature focus on how these methodologies can be combined with chemo-
metric approaches for the identification of counterfeit drugs; a detailed overview of this
has been provided by Custers et al. [3]. The spectroscopic techniques most frequently used
in pharmaceutical industries to perform quality controls are Mid- and Near-Infrared and
Raman [14–22].

Following the current pandemic situation, the drugs in use for the treatment of patients
affected by COVID-19 are of special interest, and they can be particularly subjected to fraud.
Among the different pharmaceutical drugs administered to people affected by the COVID-
19 virus, many of them are anti-inflammatories. In particular, in recent clinical trials, it
has emerged that a specific glucocorticoid anti-inflammatory steroid, dexamethasone, is
associated with a reduction in mortality in patients undergoing forced ventilation [23]. This
is correlated to the capability of glucocorticoids of attuning inflammation-mediated lung
injuries; and, therefore, reduce respiratory failures and deaths [23–25]. Consequently, given
the key role dexamethasone can play in the treatment of COVID-19, it is imaginable that
fraud against dexamethasone-based formulations may increase, but, at the same time, there
is a clear need to preclude the spread of substandard or counterfeit medicines containing
this API.

In general, dexamethasone is used for the treatment of particularly intense allergic
manifestations, rheumatic, dermatological, ophthalmological diseases, adrenal endocrine
disorders, respiratory system pathologies, hematological, and neoplastic diseases. It has
an epimer, betamethasone, which is more expensive and has slightly different therapeutic
purposes [26,27]. In the literature, some studies concerning the authentication of this drug
have been conducted. This is the case of the work conducted by Rodionova and collab-
orators who analyzed different batches of an injectable dexamethasone-based drug [21].
Formulations were analyzed by high-performance liquid chromatography equipped with
photodiode array detection-mass spectrometry (HPLC-DAD-MS), UV, and NIR. NIR spec-
troscopy has been used as a quality control tool for other glucocorticoid anti-inflammatory
steroids, such as prednisolone [28] and cortisone acetate [29]. Through this work, the
authors were able to highlight differences, particularly regarding impurity composition,
between pure and counterfeit samples. Another interesting study carried out in this area
is the one conducted by Arthur and collaborators, who analyzed dexamethasone and
betamethasone-based drugs using reversed-phase high-performance liquid chromatog-
raphy/electrospray ionization mass spectrometry (HPLC/ESI-MS) [27]. The proposed
methodology appeared successful for the analysis of betamethasone or betamethasone
esterification products and for the identification of a counterfeit drug.

In light of this, the present work represents a feasibility study for the development of
a NIR-based tool for the quantification of dexamethasone in mixtures of excipients such
as starch and lactose. In order to achieve this goal, different methodologies based on the
combination of NIR and chemometric regression methods have been tested. In particular,
the NIR spectra were handled using two different strategies, one based on individual-
block modeling, and one based on a multi-block approach. The first strategy is based on
partial least squares (PLS) [30,31] while the second exploits the sequential preprocessing
through the orthogonalization (SPORT) method [32]. These two approaches were chosen
because they have numerous advantages and are often accurate [33–36], particularly in this
context [37–39].

2. Results

The present work represents a feasibility study to quantify dexamethasone in drugs
using NIR spectroscopy coupled with chemometrics; the workflow of the study is shown in
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Figure 1. The main aim of the study is to test the possibility of developing a methodology
that could help the determination of counterfeit dexamethasone-based drugs.
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Figure 1. Block diagram of the study.

First, mixtures of dexamethasone together with corn starch and lactose, mimicking
the possible composition of tablets, were prepared. In the different mixtures, the dexam-
ethasone concentrations were in the range of the concentration of the API in the main
formulations on the market. Mixtures were then analyzed by NIR spectroscopy and regres-
sion models for dexamethasone quantification were created. The models were developed by
testing two different strategies, one based on individual block modeling, and one founded
on a multi-block approach. In the first case, the Partial Least Squares (PLS) method was
used to solve the regression problem, in the other, sequential preprocessing through orthog-
onalization (SPORT) was exploited for the same aim. Finally, the models were validated in
two different ways: predicting an external set of mixtures and assessing the concentration
of dexamethasone in ground tablets actually on the market (Decadron®, purchased in
different batches in Italian municipal pharmacies).

All the collected spectra are shown in Figure 2; in particular, Figure 2A shows the
signals collected on the mixtures, whereas Figure 2B displays the spectra associated with
ground Decadron® tablets. As can be seen, the signals do not show relevant differences.
The main signals can be found around 7000 cm−1, i.e., associated with spectral variables
ascribable to the combination of C–H stretching, and to the first overtone and the combina-
tion of O–H stretching. More details on the NIR signals can be found below in Section 2.2,
where the interpretation of spectral variables through Variable Importance in Projection
(VIP) analysis is discussed.

2.1. Strategy I (Individual-Block Modelling)

Applying strategy I (details on this strategy can be found in Section 4.3), six different
Partial Least Squares (PLS) models, one for each tested pretreatment, were built. The
outcome of the analysis (together with the number of latent variables (LVs) extracted) is
reported in Table 1. The goodness of the models was evaluated on the basis of the coefficient
of determination in cross-validation (R2

CV). A value of R2
CV close to 1 can be seen as an

indication of a good fit [40].
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Table 1. PLS models of the differently preprocessed spectra. Number of latent variables (LVs)
extracted, and root mean square error in cross-validation (R2

CV).

Preprocessing LVs R2
CV

Model I Raw (+MC) 5 0.1023
Model II SNV (+MC) 3 0.1990
Model III D1 (+MC) 8 0.6275
Model IV D2 (+MC) 8 0.7785
Model V SNV + D1 (+MC) 9 0.6699
Model VI SNV + D2 (+MC) 8 0.7457

As can be observed from Table 1, models calculated on data preprocessed by the
second derivative or its combination with standard normal variate (SNV) provide a good
fit, shown by the relatively high coefficient of determination in cross-validation R2

CV (>0.7),
attesting these as suitable pretreatments for the investigated data. The highest R2

CV (0.7785)
is obtained in Model IV, i.e., when spectra are preprocessed by the second derivative
(followed by mean centering (MC)); the application of Model IV for the prediction of the
test set led to a root mean square error in prediction (RMSEP) of 720 mg/kg and a bias of
-207 mg/kg.

2.2. Strategy II (Multi-Block Modelling)

As described in Section 4.3, sequential preprocessing through orthogonalization
(SPORT) allows the solving of a regression problem and, simultaneously, ensemble pre-
processing of data. SPORT, being a sequential multi-block method, allows for different
modeling orders of the input data blocks. The order of the blocks is not expected to
sensibly affect predictions, but it can lead to different outcomes from the interpretation
standpoint [41–43]. In order to minimize these effects, SPORT models were built testing
all the possible different block sequences. Models led to R2

CV ranging between ~0.73
and ~0.84. The highest R2

CV (0.8397) was obtained when the first modeled block was
the mean-centered one (1 LV), followed by spectra preprocessed by the first derivative
(7 LVs), and SNV (6 LVs). The application of this model to the test set led to an RMSEP of
450 mg/kg and a bias of -202 mg/kg.

A graphical representation of the goodness of the fit is appreciable in Figure 3, where
the predicted response (dexamethasone concentration) is plotted as a function of the
measured response (i.e., the known concentration of the API in the mixtures). In the figure,
calibration samples are represented as purple squares and test samples are depicted as red
diamonds.
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As is visible from the good degree of overlap between the actual (purple dash-dotted
line) and the ideal fit (solid blue line), the model is able to adequately predict the concen-
tration of dexamethasone (R2

pred = 0.9044), providing an accurate estimation of the API
concentration.

Next, Variable Importance in Projection (VIP) analysis [44] was performed to inves-
tigate which spectral variables significantly contribute to the quantification of the API.
This approach allows ranking the variables according to their contribution to the model,
and it provides (for each of them) an index (VIP index) proportional to their significance.
By construction, the average of squared VIP values is 1; consequently, this value is often
used as a threshold value to identify significant contribution, because it means that a
variable presenting a VIP index higher than 1 will have an above-average influence on the
model [45].

Looking at Figure 4, where the average spectrum is shown as a black solid line and vari-
ables presenting a VIP index > 1 are highlighted in red, is possible to appreciate that the spec-
tral regions contributing the most to the model are those ascribable to the second overtone
and the combination of C–H stretching (8800 cm−1–8300 cm−1, 8100 cm−1–7800 cm−1), to
the first overtone and the combination of O–H stretching (7800 cm−1–6900 cm−1, 4700 cm−1,
4600 cm−1) to the combination of the C=O and O-H stretching modes and of the second
overtone of C=O stretching (5290 cm−1).

A further SPORT model was calculated using only the variables presenting a VIP
index > 1. However, it did not provide a more accurate model than the one based on all the
features.

Finally, the model was used also to predict the concentration of Decadron® in the
analyzed ground tablets. In this case, SPORT provided satisfactory results, slightly less
accurate than those obtained when validated on the external set of mixtures. Nevertheless,
this is an expected phenomenon as the pharmaceutical formulation contains more excipients
than those included in the mixtures. Assuming an average concentration of dexamethasone
in tablets of 3333 mg/kg (in agreement with the manufacturer’s leaflet), the model achieves
an RMSEP of 1020 mg/kg, and a bias of 115 mg/kg.
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3. Discussion

The present study demonstrates the feasibility of the combination of NIR spectroscopy
and SPORT for the quantification of dexamethasone in combination with lactose and starch.

The coupling of NIR and chemometric regression methods for the quantification of
APIs has been already discussed in the recent literature, and the present work fits perfectly
into this context. Similar accuracies have been found in other works where analogous
methods have been applied to dexamethasone or other APIs. In addition to those already
discussed in the Introduction, further examples can be found. For instance, the study
conducted by Foo et al. [46], who applied NIR as a quality control tool for the identification
and quantification of drug content in extemporaneous orodispersible films (ODFs) to lower
the cost and complexity of routine analysis performed using HPLC. Calibration models
were developed for the identification of ODFs containing five different drugs and for the
quantification of ondansetron (OND). The qualitative model for drug identification showed
100% prediction accuracy. Two models for the prediction of OND content (in the ranges
of 2 to 4 mg and 4 to 10 mg) in ODFs were calculated. These achieved RMSE values in
calibration equal to 0.0856 and 0.1440, respectively, affirming the reliability of the technique.
Another interesting example is the work of Cournoyer et al. [47], where a method for the
quality control of intact tablets containing two different APIs, acetylsalicylic acid (ASA) and
caffeine, as well as three excipients, has been developed. This study showed an uncertainty
range for the quantification of ASA between 1.0 and 1.1% and an average error value
of less than 5% for caffeine. In the present study, the multi-block strategy allowed the
prediction of the concentration of the API in the test mixtures with an error lower than 10%
for the greatest part of the validation samples, in complete agreement with these studies. In
addition, VIP analysis has highlighted which variables contribute most to the quantification
of dexamethasone. Due to the nature of NIR spectra, it is not possible to assign these
variables to dexamethasone per se or to the excipients. It is possible to correlate these
variables to chemical bonds, but these are present in all three constituents of the mixtures.
Nevertheless, the identification of this reduced set of features can represent an excellent
starting point for the development of specific devices, aimed at fast and non-destructive
pharmaceutical quality controls.

4. Materials and Methods
4.1. Samples

Dexamethasone-based formulations are commercialized as tablets or liquid for in-
jection. Oral formulations are marketed under the name Decadron or as dexamethasone



Pharmaceuticals 2023, 16, 309 7 of 11

tablets in Europe and the USA. In order to prepare mixtures that mimic the composition
of a pharmaceutical formulation conceived for oral administration, the composition of
Decadron tablets (0.5 mg) was taken as a reference. The tablets of this pharmaceutical
preparation present a concentration of API corresponding to ~3333 mg/kg and contain,
among the main excipients, corn starch and lactose monohydrate. Consequently, it was
planned to prepare mixtures that have a concentration of API in the range of 500 mg/kg to
6200 mg/kg. In order to define the percentages of the excipients in the mixture, a mixture
design was tailored on two factors (starch and lactose) at nine different levels (0%, 17%,
25%, 33%, 50%, 67%, 75%, 83%, and 100% for each excipient, the concentration of the other
being the complement to 100%). Target dexamethasone concentrations were then randomly
assigned to the various excipient ratios identified by the design.

In order to minimize the error associated with the weight of a very low mass of dex-
amethasone, two stock solid mixtures, one containing dexamethasone and starch (mixture
A), and one constituted by dexamethasone and lactose (mixture B), at dexamethasone
concentrations of 31,964 mg/kg and 32,395 mg/kg, respectively, were prepared and further
diluted (by adding the proper amount of pure starch and lactose) in order to obtain the
27 analyzed mixtures. The masses of the diverse ingredients and the final dexamethasone
concentrations in the mixtures are reported in Table 2.

Table 2. Quantity of the constituent components of the analyzed samples.

Sample Starch (g) Lactose (g) Mixture A
(g)

Mixture B
(g)

Excipient
Percentage

Dexamethasone
Concentration

(mg/kg)Starch Lactose

1 0.7404 2.2155 0.0113 0.0398 25 75 549
2 0.3953 0.9752 0.0494 0.0293 67 33 843
3 2.1843 0.7268 0.0699 0.0239 75 25 1001
4 0.4833 2.4065 0.0186 0.0968 17 83 1241
5 1.4298 1.4321 0.0712 0.0700 5 0.5 1513
6 0.4743 2.3706 0.0270 0.1340 17 83 1731
7 2.3552 0.4706 0.1453 0.0305 83 17 1876
8 0.9337 1.8688 0.0646 0.1301 33 67 2095
9 2.3817 0.4660 0.1771 0.0360 83 17 2230
10 0.9276 1.8312 0.0786 0.1556 33 67 2515
11 2.0627 0.6863 0.1902 0.0627 75 25 2693
12 0.4602 2.2760 0.0431 0.2236 17 83 2871
13 2.7125 0.0000 0.2897 0.0000 1 0 3084
14 2.2426 0.4459 0.2548 0.0495 83 17 3257
15 0.0000 2.6738 0.0000 0.3233 0 1 3495
16 1.7711 0.8855 0.2301 0.1138 67 33 3680
17 0.0000 2.6397 0.0000 0.3797 0 1 4074
18 0.8719 1.7464 0.1262 0.2572 33 67 4120
19 1.2987 1.3007 0.2006 0.1999 5 5 4296
20 0.6451 1.9355 0.1044 0.3149 25 75 4513
21 2.5627 0.0000 0.4382 0.0000 1 0 4668
22 1.6954 0.8476 0.3042 0.1541 67 33 4903
23 0.6337 1.8945 0.1194 0.3585 25 75 5133
24 2.4887 0.0000 0.5115 0.0000 1 0 5450
25 1.2385 1.2340 0.2655 0.2645 5 5 5680
26 0.0000 2.4418 0.0000 0.5579 0 1 6025
27 1.8178 0.6053 0.4344 0.1441 75 25 6181

Prior to the analyses, samples were inserted into glass vials and mixed to obtain a
homogeneous distribution of the ingredients.

As previously mentioned, some tablets of Decadron® (from different batches) were
also analyzed. For this purpose, 10 tablets were individually ground, inserted into the vials
(the same ones used for the analysis of the mixtures), and analyzed by NIR spectroscopy.
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Dexamethasone (certified pharmaceutical secondary standard), starch, and α-lactose
monohydrate (>99%) were obtained from Sigma-Aldrich KGaA (Darmstadt, Germany).
Different batches of Decadron® tablets 0.5 mg (European Pharmacopeia) were purchased
in Italian municipal pharmacies.

Finally, in order to validate the model also predicting a real pharmaceutical formu-
lation, tablets (coming from different lots) of a drug commercialized as Decadron were
ground and analyzed.

4.2. Collection of FT-NIR Spectra

The spectra were acquired using a Nicolet 6700 FT-NIR instrument equipped with an
integrating sphere (Thermo Scientific Inc., Madison, WI, USA), consisting of a tungsten-
halogen source and an InGaAs detector. The analysis was performed by putting the vials
containing the samples directly on the window of the integrating sphere. The analysis is
therefore completely non-destructive, and the loss of sample is to be considered negligible
(the sample is not altered during the measurement, and it can be recollected). Spectra were
captured in the range of 4000 cm−1 to 10,000 cm−1 (nominal resolution of 4 cm−1). Two
replicate spectra were collected on each mixture, using a different aliquot of the sample. In
total, 54 signals were collected and exported by the Omnic software (Thermo Scientific Inc.,
Madison, WI, USA) to be processed in Matlab (R2015b; The Mathworks, Natick, MA, USA).

4.3. Regression Strategies

Two different chemometric strategies have been applied in order to solve the regression
problem finalized to the quantification of dexamethasone in mixtures and ground tablets;
one consisting of the individual modeling of data preprocessed by different pretreatments
(Strategy I), and one based on a multi-block method for ensemble preprocessing (Strategy
II).

Applying Strategy I, data were pretreated by six different preprocessing approaches:
standard normal variate (SNV) [48], first and second derivatives (D1 and D2, calculated by
the Savitzky–Golay method, using 19-point windows and a third-degree polynomial) [49]
and their combinations (SNV + D1 and SNV + D2). Therefore, six different regression
models (one for each pretreated block) were built and solved by the Partial Least Squares
(PLS) method (please refer to [31] for a description of the algorithm).

Strategy II contemplates the creation of regression models exploiting the sequential
preprocessing through the orthogonalization (SPORT) [32] method, a multi-block approach
derived from Sequential and Orthogonalized Partial Least Squares (SOPLS) [50]. SPORT
allows the solving of a regression problem and, at the same time, the performing of
ensemble preprocessing. Briefly, once the pretreatments to be tested have been defined,
data are preprocessed and as many predictor blocks as tested pretreatments are obtained.
Then, the model extracts information from all the blocks following a SOPLS-like algorithm.
Very briefly, this means that the first preprocessed block (X1) is fitted to Y using PLS (this
allows estimating scores TX1 and residuals EY1). Then, the second block to be modeled
(X2) is orthogonalized with respect to the scores obtained in the previous regression model
(TX1). The orthogonalized X2 is then fitted to the residuals EY1. All the following predictor
blocks are then modeled following the same procedure, taking care to orthogonalize them
with respect to the scores associated to all the other blocks previously modelled. This
causes the information to be sequentially extracted from the various preprocessed blocks;
for further details, the reader is addressed to {Formatting Citation}. Due to the fact that,
in building sequential multi-block methods, the order of the input blocks can provide
slightly diverse solutions, all the possible combinations of pretreated blocks were tested.
The considered preprocessing approaches were the same mentioned above for Strategy I
(bare mean-centering, SNV, D1, and D2).
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4.4. Model Calibration and Validation

Disregarding the applied strategy, calibration models were built on training samples,
whereas validation took place on test individuals. Ten test samples were selected by
arranging the spectra in ascending order of API concentration and taking one sample out
of every 5. A total of 44 individuals were then used for calibration. In all cases, replicate
spectra from the same samples were kept in the same set. Validation samples were not
used at any step of calibration model building.

In Strategy I, the optimal number of latent variables (LVs) to be extracted has been
selected based on a 7-fold cross-validation procedure. Cross-validated models built extract-
ing from 1 up to 10 LVs were calculated and then the optimal solution has been defined as
the one which compromises between parsimony of LVs and minimization of the Root Mean
Squares Error in Cross Validation (RMSECV). In strategy II, all the possible combinations of
LVs (ranging from 0 to 10) among the blocks were tested, and then the optimal calibration
model was defined by inspection of the RMSECV. Also in this case, the model achieving the
lowest RMSECV involving a relatively small number of LVs was chosen as the optimal one.

5. Conclusions

The present work is a preliminary study to evaluate whether NIR spectroscopy can be
used to quantify dexamethasone in mixtures with common excipients (starch and lactose).
The aim of this work is to lay the foundations for the development of a rapid and non-
destructive methodology for the detection of counterfeit or substandard dexamethasone-
based formulations. For the realization of the regression models, a single-block (Strategy
I) and a multi-block strategy (Strategy II) were applied and compared. The former gave
acceptable results but was less accurate than the latter. Strategy II, based on the application
of the SPORT method, provided more accurate and satisfying results, demonstrating its
suitability for setting up a method for the quantification of dexamethasone in mixtures.
Finally, this latter approach has been applied to quantify the inspected API in real formula-
tions. In this case, the obtained results were satisfactory, but indicate that it is necessary to
improve the model, probably by analyzing a greater number of mixtures and including
other major excipients (for example, the dibasic calcium phosphate dihydrate) in order to
obtain more accurate models on real formulations.
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