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Abstract: Human Mesenchymal Stem Cell (hMSC) immunotherapy has been shown to provide both
anti-inflammatory and anti-microbial effectiveness in a variety of diseases. The clinical potency
of hMSCs is based upon an initial direct hMSC effect on the pro-inflammatory and anti-microbial
pathophysiology as well as sustained potency through orchestrating the host immunity to optimize
the resolution of infection and tissue damage. Cystic fibrosis (CF) patients suffer from a lung
disease characterized by excessive inflammation and chronic infection as well as a variety of other
systemic anomalies associated with the consequences of abnormal cystic fibrosis transmembrane
conductance regulator (CFTR) function. The application of hMSC immunotherapy to the CF clinical
armamentarium is important even in the era of modulators when patients with an established
disease still need anti-inflammatory and anti-microbial therapies. Additionally, people with CF
mutations not addressed by current modulator resources need anti-inflammation and anti-infection
management. Furthermore, hMSCs possess dynamic therapeutic properties, but the potency of their
products is highly variable with respect to their anti-inflammatory and anti-microbial effects. Due
to the variability of hMSC products, we utilized standardized in vitro and in vivo models to select
hMSC donor preparations with the greatest potential for clinical efficacy. The models that were used
recapitulate many of the pathophysiologic outcomes associated with CF. We applied this strategy in
pursuit of identifying the optimal donor to utilize for the “First in CF” Phase I clinical trial of hMSCs
as an immunotherapy and anti-microbial therapy for people with cystic fibrosis. The hMSCs screened
in this study demonstrated significant diversity in antimicrobial and anti-inflammatory function
using models which mimic some aspects of CF infection and inflammation. However, the variability
in activity between in vitro potency and in vivo effectiveness continues to be refined. Future studies
require and in-depth pursuit of hMSC molecular signatures that ultimately predict the capacity of
hMSCs to function in the clinical setting.

Keywords: human mesenchymal stem cells; anti-inflammatory potency; anti-microbial potency;
cystic fibrosis; clinical trial development

1. Introduction

Cystic fibrosis (CF), the most common life-limiting genetic disease in Caucasians, is
characterized by dysfunction of the cystic fibrosis transmembrane conductance regulator
(CFTR) protein [1,2]. Mutations in the Cftr gene result in a wide range of phenotypes and
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severity in people with CF, but in most cases, patients suffer from severe pathophysiologic
consequences and experience premature mortality. The advent of small molecule correctors
and potentiators, known as modulators, have changed CF survival, and disabling morbid-
ity [3,4]. However, the ability of modulators to reverse permanent damage in established
lung disease is limited. The hMSC may provide a supportive therapeutic to manage both
infection and inflammation in the context of permanent damage and on-going inflam-
mation even with modulator therapy. Further, not all mutations in CF respond to small
molecule therapy, and some patients do not tolerate the drugs well. The current initiatives
are to develop new therapies for these CF anomalies while at the same time pursuing
gene corrective technologies. A major issue in therapeutic management in CF is treating
inflammation in the presence of active infection without exacerbating the infection [5,6].

Human mesenchymal stem cells (hMSCs) are “medicinal signaling cells” which secrete
bioactive molecules capable of directly suppressing both inflammation and infection [7,8].
The hMSCs and their secreted products directly impact the tissue environment as well
as re-direct immune cell phenotype, which can orchestrate tissue regeneration and repair
damage [7,9]. Further, hMSCs have been effectively utilized in more than 1000 clinical trials
internationally, without an associated significant adverse profile [10,11]. The therapeutic
impact of hMSCs in many of these trials is due to their anti-inflammatory and anti-microbial
effects. Although clinical benefit often may be impressive, there are a significant number of
subjects in these trials who exhibit a sub-optimal response to hMSC treatment [12]. The
variability in the hMSC treatment outcomes is due to not only the variability of hMSC
products but also the disease in which the treatment is utilized [13–15]. In our studies,
we have documented that not all hMSCs “are created equal” and that each donor hMSC
has a unique functional profile which can be harnessed for potency and efficacy [13,16].
In preparation for a phase I clinical trial of hMSCs in subjects with CF, we systematically
profiled eight different bone-marrow-derived hMSC preparations from healthy volunteers
using good manufacturing practices (GMP) to identify which of the hMSCs would have
the highest potential to provide a clinical benefit in our patient population.

The potency assays for our pre-clinical studies were focused on the capacity to man-
age infection and inflammation associated with CF [13,16]. In these studies, we have
established the correlation between monitoring the in vitro hMSC secretome functional
activity as a low-cost potency test for more expensive in vivo validations. The models in-
cluded in vitro human and murine cells to provide systematic translation from pre-clinical
modeling. The two hMSC preparations with the best in vitro potency were evaluated
for their ability to attenuate infection and inflammation in the whole organism using a
murine model of Pseudomonas aeruginosa (P. aeruginosa) infection. These models have been
established as useful tools for evaluating therapeutics aimed at attenuating infection and
inflammation [17–19]. Additionally, the hMSCs were cultured and managed in our own
GMP facility and utilized the identical medium and conditions that would be recapitulated
in the CF clinical trial. The data obtained from these hMSC in vitro and murine in vivo
potency assays were used to select the hMSC donor preparation with the greatest potential
to provide both anti-inflammatory and anti-microbial potency for the CEASE-CF Clinical
Trial (NCT02866721) recently accepted for publication [20].

2. Results
2.1. hMSC Anti-Inflammatory Activity on BMDM Target Cells

BMDM were obtained from the femurs of CF and WT mice and allowed to mature for
7 days. At 7 days, BMDM were cultured for 24 h with and without LPS and/or supernatant
from one of each of the eight different hMSC-conditioned media (hMSC-CM). Both Cftr-
deficient (Cftrtm2kth) and WT target cells were utilized to assure the capacity of the hMSC
to be efficient in the unique cell settings. Each hMSC-CM was tested in duplicate on two
different sets of BMDM and followed for BMDM TNFα response to LPS in the presence
and absence of the hMSC-conditioned medium (Figure 1A). The LPS-induced significant
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levels of both TNFα by the Cftr-deficient bone marrow (Figure 1B, p < 0.05) and wild type
bone marrow (Figure 1C) target cells were suppressed by the hMSCs.
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Figure 1. hMSC Anti-Inflammatory Potency Screen on Murine BMDM. Each of the pre-GMP donor
preparations (shown by a different color) were cultured in the absence of antibiotics for 72 h. The su-
pernatants were screened for the ability to suppress the production of TNFα from either murine WT or
Cftrtm2Kth BMM stimulated with LPS (10 µg/mL, n = 8) (A). Evaluating each hMSC-CM individually,
the Cftr-deficient (B, n = 8) and WT (C, n = 6) were analyzed. Consistent with previous studies, the hM-
SCs significantly decreased TNFα gene expression by the BMDM stimulated with LPS (star designates
p < 0.05) with each hMSC-conditioned medium having a unique anti-inflammatory potency.

2.2. hMSC Anti-Inflammatory Activity on Airway Epithelial Cells

The hMSC donor anti-inflammatory potency was quantified using transformed CF
airway epithelial cells as previously described [16,21]. Both CFTR-deficient (CF) and
control target cells were utilized to assure the capacity of the hMSC to be efficient in the
unique CFTR-induced inflammatory response. Cell lines were utilized over primary airway
epithelial cells since the cells and their inflammatory response was usedfor monitoring the
hMSCs’ anti-inflammatory potency on the epithelial inflammatory response itself and not
on the intrinsic defects of CFTR defects. However, primary cells are essential for defining the
mechanisms associated with hMSC effects and are an on-going initiative currently. CFTR-
deficient epithelial cells produce excessive IL-8 in response to LPS compared to the CFTR-
corrected control cell line which is used to monitor the capacity of the hMSC to suppress
IL-8 production. Utilizing these models of epithelial inflammation, the pre-GMP hMSCs
were analyzed for functional anti-inflammatory activity (Figure 2). Each of the donor hMSC-
conditioned media (shown by a different color) demonstrated variable anti-inflammatory
effectiveness in both CFTR-deficient and control models of inflammation (Figure 2A).
Each of the eight donor hMSC preparations decreased the LPS-induced epithelial cell
transcription of IL-8 in the CF cell line (IB3) (Figure 2B, p < 0.05, n = 8) and the control
cell line (S9, n = 8). As with the BMDM mouse cell line studies, each of the hMSC-
derived conditioned medium sources demonstrated a different anti-IL-8 epithelial cell
cytokine effect.

2.3. Anti-Microbial Potency of hMSCs against P. aeruginosa

Each of the donor hMSC preparations were screened for the ability to reduce P. aerugi-
nosa colony forming units (CFUs) as a measure of anti-microbial activity (Figure 3). Each of
the hMSC preparations demonstrated some anti-P. aeruginosa effect at both 2 h (Figure 3A)
and 4 h (Figure 3B), demonstrating the requirement for following hMSCs for sustainability
of function.
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Figure 2. hMSC Anti-Inflammatory Potency Screen on Transformed Human Airway Epithelial Cells.
Each of the pre-GMP donor preparations (shown by a different color) were cultured in the absence
of antibiotics for 72 h. The supernatants were screened for the ability to suppress the production of
IL-8 from either CF (IB3) or non-CF (S9) airway epithelial cell lines stimulated with LPS (10 µg/mL)
(A). Evaluating each hMSC-CM individually, the CFTR-deficient cell line (B, IB3: n = 8) and control
(C, S9: n = 8) were analyzed. Consistent with previous studies, the hMSCs significantly decreased
IL-8 gene expression (star designates p < 0.05), with each hMSC condition medium having a unique
anti-inflammatory potency.
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Figure 3. hMSC Anti-P. aeruginosa Potency Screen. Each of the hMSC-conditioned medium prepa-
rations generated without antibiotics were analyzed for antimicrobial potency against Pseudomonas
aeruginosa. The hMSC-conditioned medium from each of the donors (shown by a different color)
had antimicrobial potency (A). When each hMSC-conditioned medium preparations were analyzed
individually for antimicrobial potency measuring CFUs at 2 h (B, n = 8) and 4 h (C, n = 8).

2.4. Mechanistic Fingerprinting of the Pre-GMP Donor Preparations

To begin to define the molecular signature of the ideal hMSC with optimal anti-
inflammatory and antimicrobial activity, each of the hMSCs were screened for LL-37
(Figure 4). Not surprisingly, the pre-GMP hMSCs produced significantly variable con-
centrations of LL-37 at baseline and post-response to LPS (Figure 4). Analysis of the
LPS-induced LL-37 concentration versus the antimicrobial potency demonstrated signif-
icance (n = 8, p = 0.02, r = 0.081) using nonparametric ANOVA analysis, but only at 2 h.
LPS-induced LL-37 concentration versus the antimicrobial potency at 4 h had an r = 0.67,
p = 0.07 (n = 8).
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Figure 4. hMSC LL-37 Production. Each of the hMSCs were screened for the ability to secrete the
anti-microbial peptide LL-37 in the presence and absence of a direct stimulation with LPS (10 µg/mL,
n = 8). All eight pre-GMP hMSC donors secreted LL-37 (20,225 ± 9499 pg/mL, mean ± SD).

2.5. In Vivo Testing of Each of the Donor hMSCs

Profiling hMSCs in vitro is a useful and cost-effective way of monitoring the potency
of different hMSC preparations, providing insight into the phenotype and functional
signatures. To ascertain the in vivo functionality of the pre-GMP hMSCs, we utilized
the same in vivo modeling system used to generate the IND supporting pre-clinical data
(Figure 5). To determine the in vivo efficacy of our designated “ideal” hMSC donor, two
of the pre-GMP preparations (blue and red) were screened for the ability to improve
the outcomes in the in vivo murine P. aeruginosa agarose bead model. CF and WT mice
were inoculated with pseudomonas agarose beads and followed for 10 days at which
time the mice were euthanized and evaluated for lung inflammatory markers, including
bronchoalveolar lavage fluid white cell counts (Figure 5A) and total lung P. aeruginosa CFUs
(Figure 5B).
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Figure 5. hMSCs in vivo Potency. Two of the pre-GMP hMSCs (hMSC1 and hMSC2) were selected for
their anti-microbial potency and LL-37 production and studied in the murine model of CF P. aeruginosa
lung infection using n = 5–6 mice in each group. Both hMSC preparations had anti-inflammatory
(A) and antimicrobial (B) activity in vivo, but neither reached statistical significance. In comparing
the “F” variance, hMSC2 has significant p values for both the anti-microbial and anti-inflammatory
outcome measures. (A): p ≤ 0.05, total numbers of bronchoalveolar lavage leukocytes; (B): p ≤ 0.05,
total number of lung P. aeruginosa CFUs.
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The two different hMSC preparations demonstrated trends towards decreasing both
white cell counts and total lung CFUs but did not reach statistical significance. This effect
may be due to the variability in the lung infection modeling system or, importantly, the
selection criteria hypothesized to be essential in defining the underlying in vivo potency.
An evaluation of the groups with and without hMSC treatment for F variance differences
demonstrated significance for hMSC2 with respect to both anti-inflammatory and anti-
microbial potency (p ≤ 0.05).

3. Discussion

In previous pre-clinical studies, we evaluated the potential of hMSCs to treat the
infection and inflammation that is typically associated with CF lung disease [16,21,22]. In
these studies, we established the significant variability in effectiveness of hMSCs from
different donors. In preparation for the “First in CF” clinical trial, eight different hMSC
preparations were screened for potency using in vitro and in vivo models of CF lung
infection-induced inflammation. In CF, the conundrum is reducing the host inflammatory
response in the presence of an active bacterial infection. The therapeutics aimed at just
the inflammatory piece of the CF pathophysiology have been problematic in providing a
therapeutic benefit due to concurrent issues with pulmonary infection [1,5,23]. Given the
unique pathophysiology of CF, hMSCs were screened for anti-microbial activity against
P. aeruginosa, anti-inflammatory activity and production of the antimicrobial LL-37. The
hMSC preparation which demonstrated the optimal anti-inflammatory and antimicrobial
activities with sustained LL-37 production in response to LPS stimulation was selected
for the phase I clinical trial. Of note, the preparation that was ultimately chosen for the
clinical trial was from a donor who was CMV negative and met all other FDA screening
requirements.

hMSC are a relatively novel and exciting therapeutic option for the treatment of
chronic inflammation and infection in CF given their unique capacity to respond and
actively contribute to the host environment [24]. The differences between hMSCs and
other therapeutics lies in the hMSC paracrine capabilities and responsiveness to their
environment which contribute to their clinical effectiveness [25]. Many subjects enrolled
in hMSC clinical trials demonstrate a clinical response, but there is also a significant non-
responder population that does not realize the same benefits from the therapy [12,26,27].
The effectiveness of hMSCs is dictated by the potency of the hMSCs themselves, the disease
under treatment, and the severity of the disease that is being impacted. The validation
of “bench-to-bedside” modeling systems is essential to identifying the most optimal and
reproducible assays of clinical potency.

Because the treatment of inflammatory diseases with hMSCs has been met with
variability in terms of clinically significant outcomes [10,28,29], our studies were aimed
at optimizing the hMSC donor selection to enhance the potential for providing a clinical
benefit in the context of CF lung infection and inflammation. Defining the pre-clinical
potency and efficacy of hMSCs using in vitro and in vivo models such as the murine
model of CF lung-infection-induced inflammation provides insight into the potential for
therapeutic efficacy but still does not guarantee the outcome because of the variability of
the disease and patient characteristics. Even within our selection process to determine
which hMSC donor preparation to test in the murine in vivo model, the criteria would
be interpreted in more than one way, ultimately resulting in a different selection process.
The implication here is that consideration must be given to the environment in which the
hMSC product will be delivered and how it might differ between in the in vitro model and
the complexity of the in vivo environment. Furthermore, other types of in vivo models
such as the CF pig or ferret may provide an additional pre-clinical predictor given that
these models better mimic the intrinsic CF pathophysiology associated with deficient
CFTR [30,31]. The introduction of patient ex vivo tissue samples would provide additional
strength for translating into clinical trials (13,14). Further, cell-based therapeutics have also
been further advanced through exploring hMSC-derived extracellular vesicle as the vehicle
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of choice, which may provide a means to circumvent the variability associated with hMSC
cell-based delivery [32,33].

hMSCs have the potential to alter infection and inflammation through both direct
and indirect interactions with the host. The production of soluble antibacterial mediators
such as LL37 and other molecules such as CCL20 results in immune cell recruitment and
antimicrobial activity [22,34–36]. Antimicrobial peptides can provide important protection
in anti-inflammatory therapies in patients who have diseases characterized by concurrent
infections such as CF. Our data would suggest that hMSC LL-37 is important in defining
antimicrobial potency against P. aeruginosa; however, it is likely that the antimicrobial
activity of hMSC-derived LL-37 is complimented by other hMSC-derived soluble mediators
for other types of infections [13,22]. The in vivo therapeutic potency of hMSCs likely
includes other AMPs and cytokine combinations that ultimately define the in vivo potency.
Utilizing hMSCs as a therapeutic resource of endogenously produced human LL37 and
CCL20 relies on the functional production of these antimicrobial peptides by the hMSCs.
Our studies have demonstrated significant variability in LL37 (and CCL20) production,
thus suggesting donor selection does provide greater potential for a therapeutic benefit
in vivo [21,22]. Mechanistically, these antimicrobial peptides can alter the initial host
response to infection as well as directly interact with the pathogen, making the bacteria
more susceptible to antibiotics [22,34–36]. LL-37 is a highly complex anti-microbial peptide
with the capacity to create pores into extracellular pathogens and provide a chemotactic
gradient for cellular recruitment [22,37]. LL-37 may be important in providing clearance
of infection and resolution of inflammation [38,39]. In follow-up studies, we will focus
on monitoring soluble factors that have been directly linked to P. aeruginosa’s survival
and activity [40,41]. hMSC secreted products, such as IDO, IL-17, IL-6, IL-8 and IL-10, re-
direct host immunity by impacting macrophage and T-cell phenotypes for specific adaptive
and innate mechanisms, supporting the host in the pursuit of homeostasis [42–45]. The
variability in patient hMSC responses is highly complex and likely attributable to multiple
factors including severity of the disease, host characteristics, and the unique phenotype
of each hMSC donor preparation. Future studies are planned to evaluate unique hMSC
fingerprints associated with antimicrobial and anti-inflammatory potency and to evaluate
whether responses vary by disease pathophysiology.

4. Materials and Methods
4.1. Cell Sources
4.1.1. hMSCs

Human posterior iliac crest bone marrow aspirates of 10–20 mL were obtained under
an approved institutional review board protocol from Case Western Reserve University
and University Hospitals Cleveland Medical Center (IRB, #09-90-195). Each hMSC donor
preparation was screened for blood-based infectious diseases to ensure eligibility if selected
as a donor for the CF clinical trial discussed in the partner paper in this journal by Roesch
et al.: A Phase I Study Assessing the Safety and Tolerability of Allogeneic Mesenchymal
Stem Cell Infusion in Adults with Cystic Fibrosis (J. Cystic Fibrosis, November 2022). The
hMSCs were isolated and expanded in ex vivo culture as per previously published meth-
ods [46–49]. Pre-GMP procedures have been previously described, which completely mimic
the GMP process without the expense of the clean room [50]. We compared standardized
hMSC growth medium containing human platelet lysate to medium free of serum and
platelet lysate for hMSC growth and function to optimize the growth conditions of the
hMSCs. The standard platelet lysate supplemental medium was selected for the pre-clinical
development of the hMSCs and the phase I clinical trial in CF [46–49]. Each hMSC donor
preparation (passage 2 or 3) was grown in antibiotic-free conditions for 3 days prior to
harvesting the conditioned medium (supernatant), or cells were utilized in these studies.
Demographic data for de-identified hMSC preparations are presented in Table 1. HLA
testing for compatibility is not required of hMSCs by the FDA because hMSCs do not
express histocompatibility proteins [7].



Pharmaceuticals 2023, 16, 220 8 of 13

Table 1. Demographics of hMSC Donors.

Donor ID Age Sex

786 35 Male

822 53 Male

829 33 Male

875 37 Male

882 28 Female

TB001 36 Female

TB002 34 Male

TB003 27 Female

4.1.2. Human Transformed Airway Epithelial Cell Models

Airway epithelial cell lines obtained from a person with CF (ATCC: CRL-4017™, IB3)
or from a healthy volunteer (ATCC: CRL-4011™, S9) and that had been validated for drug
development and toxicology studies were utilized in these studies. CF airway epithe-
lial cells secrete elevated concentrations of pro-inflammatory cytokines that are further
increased when exposed to pathogen molecules such as lipopolysaccharide (LPS). Monolay-
ers of healthy and CF epithelial cells were generated for the testing of the hMSC supernatant
preparations. Primary CF patient and control airway epithelial cells grown at the air-liquid
interface would provide a great modeling system for quantifying hMSC anti-inflammatory
potency and are the focus of on-going studies. However, the goal of these studies is to
monitor the anti-inflammatory function, which can take advantage of transformed cells
since the hMSC function is expressed as the ability to change inflammation.

4.1.3. Bone Marrow-Derived Macrophages (BMDM)

Bone marrow-derived macrophages (BMDM) were obtained from WT (C57BL/6j) and
CF mice (Cftrtm1Kth, representing R117H on the C57BL/6j background, Cftr−/−) as previ-
ously described [21,50,51]. Briefly, hematopoietic cells from bone marrow were rinsed with
1X phosphate buffered saline and centrifuged at 1800 rpm for 9 min. After discarding the
supernatant, cells were re-suspended in medium (RMPI + 10% HI-FBS + 1% PSG + 46 mls
L929 conditioned medium) and plated at 2.5 × 106 cells in 5ml per petri dish. The purpose of
using the BMDM was to provide a link between the in vitro assays to the in vivo modeling
to verify the potency testing algorithms for easy translation. Future studies could envision
using peripheral blood mononuclear cells from patients and controls and quantifying
hMSC impact like what was conducted for the original validation studies (13,14).

4.2. In Vitro Assays
4.2.1. Anti-Microbial Potency Assays

The hMSCs were evaluated for anti-microbial and antibiotic potency using a clinical
isolate of mucoid Pseudomonas aeruginosa (P. aeruginosa, PAM 5715) because this pathogen is
highly associated with CF lung infections [21,22]. The hMSCs were grown in the presence
of antibiotic free medium for 72 h prior to evaluation in antimicrobial assays. At 72 h,
the medium was harvested, centrifuged to remove any cellular debris, aliquoted, and
frozen at −80 ◦C to sustain activity. Each hMSC-CM preparation was analyzed against
P. aeruginosa cultured the conditioned medium 1:1 in the medium used to grow the P.
aeruginosa. Cultures were analyzed at 2 and 4 h. Anti-microbial activity was monitored by
how the hMSCs altered bacteria growth [measured by colony forming units; (CFUs)]. The
negative controls included the basal medium used to grow the hMSCs, and gentamicin
(50 µg/mL) served as the positive control. We had previously validated the sensitivity to
gentamicin control and the dynamic range of potency [5,6].
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4.2.2. Anti-Inflammatory Potency Assays

These potency models utilized transformed epithelial cell lines from a CF patient (IB3
and S9 cells) or bone marrow-derived macrophages from Cftr knockout (CF: Cftrtm1Kth) or
wild type mice (WT: C57BL/6J). The inflammatory human target cell was an immortalized
epithelial cell line obtained from a person with CF (Cftr−/−). Control consisted of a
transformed cell transfected with an empty vector to provide paired Cftr−/− and Cftr+/+

controls. To correlate the murine in vivo modeling with in vitro potency assays, BMDM
were obtained from Cftr−/− and Cftr+/+ mice and monitored for inflammatory response.

The target cells (epithelial or BMDM) were cultured in the presence and absence
of 100 µg/mL LPS to mimic pathogen-induced inflammation as seen in CF. Both non-
treated and LPS-treated cellular target inflammatory responses were quantified for each
of the 8 different hMSC-conditioned media at 1:1 of cell culture medium. Cultures were
harvested after 24 h with supernatants harvested, centrifuged and aliquoted. Cell was
harvested and processed for RNA using RNA easy for PCR analysis. The anti-inflammatory
functional potency of the hMSCs was associated with the capacity to decrease inflammatory
molecule production by immune cells. The controls included non-stimulated cell targets
and stimulated cell targets cultured with the medium used to grow the parent hMSCs. The
inflammatory profile of the target cells (epithelial cells or macrophages) was followed for
pro-inflammatory cytokine gene expression (TNFα for macrophages and IL-8 from the
human transformed epithelial cells) using RT-PCR [4,5,31].

4.3. In Vivo Models

Cftr-deficient mice (Cftr-tm1Kth) were utilized to provide a modeling system that would
mimic the excessive inflammatory response to P. aeruginosa infection as seen in CF [52–55].
These mice generally possess most of the pathophysiological sequela of CF and provide
an efficient and unique platform to determine hMSC potency and in vivo efficacy. The
Cftr−/− and Cftr+/+ mice were inoculated with a validated slurry of 106 CFUs of viable
P. aeruginosa encased in agarose beads via the transtracheal route. Twenty-four hours after
inoculation, hMSCs were infused at 106/100 µL through the retro-orbital sinus because
of their efficient clearance into the lung. Each group of infected mice (WT and Cftr−/−)
were subdivided into hMSC infusion or media control. The mice were monitored daily for
10 days for changes in body weight. Mice were euthanized and evaluated for pulmonary
inflammation using bronchoalveolar lavage (BAL) and quantitative bacteriology of BAL
fluid and whole lung homogenate.

4.3.1. LL-37 Assay

LL-37, an antimicrobial peptide is produced by hMSCs [35]. In previous studies, we
demonstrated the potential relationship between the production of LL-37 by hMSCs and
anti-inflammatory and anti-microbial potency using in vivo and in vitro modeling [16,21,22].
In the pursuit of the ideal donor for the “First in CF” Phase I clinical trial, hMSC LL-37
production was evaluated using an ELISA-based assay as previously described [16,21].

4.3.2. Statistics

The data underwent linear or log transformation and were utilized to compare be-
tween experimental conditions using unpaired T-tests and one-way ANOVA for statistical
analysis [56,57]. In the acute and chronic infection models, survival curves were compared
using stratified log-rank tests with P. aeruginosa and hMSCs as strata. Bacterial CFUs, white
cell counts, and cytokine concentrations were log-transformed as necessary to compare
between groups or conditions using one or two-way ANOVA, treating donors as experi-
mental blocks. Prism Software (GraphPad Prism 9.0.2) was utilized for analyses. One-way
ANOVA and Bartlett’s correction was incorporated to account for multiple variables and
correction for data normalization when required. Non-parametric ANOVA analysis was
utilized to analyze the correlation between LL-37 and functional antimicrobial activity.
Significance was defined as p ≤ 0.05.
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5. Conclusions

In these studies, eight different pre-GMP hMSC donor preparations were interrogated
for anti-inflammatory and anti-microbial potency to identify the ideal hMSC sources for
the First in CF Clinical Trial of hMSCs (CEASE-CF, NCT02866721). Screening the eight
pre-GMP donors using in vitro anti-inflammatory and anti-microbial assays aided in the
selection of an hMSC donor with the potential to provide anti-inflammatory and anti-
microbial efficacy in the clinical trial. The two most effective in vitro hMSC preparations
were then evaluated in the in vivo murine model of CF lung infection and inflammation
to select the potentially most efficacious donor preparation to be used in the clinical trial.
The preparation of hMSC donor cells followed the requirements mandated by the FDA
for human clinical trials. The systematic selection of the donor hMSC preparation for
the CEASE trial was geared towards providing potency and potential efficacy against CF
airway infection and inflammation. To directly correlate the in vitro and in vivo potency
profiles of hMSCs to the clinical trial data in the Phase I study, future evaluations will be
needed since the Phase I study only utilized one donor hMSC source.
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