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Abstract: The endocannabinoid system (eCB) has been studied to identify the molecular structures
present in Cannabis sativa. eCB consists of cannabinoid receptors, endogenous ligands, and the associ-
ated enzymatic apparatus responsible for maintaining energy homeostasis and cognitive processes.
Several physiological effects of cannabinoids are exerted through interactions with various receptors,
such as CB1 and CB2 receptors, vanilloid receptors, and the recently discovered G-protein-coupled
receptors (GPR55, GPR3, GPR6, GPR12, and GPR19). Anandamide (AEA) and 2-arachidoylglycerol
(2-AG), two small lipids derived from arachidonic acid, showed high-affinity binding to both CB1
and CB2 receptors. eCB plays a critical role in chronic pain and mood disorders and has been
extensively studied because of its wide therapeutic potential and because it is a promising target for
the development of new drugs. Phytocannabinoids and synthetic cannabinoids have shown varied
affinities for eCB and are relevant to the treatment of several neurological diseases. This review pro-
vides a description of eCB components and discusses how phytocannabinoids and other exogenous
compounds may regulate the eCB balance. Furthermore, we show the hypo- or hyperfunctionality of
eCB in the body and how eCB is related to chronic pain and mood disorders, even with integrative
and complementary health practices (ICHP) harmonizing the eCB.

Keywords: endocannabinoid system; receptor cannabinoid; endocannabinoid ligands; phytocannabi-
noids; chronic pain; mood disorders; integrative and complementary health practices

1. Introduction

Cannabis sativa has been used for recreational [1,2], therapeutic [3,4], and other pur-
poses for thousands of years [5]. The plant contains more than 120 terpenes called phy-
tocannabinoids, including one of the main and most recognized representatives, ∆9-
tetrahydrocannabinol (THC). The molecular structure of ∆9-THC was identified for the
first time in 1964, which led to the supposition of the existence of a cannabinoid receptor
and boosted the discovery of the endocannabinoid system (eCB), which is largely an in-
tercellular system that is responsible for energy homeostasis and regulates food intake,
metabolism, and energy expenditure, maintaining a consistent body weight [6]. In addition
to appetite, eCB might contribute to cognitive processes linked to memory, mood, and
pain [7]. eCB has gained prominence during the COVID-19 pandemic, not only for the
inhibition of SARS-CoV-2 replication but also in different studies that include its use for the
treatment of chronic pain and mood disorders [8–13]. eCB is an active system that stimu-
lates a complex cell signaling network. It involves a combination of cannabinoid receptors,
endogenous cannabinoids (endocannabinoids), and enzymes responsible for the synthesis
and degradation of endocannabinoids. The first studies started with the identification of
receptors named type 1 and 2 cannabinoid receptors, or CB1R and CB2R [14–17]. Moreover,
there was the discovery of endogenous ligands, which enhanced our knowledge of new
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compounds, such as N-arachidonoylethanolamide, the first endocannabinoid molecule
to be discovered, which was named “anandamide”, a Sanskrit word meaning “bliss” or
extreme happiness [18], followed by the identification of 2-arachidonoylglycerol (2-AG),
which together with the enzymes responsible for the synthesis and degradation of these
compounds, make up what we know today as the endocannabinoid system [19].

In October 2022, a PubMed search for scientific journal articles published in all avail-
able periods containing the word “Endocannabinoid” revealed 12.272 results, with in-
creased interest in studies and publications since 2000. These numbers illustrate the rapidly
increasing financial support in recent years as well as the scientific interest in understand-
ing the molecular mechanisms in different contexts of clinical application. This review
focuses on recent advances in the understanding of eCB components and discusses the
roles of phytocannabinoids, other exogenous compounds, the treatment of pain and mood
disorders using eCB, and integrative and complementary health practices.

2. Cannabinoid Receptors

CB1/CB2 cannabinoid receptors are mainly distinguished by the sequence of amino
acids in the polypeptide chain and by their distributions in different tissues [20–23]
(Figure 1). Pharmacological studies suggest that cannabinoid molecules might act on
receptors other than the classic CB1 and CB2 receptors, such as the vanilloid receptors
TRPV1, TRPV2, TRPV3, TRPV4, TRPA1, TRPM8 and metabotropic receptors such as GPR55,
GPR3, GPR6, GPR12, and GPR19, among other receptors, as well as enzymes and pro-
teins [24–26]. Recently, the eCB has been expanded, and researchers have named it the
endocannabinoidome (eCBome), a meaningful reference that includes all components as
well as proteins, enzymes, and lipids that are directly or indirectly involved in cannabinoid
system modulation and significantly affect health [27].
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The endogenous lipid signaling system might be deeply involved in several physio-
logical conditions and pathological disorders and may provide a future perspective for the
treatment of different illnesses [28–31].

Phytocannabinoids, such as cannabidiol (CBD), have wide therapeutic applicability,
possibly because of their ability to target numerous receptors. The eCBome plays a role in
the microbiota–gut–brain axis, which has emerged as an important player in the control of
affective and cognitive functions and their pathological changes. However, the molecular
and biochemical bases of the interaction and the biological relationships of the new receptor
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subtypes with cannabinoid ligands have not been fully elucidated; therefore, further studies
are needed [32–34].

The type 1 cannabinoid receptor (CB1R) is encoded by the CNR1 gene [35,36] and was
cloned in rats by Matsuda et al. in 1990 [14]. Years later, CB1R was also cloned in human
tissues [37,38] and mice [39], exhibiting 97–99% amino acid sequence identity between
these species [40]. After receptor cloning, it was possible to design ligand molecules that
fit these receptors following the logic of the key–lock model [14,41–43]. A radioactive
tracer synthesized by Pfizer (“CP55, 940”) has enabled researchers to map the locations
of cannabinoid receptors in the brain. These receptors have been identified in the central
nervous system (CNS) and in high concentrations in regions responsible for mental and
physiological processes, such as the hippocampus (memory), cerebral cortex (cognition),
cerebellum (motor coordination), basal ganglia (movement), hypothalamus (appetite),
and amygdala (emotions) [35,44]. There are fewer cannabinoid receptors, more precisely,
CB1Rs, identified in the brainstem, the region that controls breathing and the heartbeat,
which may explain the fact that there have never been reports of overdose deaths from
Cannabis use, regardless of age, its clinical purpose, or the route of administration [45,46].
Anxiety, paranoia, and coughing fits were the most prevalent adverse reactions to Cannabis
intoxication, whereas cold sweats, other hallucinations (non-auditory/visual), and weight
gain were the three least common related reactions. Chest discomfort, vomiting, and body
humming were also experienced in reaction to Cannabis [47].

In addition to neurons, CB1R is expressed, albeit to a much lesser extent, in astro-
cytes, oligodendrocytes, and microglia, which have been shown to mediate synaptic trans-
mission [46,48,49]. Previous studies have suggested that CB1Rs are highly expressed at
presynaptic terminals and modulate retrograde endocannabinoid signaling [50]. However,
the existence of CB1Rs at postsynaptic sites has not been excluded, such as in functional
studies demonstrating the autoinhibition of neocortical neurons by endocannabinoids [51].
Studies involving the mapping of the rat brain suggest that the preferred location of CBR1
is in axons and nerve terminals and that its actions are related to the modulation of the
release of neurotransmitters such as norepinephrine, dopamine, acetylcholine, glutamate,
5-hydroxytryptamine, γ-aminobutyric acid (GABA), and D-aspartate [1,52,53].

CB1R is abundantly expressed in the peripheral nervous system as well as in other
regions of the body [54,55]. In the PNS, CB1R is highly expressed in the sympathetic
nerve terminals. Furthermore, CB1Rs are observed in the trigeminal ganglion, dorsal root
ganglion, and dermal nerve endings of primary sensory neurons, where they regulate the
nociception of afferent nerve fibers. In the gastrointestinal tract (GIT), CB1R is expressed
both in the enteric nervous system and in non-neuronal cells such as the intestinal mucosa,
including enteroendocrine cells, immune cells, and enterocytes. CB1Rs modulate GIT
mobility [56], the secretion of gastric acids [57], fluids [58], neurotransmitters [59], and
hormones [60] as well as the permeability of the intestinal epithelium [61]. CB1Rs present
in the CNS display roles in the modulation of appetite in the hypothalamus and regulate
energy balance and food intake in the GIT. Interestingly, hepatic CB1Rs may also participate
in the regulation of energy balance and metabolism [46,62,63].

Normally, CB1R expression in the liver is very low; however, under pathological
conditions, CB1R expression in various liver cell types is remarkably increased, where
CB1Rs actively contribute to hepatic insulin resistance, fibrosis, and lipogenesis. Likewise,
CB1R is upregulated in the cardiovascular system under pathological conditions, promoting
disease progression and cardiac dysfunction [55,64–66].

Oxidative stress, inflammation, and fibrosis have been observed following CB1R acti-
vation in cardiomyocytes, vascular endothelial cells, and smooth muscle cells. In addition
to the mentioned tissues, CB1R expression has also been reported in adipose tissue, skeletal
muscle, bone, skin, eyes, the reproductive system, and various cancer cell types. The
skeletal muscle and myocardial CB1Rs are predominantly located in the mitochondria
(mtCB1R). The activation of mtCB1 receptors may participate in the mitochondrial regula-
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tion of oxidative activity, probably through relevant enzymes involved in the metabolism
of pyruvate, the main substrate for tricarboxylic acid activity [23,67–69].

The type 2 cannabinoid receptor (CB2R) was cloned in 1993 from human promyelocytic
leukemia cells of the HL-60 lineage [15], and it was further identified in mice, rats, zebrafish,
and dogs [70–73]. It has an amino acid sequence with approximately 44% homology to
CB1R amino acid residues. CB2R is mainly found in cells of the immune system, where its
expression levels have been found to be higher than those of CB1R [24,46,74].

CB2Rs modulate immune cells and contribute to the analgesic and/or antinociceptive
effects of cannabinoids. CB2Rs have been identified in the CNS. However, some stud-
ies have shown their presence on the surfaces of microglia and neurons located in the
cerebellum, brainstem, thalamus, striatum, cortex, amygdala, and hippocampus [46,75].

Both CB1Rs and CB2Rs belong to a large family of G-protein-coupled receptors
(GPCRs). They belong to a family of membrane proteins that have an amino-terminal
extracellular domain, seven conserved transmembrane helices with a characteristic se-
quence of 20 to 27 amino acid residues with high hydrophobicity, three extracellular and
three intracellular loops, and an intracellular carboxylic acid domain terminal [40,76]
(Figure 2).
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The activation of both cannabinoid receptors promotes adenylate cyclase inhibition
in various cell types through coupling with the Gi/o protein. This leads to decreases in
the levels of adenosine 3′,5′-monophosphate (cAMP) and protein kinase A activity (PKA),
which may be associated with nociceptive neuron sensitization, and proteins that might be
related to increased intracellular calcium, inositol triphosphate, and diacylglycerols, which
are ultimately involved in the modulation of neurotransmitter release [77,78]. CB1R stim-
ulation leads to the activation of the mitogen-activated protein kinase (MAPK) signaling
pathway, including extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal
kinase (JNK), and p38, which are involved in the regulation of cell proliferation, cell cycle
control, and cell death [46,79] (Figure 3).
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3. Endocannabinoids: Synthesis, Release, and Metabolism

With the discovery of cannabinoid receptors, there has been interest in finding endoge-
nous ligands that are responsible for their modulation. An evaluation of purified porcine
brain fractions led to the identification of a new compound that binds to CB1R. Arachi-
donylethanolamide, an arachidonic acid derivative in the porcine brain, was characterized
and named anandamide (AEA), a word derived from the Sanskrit word ananda, which
means extreme happiness [18,77,80–82].

Based on the structural elucidation of AEA, other endogenous lipid molecules were
identified (Figure 4) and are generally called N-acylethanolamines (NAEs), such as 2-
arachidonoylglycerol (2-AG), N-oleoylethanolamine (OEA), 2-arachidonyl glyceryl ether
(noladin, 2-AGE), virodhamine, N-arachidonoyldopamine (NADA), and N-palmitoylethano
lamine (PEA). AEA and 2-AG are the most studied endogenous ligands; however, research
on endocannabinoids has since been conducted, and additional receptors, along with their
lipid mediators and signaling pathways, have been revealed [81,83–93].
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Endocannabinoids, unlike classical neurotransmitters, are considered atypical messen-
gers because of the modulation of information from postsynaptic terminals to presynaptic
terminals, which is known as the retrograde signaling mechanism. Endogenous ligands
are synthesized on demand or by activity dependent on the cleavage of the phospholipid
membrane and are released immediately after their biosynthesis to act as pro-homeostatic
factors through interactions with specific receptors [77,94,95].

The synthesis and degradation of endogenous cannabinoid receptor ligands involve
different enzymatic reactions. AEA biosynthesis occurs through its release from mem-
brane phospholipids and can follow the Ca2+-dependent N-acyltransferase (NAT) or Ca2+-
independent N-acyltransferase (iNAT) pathways. Therefore, N-arachidonoyl-phosphatidyle
thanolamine (NArPE) is formed, and by the action of N-Acyl-phosphatidylethanolamine-
specific phospholipase D (NAPE-PLD), NArPE is converted to N-arachidonoylethanolamine
(AEA) [55,96,97].

Another endogenous ligand, 2-AG, is formed via a two-step mechanism. Initially,
1,2-diacylglycerol (DAG) is synthesized after the cleavage of a membrane phospholipid
by the phospholipase C (PLC) enzyme. DAG is subsequently esterified by the enzyme
diacylglycerol lipase (DAGL), creating 2-AG [98,99].

Endogenous cannabinoids become inactive through a cellular reuptake mechanism
involving membrane transporters (EMT), followed by intracellular degradation through
the action of hydrolytic enzymes. Anandamide is mainly metabolized by the fatty acid
amide hydrolase enzyme (FAAH), and 2-AG is a substrate of monoacylglycerol lipase
(MAGL), which produces arachidonic acid (AA) and glycerol [100,101] (Figure 5).
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and 2-arachidonyl glycerol (6). AA—arachidonic acid; 2-AG-2—arachidonylglycerol; DAGL—
diacylglycerol lipase; EMT—membrane transporters; FAAH—fatty acid amide hydrolase; MAGL—
monoacylglycerol lipase; NAPE-PLD—N-arachidonylphosphatidylethanolamine phospholipase D;
NArPE—N-acylphosphatidylethanolamine; NAT—N-acyltransferase; PLC—phospholipase C.

Furthermore, AEA and 2-AG may be susceptible to oxidative mechanisms catalyzed
by cyclooxygenases (COXs), lipoxygenases (LOXs), and enzymes involved in the oxidation
of arachidonic acid (AA), which is biotransformed into prostaglandins (PG), eicosanoids,
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and hydroxy-peroxy-anandamide, among other compounds derived from this metabolic
reaction [55,77].

The endocannabinoid deficiency theory is based on the concept that many brain
disorders are associated with a deficiency of neurotransmitters, such as acetylcholine
in Alzheimer’s disease (AD), dopamine in Parkinsonian syndromes, and serotonin and
norepinephrine in depression, and a comparable deficiency in endocannabinoid levels
might similarly manifest in certain disorders that exhibit predictable clinical features as
sequelae of this deficiency [102–104].

In 2004, Professor Dr. Ethan Russo and his coworkers proposed clinical endocannabi-
noid deficiency syndrome (CDS), suggesting that an endocannabinoid depletion (hypofunc-
tional eCB) could cause many diseases, such as migraine, a highly complex disease that
involves signaling between different areas of the brain and various neurochemical transmit-
ters. The exact cause of migraine is not fully understood, although genetic predisposition
is considered a primary contributor to its genesis and modulation [102,104]. The possible
relationship between migraine and the endocannabinoid system has been highlighted by
several studies [105,106].

Fibromyalgia is also related to deficiencies in the endocannabinoid system and is
characterized by acute and chronic widespread musculoskeletal pain throughout the body.
This pain is more often accompanied by other conditions such as insomnia, migraine, mood
swings, memory problems, irritable bowel syndrome (IBS), and chronic fatigue. The pres-
ence of characteristic painful nodules, known as trigger points, is notable and particularly
prevalent in the shoulders and neck. Similar to migraine, fibromyalgia is associated with
hyperalgesia, a lowered pain threshold associated with central endocannabinoid hypofunc-
tion in the spinal cord. According to Russo et al., the approved drugs for fibromyalgia,
duloxetine, milnacipran (serotonin and adrenergic inhibitors, respectively), and prega-
balin (an anticonvulsant used to treat neuropathic pain) showed little efficacy in treating
fibromyalgia compared to Cannabis [106–108].

IBS, also known as spastic colon, is a functional disorder characterized by GIT pain,
spasm, discomfort, and altered bowel movements, predominantly diarrhea. GIT propulsion,
secretion, and inflammation in the gut are modulated by the endocannabinoid system,
providing a rationale for the inclusion of cannabinoids in IBS treatment [109]. Studies have
shown that increased capsaicin receptor TRPV1 expressing sensory fibers may contribute to
visceral hypersensitivity and pain in IBS and provide a new therapeutic target. Cannabidiol
could be used for therapeutic interventions because of its effect on vanilloid VR1 receptors;
it also enhances anandamide signaling. Its analogs have been shown to be potent inhibitors
of anandamide cellular uptake [110–115].

Neurodegenerative disorders may lead to the development of Parkinson’s disease (PD)
and AD. Normally, they are characterized by cognitive impairment and other neurological
defects. Currently, the endocannabinoid system is studied as a drug target in PD and
AD because of the overexpression of endocannabinoid system receptors, which exert
neuroprotection against PD and reduce neuroinflammation in AD. Increased levels of AEA
were found in the cerebrospinal fluid of untreated patients with PD, which was suggested
to be a possible compensatory mechanism. Cognitive deficits in AD patients correlate with
cerebral disturbances in sensitive brain areas, largely in the frontal cortex and hippocampal
regions, which are rich in CB1Rs. ∆9-THC and CBD showed neuroprotection in PD and AD
animal models; however, they triggered toxic effects in patients when administered directly.
Studies are necessary to determine the therapeutic efficacy of targeting the endocannabinoid
system in neurodegenerative diseases [101,116–118].

In some cases, eCB might be hyperfunctional, promoting cognitive deficits that may be
noticeable in fragile X syndrome (FXS), Down syndrome, and Williams–Beuren syndrome
(WBS). In addition to the genetic causes of these syndromes, it is believed that eCB is
overactivated. In an animal model of FXS, knockout mice with fragile X mental retardation
protein (Fmr1) recapitulate the main features of the disease. BlockingCB1R and CB2R
in male Fmr1 knockout mice normalized the cognitive impairment and anxiolytic-like
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behavior, respectively [119]. In a preclinical model of Down syndrome, the segmental
trisomic Ts65Dn mouse model showed that CB1R expression was enhanced, and its function
increased in hippocampal excitatory terminals. The knockdown and inhibition of CB1R
repaired memory deficits in male Ts65Dn mice [120]. To evaluate a model mimicking WBS,
mice with the same genetic deletion found in patients with WBS were used. Male mice
showed hypersocial behaviors, memory deficits, enlarged hearts, and differences in the
function of CB1R. These mutant mice received JZL184, an MAGL inhibitor, which improved
their social and memory symptoms and cardiovascular function [121]. These studies show
that the modulation of eCB hyperactivity is a promising therapeutic approach for cognitive
deficits associated with genetic syndromes.

4. Molecules That Modulate the Endocannabinoid System

Cannabis, an herbal medicine, is a complex mixture of several compounds, includ-
ing cannabinoid phenols, non-cannabinoid phenols (simple phenols, spiro-indans, dihy-
drophenanthrenes, and dihydrostilbenes), flavonoids, terpenoids, alcohols, aldehydes,
n-alkanes, wax esters, steroids, and alkaloids. In 1899, Wood isolated cannabinol (CBN),
the first compound purified from the plant. Currently, more than 500 different substances
have been isolated and reported from Cannabis plants belonging to different classes, among
which the class of cannabinoid compounds is the most representative because it has more
than 120 identified compounds, such as delta-eight and delta-nine tetrahydrocannabinol
(∆8-THC and ∆9-THC), CBD, and CBN (Figure 6). Diverse classes of secondary metabolites
from different parts of the plant have been identified, with a wide range of applications (nu-
traceuticals, cosmetics, aromatherapy, and pharmacotherapy) that are beneficial to humans.
However, in the past, studies were focused on the two most abundant phytocannabi-
noids, THC and CBD, thus resulting in greater knowledge about their pharmacological
activities and increasing interest in the numerous possibilities of the medicinal actions of
the plant [109,122–128]. CBD has been gaining prominence in pharmacological research
since the 1970s. Epidiolex®, a purified oral CBD medicine, is currently approved by
the U.S. Food and Drug Administration for the treatment of intractable childhood-onset
seizures [129,130].
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However, the biochemical basis of the pharmacological activity of cannabinoids has
remained an enigma for many years. The highly lipophilic molecular structure of cannabi-
noids suggests that they exert their effects by penetrating cell membranes and acting in the



Pharmaceuticals 2023, 16, 148 9 of 20

CNS. Currently, important insights into the physicochemical properties of cannabinoids are
available. Novel selective ligands for cannabinoid receptors can have specific substituents
that increase binding kinetics and decrease side effects [131–135].

5. Endocannabinoid System Emerging as a Pharmacotherapy Target for Chronic Pain
and Mood Disorders

Pain is described as an unpleasant sensory and emotional experience associated with
actual or potential tissue damage or in terms of such damage. When pain persists or recurs
for longer than three months, it is defined as chronic pain and has a major impact on
society. An estimated 20% of the global population suffers from chronic pain. Importantly,
depression and anxiety are significantly observed in such patients [136–138]. Pain therapy
includes both pharmacological and non-pharmacological treatment options. Antidepres-
sants, anticonvulsants, and drugs that act on the CNS are commonly recommended for
chronic pain treatment. Therapeutic agents are considered adjuvant analgesics, medications
that were not primarily developed as analgesics but have pain-relieving properties, and are
the first-line drugs for neuropathic pain treatment and psychiatric problems [139]. How-
ever, some patients do not show pain alleviation and seek other therapies to reverse their
condition. Pain relief was already described by the Chinese in the third millennium BC
due to the use of extracts of the hemp plant (Cannabis sativa) to cause a variety of medicinal
effects. Recently, interest in the medicinal properties of Cannabis sativa has resurged with the
emergence of the eCB, offering not only new insights into the mechanisms underlying the
therapeutic actions of cannabinoid-like molecules and phytocannabinoids but also novel
molecular targets for the pharmacotherapy of pain [2,140]. Studies in animal models of
acute pain showed that ∆9-THC, CBD, AEA, and synthetic cannabinoids such as CP55,940
and WIN 55,212-2 had antinociceptive actions [141–148]. In a model of chronic pain, AEA
and cannabinoid ligands were effective treatments [147,149–152]. The combination of en-
docannabinoids and synthetic cannabinoids with nonsteroidal anti-inflammatory drugs
promotes synergistic antinociceptive effects and may be useful in the pharmacotherapy
of pain. In addition, studies of paracetamol (acetaminophen) activity, the most widely
used painkiller, suggest that its analgesic efficacy is, in part, mediated by CB1R stimula-
tion [144,153–157]. Natural and synthetic cannabinoids, such as dronabinol and nabilone,
have been studied in humans for chronic pain relief, and therapeutic efficacy for pain man-
agement and quality of life improvement in patients was observed. The eCB is distributed
throughout the spinal and supraspinal regions, thus can effectively regulate nociceptive
processing [158–163].

CB1Rs may be activated by THC, producing analgesia and adverse events (e.g.,
headache, numbness, cough, burning sensation, dizziness, feeling high, somnolence, and
dry eyes and mouth) [164,165]. Many of the psychoactive events depend on THC con-
centrations and might become important disadvantages of its use as a pharmacological
therapy [166]. A previous study demonstrated that CB1R activation causes memory impair-
ment [167,168]. In addition, THC and other cannabinoids activate serotonin 2A receptors
(5-HT2AR), modulating memory deficits, anxiolytic-like effects, and social interaction [169].
Previous studies have shown that CB1R and 5-HT2AR form heteromers that are expressed
and functionally active in specific brain regions involved in memory impairment, such
as the hippocampus and prefrontal cortex [167,170–172]. However, memory deficits and
anxiety were abrogated in wild-type mice with the use of a 5-HT2AR antagonist or the
selective disruption of the CB1R/5-HT2AR heteromers by an infusion of synthetic inter-
ference peptides without losing the antinociceptive effect [167]. Ongoing studies on the
use of Cannabis show that it promotes pain relief and dissociated memory impairment,
reducing drawbacks for the use of cannabinoids as therapeutic agents [168]. CB2R plays an
important role in modulating analgesia via two pathways. The first mechanism occurs in
the peripheral immune system, where CB2Rs mediate analgesia by modifying the cytokine
profile and preventing adverse effects on the CNS. Secondly, CB2Rs present in glial cells
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and neurons contribute to pain relief [173,174]. Additionally, studies have shown that
selective CB2 agonists promote antinociception [175,176].

Anxiety and panic disorders, major depressive conditions, and bipolar disorder (manic–
depressive illness) are mood complications that are often serious and potentially life-
threatening. More than 20% of the adult population experience mood disorders at some
point in their lives [177]. Many advances have been made in mood disorder treatment
over the past decades. Approximately 30% of the population does not respond to current
therapies, and the search for novel pharmacological approaches continues [178,179].

The psychoactive effects of Cannabis include calming, anxiolytic, sleep-inducing, and
euphoric effects. Some of these factors positively affect moods. However, symptoms such
as paranoia, irritation, dysphoria, depression, depersonalization, and demotivation may
appear in some individuals with such adverse effects [51,180]. The reactions depend on
the patient’s endocannabinoid activity, the dose used (normally stimulating action at a
low dose and inhibitory action at a high dose), the proportion of phytocannabinoids, and
the terpenoid composition [179,181]. Evidence is increasing regarding the role of eCB
in mood regulation. Clinical studies have shown altered endocannabinoid signaling in
psychiatric patients [182]. Genetic polymorphisms in CB1R and CB2R are associated with
major depression, bipolar disorder, and resistance to therapy, which has been observed in
depressed patients who have a single-nucleotide polymorphism in CB1R [183–186]. More-
over, eCB might modulate the functions of all hypothalamic–pituitary axes via CB1R, and
chronic stress seems to reduce the eCB system’s ability to suppress stress and may induce
psychopathology, including depression and anxiety [187]. In this sense, it is important to
remember the trajectory of the drug rimonabant, the first cannabinoid receptor blocker
to be approved for metabolic syndrome treatment, obesity, and smoking. However, due
to important adverse effects that became evident in patients following chronic exposure
to rimonabant, Sanofi-Aventis withdrew it from the market. This drug mainly exerts its
beneficial effects by blocking CB1 receptors in the periphery. However, due to its lipophilic
nature, rimonabant can cross the blood–brain barrier and enter the CNS, and it is linked
to the development of depression, suicidal feelings, and anxiety disorders [188–190]. The
mood-elevating properties of cannabinoids have long been known and are considered non-
toxic. Some Cannabis constituents or mixtures may have antidepressant and/or anxiolytic
effects. Many patients who are nonresponsive to the usual pharmacological treatments for
depression may benefit from medicinal Cannabis use. Cannabinoids may have therapeutic
potential for both depression and bipolar disorder. This is related to some patients adding
Cannabis to ongoing treatment since this association might improve the efficacy of such
medication and/or reduce its side effects. Cannabis may be a mood stabilizer in bipolar
disorder and an adjuvant to lithium treatment. Patients experiencing a mood disorder may
not be objective in assessing their condition and cannot decide on their own to modify the
treatment. Thus, professional care and control are essential [177,179,191–194].

6. Harmonization of the Endocannabinoid System through Integrative and
Complementary Health Practices (ICHP)

Clinical interventions are characterized as integrative and complementary health prac-
tices (ICHP), also known as “complementary and alternative medicine (CAM)”, which
include various medical and health systems, practices, and products that are not currently
part of conventional therapies. CAM is classified into three broad groups: “natural prod-
ucts” (dietary and herbal supplements), “mind and body medicine” (meditation, yoga, and
acupuncture), and “body-based practices” (massage and spinal manipulation) [195,196].

A rodent study conducted by Chen et al. showed that electroacupuncture promoted
antinociceptive activity in animals and increased AEA levels in skin tissue. It was also found
that the antinociceptive effects were attenuated when using AM630, a CB2R antagonist,
but not when using the CB1R antagonist AM25 [197]. Furthermore, AEA increased the
expression of CB2R in the skin [198,199]. CB2R activation in the skin likely stimulates
the release of β-endorphin, which then acts on peripheral µ-opioid receptors to inhibit
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nociception [51]. Furthermore, electroacupuncture conferred neuroprotection against
cerebral ischemia by stimulating the mobilization of endocannabinoids in the brain and
activating CB1R [200,201].

Sadhasivam et al. suggested that endocannabinoids may serve as biomarkers after
a meditation session. Depression and anxiety scores significantly decreased and hap-
piness and positive well-being scores were enhanced after four days of an Isha Yoga
Bhava Spandana program. Additionally, one day before and one day after, blood samples
were collected voluntarily for the evaluation of the levels of AEA, 2-AG, 1-AG, docosate-
traenoylethanolamide (DEA), oleoylethanolamide (OLA), and brain-derived neurotrophic
factor (BDNF). Analyses suggest that major endocannabinoids, including AEA, 2-AG, 1-AG,
DEA, and BDNF, increased after meditation in >70% of patients, suggesting an important
role for these biomarkers in the mechanism underlying meditation [202]. Studies have
indicated that there is a correlation between acupuncture and eCB through the biological
effects shared by both, including analgesia, neuroprotection, and cardiovascular regulation.
A better understanding of these intrinsic links between acupuncture and CES may allow
for the development of new techniques that combine acupuncture with therapeutic agents
that target the endocannabinoid lysis signal [203–206].

Another study found that massage and osteopathic manipulation of asymptomatic
participants increased serum AEA levels by 168% compared to pretreatment levels; there
were no changes in 2-AG levels. Participants who underwent sham manipulation (control)
showed no changes [207]. An integrative approach combining acupuncture, massage, yoga,
mind–body approaches, and medical Cannabis might be quite effective. As an example, we
have a patient with chronic neuropathic pain showing improvement in the clinical picture
when treated this way [208]. Accordingly, a complex individualized approach is needed,
highlighting patient guidance and engagement in integrative modalities and the medicinal
use of Cannabis.

7. Research Perspectives and Trends in the Endocannabinoid System

Since the beginning of scientific research with cannabinoids, with a special emphasis
on the isolation and identification of phytocannabinoids such as THC, scientists have
continued to improve, day after day, the knowledge of the pharmacology, biochemistry,
and clinical effects of Cannabis. For years, the physiological effects of its consumption have
been well known, particularly in the state of euphoria. However, what occurs inside our
bodies at the molecular level, especially in the brain, to alter consciousness is still unknown.
In 1973, US researchers identified receptors in the brain that are linked to opiates. Some
scientists expected the discovery of receptors for marijuana to occur rapidly. However, it
was not as easy or as fast as they wanted. Research by Allyn Howlett and William Devane
identified that cannabinoid receptors were more abundant in the brain than any other
GPCR [206,209–211].

CB1R and CB2R, as part of the endocannabinoid system, play critical roles in numer-
ous physiological conditions and human diseases. Therefore, considerable efforts have been
made to develop ligands for CB1R and CB2R, resulting in hundreds of phytocannabinoids
and synthetics that have shown varied affinities for the treatment of various diseases [17].
However, only a few of these ligands have been used clinically. Currently, more detailed
structural information for cannabinoid receptors has been revealed by cryoelectronic mi-
croscopy, which has accelerated the discovery of structure-based substances [209]. At the
same time, new peptide-like cannabinoids of animal origin arrived on the scene, with
potential therapeutic effects in vivo on cannabinoid receptors [212,213].

From the point of view of natural products, it is expected that new cannabinoids will
be discovered and predicted as prototypes for promising drugs from different sources and
natural species, such as animal venoms, which constitute a true pharmacopeia of toxins
modulating diverse targets, including ion channels and GPCRs such as CB1R and CB2R,
with significant affinity and selectivity [214]. Therefore, it is believed that discovering new
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cannabinoids by studying the biodiversity of species that live on Earth is a territory that
has yet to be explored.

8. Conclusions

The roles of cannabinoid receptors and their agonists in multiple conditions have
been addressed in this review. Since research with derivatives of Cannabis has started
and the biological functions of isolated compounds in experimental and human diseases
have shown promising outcomes, it is evident that selective ligands of specific Cannabis
receptors could induce beneficial outcomes, depending on the clinical condition. More
research on the biological function of each Cannabis derivative should be encouraged.
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