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Abstract: The cannabinoid receptor 1 (CB1R) plays a pivotal role in regulating various physiopatho-
logical processes, thus positioning itself as a promising and sought-after therapeutic target. However,
the search for specific and effective CB1R ligands has been challenging, prompting the exploration of
drug repurposing (DR) strategies. In this study, we present an innovative DR approach that combines
computational screening and experimental validation to identify potential Food and Drug Adminis-
tration (FDA)-approved compounds that can interact with the CB1R. Initially, a large-scale virtual
screening was conducted using molecular docking simulations, where a library of FDA-approved
drugs was screened against the CB1R’s three-dimensional structures. This in silico analysis allowed
us to prioritize compounds based on their binding affinity through two different filters. Subsequently,
the shortlisted compounds were subjected to in vitro assays using cellular and biochemical models to
validate their interaction with the CB1R and determine their functional impact. Our results reveal
FDA-approved compounds that exhibit promising interactions with the CB1R. These findings open
up exciting opportunities for DR in various disorders where CB1R signaling is implicated. In conclu-
sion, our integrated computational and experimental approach demonstrates the feasibility of DR for
discovering CB1R modulators from existing FDA-approved compounds. By leveraging the wealth of
existing pharmacological data, this strategy accelerates the identification of potential therapeutics
while reducing development costs and timelines. The findings from this study hold the potential
to advance novel treatments for a range of CB1R -associated diseases, presenting a significant step
forward in drug discovery research.

Keywords: cannabinoid receptor 1; drug repurposing; structure-based virtual screening

1. Introduction

Structure-based virtual screening (SBVS) is a computational method for early stage
drug discovery starting from novel bioactive molecules [1,2]. Its application appears
more efficient than traditional drug discovery approaches, which are often rather complex,
expensive and risky.

To be applied, SBVS needs available three-dimensional structures of the proteins of
interest, which can be obtained from different experimental techniques such as X-ray diffrac-
tion and cryogenic electron microscopy (cryo-EM), and more recently Alphafold—an artifi-
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cial intelligence that predicts the protein conformation from the amino acid sequence [3].
Then, SBVS can be used for a potent drug discovery technique named drug repurposing
(DR), which starts from existing drugs that were commercialized for different therapeutic
indications. Of note, DR increases the success rate of drug development, a process that
takes more than 10 years and EUR 1 billion per drug, with a high (~90%) failure rate in
clinical trials [4].

The combination of SBVS and DR leads to structure-based drug repurposing (SBDR),
a technique that allows us to discover potentially new drugs from virtual libraries of
approved compounds, by uncovering their interactions with selected proteins. The pre-
diction of drug–protein interactions and the analysis of their binding affinity values can
be exploited in different computational methods, such as molecular docking, alchemical
binding free energy calculation, umbrella sampling and molecular mechanics/generalized
Born and surface area solvation (MM-GBSA) or molecular mechanics/Poisson–Boltzmann
surface area (MM-PBSA) [5].

DR also promises high approval rates, because the safety of any commercially available
drug has been already assessed in preclinical and clinical trials; thus, the time (and money)
needed for drug development can be reduced using this approach [6,7].

Aspirin is the oldest example of DR. Initially formulated by Bayer in 1899 as an
analgesic, it underwent repurposing several decades later as an antiplatelet aggregation
drug [8,9]. Then, aspirin was proposed to treat other conditions such as cancer [10,11] and
cardiovascular diseases [12]. Thalidomide is another example of DR. It was first marketed
in 1957 for the treatment of anxiety, sleeping trouble and morning sickness. Yet, it was
soon withdrawn because of its teratogenicity [13–15], but later on, it was repurposed to
treat cancers—particularly erythema nodosum leprosum, multiple myeloma and other
hematological malignancies [16]. Maybe the most famous example of DR is sildenafil, that
was developed for angina but then repurposed for erectile dysfunction [17]. Finally, among
repurposed drugs worth mentioning, one can list baricitinib, remdesivir and tocilizumab,
originally developed to treat Alopecia Areata, viral infections (SARS, MERS and AIDS)
and rheumatoid arthritis, respectively [18–20], but then repurposed as potential COVID-19
treatments [21,22].

Here, we sought to use SBDR for repurposing Food and Drug Administration (FDA)-
approved drugs on cannabinoid receptor 1 (CB1R), one of the most prominent G protein-
coupled receptors in the human brain [23–25]. To this end, knowing the 3D structure
details of CB1R is extremely important. This receptor shows the classical 7 transmembrane
fold with a lid above the binding site that contains abundant acidic residues and a highly
hydrophobic orthosteric binding pocket [26,27]. In addition, a ‘twin toggle switch’ of
Phe200 and Trp356 appears essential for CB1R activation [28]. Overall, CB1R is considered
a major pharmacological target, due to its many implications for diseases of the central
nervous system (CNS) and peripheral organs [24,29]. Unsurprisingly, CB1R is widely
distributed throughout the body and is highly expressed within the CNS (approximately
10 to 50 times more than receptors of classic neurotransmitters like opioid and dopamine
receptors) in the basal ganglia, hippocampus, cerebellum, amygdala, cingulate cortex,
medial hypothalamus and spinal cord [30]. Moreover, CB1R is present—though to a lesser
extent—in the periphery, namely in adipose tissue, liver, skeletal muscles, kidney and
pancreas [21,31–34].

CB1R was first discovered as the target of the main psychoactive ingredient of cannabis
extracts, ∆9-tetrahydrocannabinol [24,35,36]. Later on, it was recognized that CB1R is a key
element of a complex lipid signaling system, called the endocannabinoid (eCB) system [24,37].
The latter comprises eCBs, that are endogenous ligands of CB1R [24,37]. The most relevant
eCBs derive from arachidonic acid, anandamide (N-arachidonoylethanolamine, AEA), which
is an amide, and 2-arachidonoylglycerol (2-AG), which is an ester. In addition to CB1R,
AEA and 2-AG have other receptor targets and a number of metabolic enzymes that have
been recently reviewed in detail [24]. Here, only the main metabolic enzymes of 2-AG
(biosynthesis: diacylglycerol lipases (DAGL) α and β; degradation: monoacylglycerol
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lipase (MAGL) and α/β hydrolase domain-containing (ABHD) proteins 6 and 12) [24,38]
have been analyzed, along with fatty acid amide hydrolase (FAAH), the main catabolic
enzyme of AEA [24,37].

During the last decade, hundreds of compounds able to bind to CB1R have been
synthesized and tested, reporting diverse pharmacological effects [24,39–41]. Unfortunately,
most of them have been withdrawn because of undesirable side effects. Noteworthy
seems the case of SR141716A (SR1, also known as Rimonabant or Acomplia®). This
selective antagonist/inverse agonist of CB1R was first approved in Europe in 2006 for the
management of obesity, but it was then withdrawn two years later because of adverse
effects like an increased incidence of depression and suicidal ideation [42,43]. Another
potent synthetic CB1R agonist, called AMB-Fubinaca, has been named the “zombie drug”
in 2016, because 33 people (25–59 year old) were adversely affected with a semicomatose
state [44,45]. These examples simply remind us that there is still an urgent need to find
effective drugs able to modulate CB1R with minimal (if at all) side effects.

Here, SBDR has been used on two different 3D structures of CB1R, in order to increase
the accuracy of the calculation taking into full account the orthosteric site flexibility of the
receptor. Indeed, CB1R shows different conformations upon binding lead by molecular
properties. Significant structural modifications due to the ligand nature are evident in
helices I and II [28]. In particular, helix I undergoes an inward bending of approximately
6.6 Å, while helix II rotates inwardly by approximately 6.8 Å compared to the agonist-
bound and the antagonist-bound states [28]. Likewise, notable conformational changes are
observed in the cytoplasmic section of the receptor, where helix VI moves outward by about
8 Å. As a result of the inward shifts of helices I and II, the ligand-binding pocket’s volume
reduces from 822 Å3 in the antagonist-bound structure to 384 Å3 in the agonist-bound
complex, signifying a substantial 53% reduction [28,46].

In pursuit of identifying commercial drugs capable of interacting with CB1R, an FDA-
approved list of 1379 molecules was retrieved from a chemical database (Zinc15 database).
To further validate the in silico results, in vitro competitive radioligand assays were also
performed and the experimental binding affinity of the compounds were calculated. Radi-
oligand binding assays are indeed a powerful tool in the early phase of the drug design and
discovery process, because they allow us to study directly ligand–receptor interactions [47].
Then, a proteomic technique was used to evaluate the possible interaction of the most
potent CB1R ligands towards other key elements of the eCB system, in order to predict
possible side effects.

2. Results
2.1. Virtual Screening

To estimate the binding affinity of the investigated drugs towards CB1R, a molecular
docking analysis was performed by means of the MOE (Molecular Operating Environment)
software (Chemical Computing Group (CCG), Montreal, QC H3A 2R7, Canada). To this
end, two different 3D structures of CB1R were used, with PDB codes 5XRA (at 2.80 Å
resolution) and 5U09 (at 2.60 Å resolution) in the Protein Data Bank (PDB) (www.rcsb.
org). In particular, the first structure is co-crystallized with the receptor agonist AM11542
(Ki = 0.29 nM), whereas the second is complexed with the inverse agonist Taranabant
(Ki = 0.13 nM) [27,28]. The performance of the docking procedure was ascertained by
redocking the co-crystallized ligands, AM11542 and Taranabant, that yielded ∆G values of
−10.951 kcal/mol and −11.134 kcal/mol, respectively (Figure 1). All binding free variations
were obtained through the use of Equation (1) computed using MOE.

In this context, it seems important to recall that CB1R’s conformation is affected
by the nature of the ligands [26]. Therefore, cross-docking has also been performed by
analyzing the binding affinity of AM11542 for 5U09 and Taranabant for 5XRA, that yielded
∆G = −9.6540 kcal/mol and ∆G = −8.2429 kcal/mol, respectively (Figure 1). The different
∆G values of each CB1R ligand in both structures, −10.951 kcal/mol and −9.6540 kcal/mol
for AM11542 and −11.134 kcal/mol and −8.2429 kcal/mol for Taranabant, confirmed the
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different conformation of the agonist-bound state and the inverse agonist-bound state,
with a decrease in the binding affinity (∆G) of −1.480 and −2.708 kcal/mol, respectively
(Figure 1).
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Figure 1. Cross-docking using two 3D structures (PDB 5XRA and 5U09) with AM11542 and Tarana-
bant. ∆∆G = ∆Gre-dock − ∆Gcross-dock.

Then, the ZINC15 database (https://zinc.docking.org/) of 1379 molecules was used [48],
in order to perform virtual screening on both 3D structures of CB1R through a rigid-protein
docking approach. All details are reported in the Methods section. In this first analysis, a
threshold of the binding affinity of −8.5 kcal/mol has been established in order to obtain a
restricted set of 200 molecules.

Next, to reveal only potential CB1R agonists among the selected molecules, all subse-
quent analyses were carried out on the 5XRA structure [2]. Afterwards, a blind induced-fit
docking, localized in the channel that leads to the orthosteric site of the 5XRA structure, was
performed using an induced-fit approach, which allows the binding site to move freely. For
this purpose, a second filter stage, that selects only the molecules with several high affinity
poses close to the binding site, was applied. Figure 2 shows a representative example of the
comparison between AM11542 (a) and Raloxifene (b), with all poses into the channel, and a
discarded compound (mupirocin) (c), with several scattered predicted poses.
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These channel analyses may provide an explanation for the different potency and
selectivity of the CB1R ligands [49,50]. With this filter, 10 drugs were selected: Aminopterin
(APGA), Avanafil, Ceftriaxone, Methotrexate, Miltefosine, PGE-1, Raloxifene, Raltegravir,
Riociguat and Valsartan, as shown in Table 1. Interestingly, among these compounds,
Methotrexate and APGA show similar structures, also shown in Table 1 for comparison.

https://zinc.docking.org/
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Table 1. Chemical structures and applications of drugs obtained from computational screening.

Drugs Chemical Structures Indications

Aminopterin (APGA)
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dysfunction and osteoporosis (Table 1). Of note, one of the selected drugs, Raloxifene, has
been already reported to bind to CB1R with Ki = 210 nM [51].

2.2. Analysis of CB1R Binding

With the aim of validating in silico computational data, competitive radioligand
binding assays were performed at 10 µM to estimate the drug potency. The potent CB1R
synthetic cannabinoid [3H]CP55,940 was used as the ligand to be displayed in mouse brain
membranes. In the same experiments, Raloxifene was used as a positive control [51].

Eight of the ten selected drugs significantly competed with [3H]CP55,940 (Figure 3).
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In particular, the most potent appeared to be Raltegravir, that produced ~80% displace-
ment of [3H]CP55,940. Interesting, Raloxifene was less potent than Raltegravir (Figure 3).
Furthermore, Miltefosine and Methotrexate displaced ~60% and ~50% [3H]CP55,940, re-
spectively. Instead, Valsartan, Avanafil, APGA and Riociguat were found to be weak
competitors, that produced ~30% (the first three) and ~20% displacement of [3H]CP55,940,
respectively (Figure 3). Finally, Ceftriaxone and PGE-1 failed to show any competition at
CB1R (Figure 3), which in the case of PGE-1 could be due to its poor stability [52].

2.3. Activity-Based Protein Profiling

Competitive activity-based protein profiling (ABPP) was performed to assess poten-
tial interactions of the most potent drugs—Raltegravir, Methotrexate and Miltelfosine—
excluding the positive control Raloxifene, with some of the key enzymes involved in eCB
metabolism. ABPP is a powerful technique that takes advantage of chemical probes able to
react with an amino acid located in the catalytic site of the target enzymes [53,54]. Here,
membrane and cytosol fractions of mouse brain were used to analyze the interactions of
FDA drugs with the following serine hydrolases: DAGLα/β, MAGL, ABHD6, ABHD12
and FAAH (Figure 4).

To this end, two ABPP probes (MB064 and FP-Bodipy) were used at 100 nM and
10 µM, respectively [55]. Moreover, inhibitors of DAGLα/β (DH376), MAGL and ABHD6
(ABX1431), ABHD12 (DO264) and FAAH (PF04458745) were used as positive controls.
None of the tested drugs were able to interact with the selected enzymes, supporting the
lack of off-targets (Figure 4).
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Figure 4. Activity-based protein profiling of some of the main enzymes of the endocannabinoid
system in the mouse brain, either in membrane fractions (a) or in cytosolic fractions (b). The samples
are in the following order: control (DMSO), DH376, ABX1431, DO264, PF04458745, Raltegravir and
Methotrexate (top panels); control (ethanol), DH376, ABX1431, DO264, PF04458745 and Miltefosine
(bottom panels).

2.4. Cell Viability

The mechanisms of action of FDA-approved drugs used in this study are known [56,57],
except for Miltefosine, whose molecular targets have not been identified yet. However, this
drug is known to inhibit the proliferation of human keratinocytes (HaCaT cells), at micromolar
concentrations [58]. In line with this, and keeping in mind the role of CB1R in cancer [59],
here, the anti-proliferative effects of Miltefosine were investigated in the micromolar range
(Figure 5a).
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Figure 5. Dose- and time-dependence of HaCaT cell viability upon Miltefosine exposure (a). Live
cells percentage after 4 h of incubation with Miltefosine (25 µM) and SR141716 (1 µM) at different
preincubation times (30 min, 1 h, 90 min and 2 h) (b). * p < 0.05, ** p < 0.01 and *** p < 0.001.
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Furthermore, the effects were analyzed at different incubation times (2, 4 and 6 h),
in order to assess possible time-dependence (Figure 5b). Miltefosine failed to affect cell
growth at lower concentrations and at any time of incubation. Instead, at 25 µM, it showed
anti-proliferative effects that were time-dependent (Figure 5a,b). Remarkably, the CB1R an-
tagonist SR1 attenuated the effect of Miltefosine, in a manner that was directly proportional
to the preincubation time (Figure 5b). These results demonstrate that Miltefosine exerts an
anti-proliferative effect via the engagement of CB1R.

3. Discussion

DR represents an efficient approach to drug discovery because it exploits approved
drugs with a known safety profile. The main advantage of DR is the marked reduction in
the costs of clinical trials, which account for ~60% of the total cost of drug development.
Indeed, DR can lead to new therapeutic indications for existing drugs with extensive clinical
history and toxicology.

Here, virtual screening performed on two different 3D structures of CB1R allowed us
to select 200 molecules out of 1379 compounds reported in the ZINC15 database. Then,
10 compounds were isolated through the application of a second filter to find possible
agonists for CB1R using the 5XRA structure (Table 1). To validate the screening method
employed, one of the final compounds has previously been reported to bind to CB1R.
This selective estrogen receptor modulator, Raloxifene, exhibited a Ki value of 210 nM
on CB1R [51]. Additionally, the authors investigated various compounds belonging to
five structurally distinct classes of selective estrogen receptor modulators [51]. Notably,
all the tested molecules demonstrated weaker affinities for the receptor compared to
Raloxifene, such as Bazedoxifene, Nafoxidine and Ospemifene. Importantly, the initial
filtering stage selected only the most potent compound among the estrogen receptor
modulators. Indeed, the chosen threshold of −8.5 kcal/mol discarded Ospemifene with a
∆G of −8.28 kcal/mol, as well as Nafoxidine and Bazedoxifene with a ∆G ~ −8 kcal/mol.
Following the computational analysis, an experimental competitive binding assay was
conducted to validate the in silico findings. Specifically, eight drugs displayed the ability
to displace the potent CB1R agonist, CP55,940, with a moderate or high affinity (Figure 3)
and achieving a prediction accuracy of 80%. Among them, Methotrexate, Miltefosine
and Raltegravir as well as the positive control, Raloxifene, showed the most significant
displacement of [3H]CP55,940, exceeding 50% (Figure 3). The doses and characteristics of
these compounds are detailed in Table 2.

Table 2. Commercial name, doses and features of drugs with ability to bind to CB1R.

Drugs Commercial Name Dose Features

Methotrexate
Trexall, Otrexup, Rasuvo,

Xatmep, RediTrex,
Jylamvo

Dosage depends on pathology

Methotrexate is a folate derivative that
inhibits several enzymes responsible for
nucleotide synthesis. It is used to treat
inflammation caused by arthritis or to

control cell division in neoplastic diseases.

Miltefosine Impavido 50 mg BID/TID

Miltefosine is a broad spectrum
antimicrobial, anti-leishmanial, phospholipid

drug developed in the 1980s as an
anti-cancer agent.

Raltegravir Isentress 600 mg BID
Raltegravir is an antiretroviral agent used for
the treatment of HIV infections. It is the first

of a new class of HIV drugs.

Notes: BID, bis in die; TID, ter in die.

Furthermore, to explore potential interactions between the selected drugs and repre-
sentative eCB system enzymes and the related ones, a proteomic analysis of ABHD6/12,
DAGL, FAAH and MAGL was performed. The results revealed that the tested compounds
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did not interact with any of these enzymes (Figure 4). Although the analyzed drugs are
highly established in treating specific diseases [56,57], their interaction with CB1R may
extend therapeutic actions or elucidate adverse effects through synergistic effects. For
instance, the effects of Raloxifene on estrogen receptors and CB1R could account for both
beneficial actions and potential adverse events [51]. The binding assay demonstrates the
ability of these compounds to interact with CB1R; however, it is essential to consider the
dosage for each drug. Raltegravir, the most potent compound, is used in combination
with other medications to treat human immunodeficiency virus (HIV) infections (Tables 1
and 2) [60]. It belongs to the class of medications called HIV integrase inhibitors, and the
initial regimen involves 400 mg (0.9 mmol) tablets taken twice daily, with a relatively high
concentration (Table 2). Some reported side effects include insomnia, abnormal dreams,
loss of appetite, headache, nausea, vomiting, fast heartbeat and depression, which may
partially be attributed to CB1R involvement. Methotrexate, on the other hand, belongs
to the class of medications called antimetabolites, and its dosage depends on the specific
pathology being treated. It is used to slow the growth of cancer cells in certain types of
cancer and is also employed to treat severe psoriasis and rheumatoid arthritis by reducing
the immune system activity (Tables 1 and 2). Interestingly, THC has shown similar effects
to Methotrexate in neutralizing the inflammatory process [61]. Daily oral administration of
THC for 21 days in arthritic rats was well tolerated, without causing significant psychoac-
tive side effects; simultaneously, it attenuated the severity of clinical manifestations [61].
Notably, patients with rheumatoid arthritis and osteoarthritis have high expression levels
of CB1R [61]. The interaction between Methotrexate and CB1R highlighted in this study
could be involved in the compound’s capacity to treat psoriasis and rheumatoid arthritis.

Among the tested drugs, Miltefosine is particularly interesting as a classic multi-target
drug. Originally developed in the 1980s as an antineoplastic agent, it is now marketed
for leishmaniasis and has been approved for human treatment since 2002 [62], due to
repurposing studies. Another noteworthy feature of Miltefosine is its amphiphilic nature,
bearing remarkable similarity to endocannabinoids, hence explaining its ability to bind to
CB1R (Table 1). Additionally, Miltefosine has shown to inhibit the proliferation of HaCaT
cells [58]. One of the goals achieved in this study lies in establishing a clear relationship
between Miltefosine’s ability to bind to CB1R and its effect on HaCaT cells. Notably,
this cell line expresses the full eCB system [63]. The data illustrate that the selective
antagonist/inverse agonist SR1 inhibits the antiproliferation effect of Miltefosine in a time-
dependent manner (Figure 5b), demonstrating that its mechanism of action is mediated by
CB1R. Miltefosine is administered orally at a dosage of 50 mg (0.122 mmol) three times a
day, with common side effects including decreased appetite, diarrhea and vomiting.

CB1R plays a critical role in several human physiological and pathological conditions.
Therefore, extensive endeavors have been undertaken to develop ligands for treating vari-
ous diseases; nevertheless, none of these ligands are currently utilized in clinical settings.

4. Materials and Methods
4.1. Materials

Chemicals were of the purest analytical grade (>95%). [3H]CP55,940 (126 Ci/mmol)
was from Perkin Elmer Life Sciences, Inc. (Boston, MA, USA). Avanafil, Aminopterin,
Ceftriaxone, CP55,940, Dofetilide, Methotrexate, Miltefosine, Prostaglandin E1, Raloxifene,
Raltegravir, Riociguart and Valsartan were from Cayman Chemical Company, Ann Arbor,
MI, USA. Human keratinocytes (HaCaT cells) were provided by CLS Cell Lines Service
GmbH, (Eppelheim, Germany).

4.2. Virtual Screening

The crystal structure of CB1R, with a potent co-crystallized agonist AM11542 (PDB
code: 5XRA), was retrieved from the PDB (www.rcsb.org), and the Experimental Data Snap-
shot and the PDB validation were analyzed: resolution (2.80 Å), RFree (0.254), Clashscore
(6), Ramachandran outliers (0), sidechain outliers (0.6%) and RSRZ outliers (4.7%). The

www.rcsb.org
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CB1R crystal structure with a potent inverse agonist Taranabant (PDB code: 5U09) was
retrieved from the PDB (www.rcsb.org), and the Experimental Data Snapshot and the PDB
validation were analyzed: resolution (2.60 Å), RFree (0.247), Clashscore (14), Ramachandran
outliers (0), sidechain outliers (0) and RSRZ outliers (0.8%).

4.2.1. Proteins and Ligands Preparation

The simulation studies were carried out using the cutting-edge Molecular Operating
Environment (MOE 2021.0102) by the Chemical Computing Group (2021). For the selected
crystal structure, the “Structure Preparation” panel with the “Protonate 3D” function was
employed to optimize the ionization states of the added hydrogen atoms.

Atoms further away than 8 Å from the co-crystalized ligand were fixed while con-
straints were applied to atoms within the active site before the final minimization step to
refine the protein structure. The 3D structures of the molecules under investigation were
sourced from the Zinc Database (https://zinc.docking.org/) [48]. Ligands in ZINC15 were
prepared (protonation and tautomers generation at physiological pH) through ChemAxon’s
Jchem while Omega was used to obtain the conformations for docking.

4.2.2. Re-Docking Validation

To validate the molecular docking algorithm, co-crystallized ligands (AM11542 and
Taranabant) were re-docked into the orthosteric site. The validation was considered suc-
cessful when the ligand conformation with the lowest energy score closely overlapped
with the co-crystallized molecule in the protein X-ray structure, achieving an impressive
RMSD < 2.0 Å [64,65].

4.2.3. Protein Rigid Docking

Initially, a protein rigid docking using FDA drugs was performed using 5XRA and
5U09 structures. The dock panel settings included the Triangle Matcher method for place-
ment and the London dG (Equation (1)) as the scoring function [66]. This method takes
into account several factors, including rotational and translational entropy (c), energy due
to the loss of flexibility of the ligand (Eflex), geometric imperfections of hydrogen bonds
(f HB), geometric imperfections of metal ligations (f M) and desolvation energy (Di).

All drugs demonstrating a binding affinity of at least −8.5 kcal/mol were identified in
both structures. Subsequently, these molecules underwent further screening through an
additional filter stage.

4.2.4. Blind Induced-Fit Docking

A blind docking approach was then conducted, specifically targeting the extracellular
domain region up to the orthosteric site within the 5XRA structure. In this phase, an
induced-fit docking strategy was employed, allowing for flexibility within the binding site.

An induced-fit refinement was executed, enabling both the ligand and the active site
to move freely. The resulting poses were scored using the London dG scoring function.

∆G = c + Eflex + ∑
h−bonds

cHB fHB + ∑
m−lig

cM fM + ∑
atomsi

∆Di (1)

The graphic phases of the virtual screening are shown in the following Scheme 1.

4.3. Binding Assay

Mouse brain was resuspended in 2 mM Tris–EDTA, 320 mM sucrose, 5 mM MgCl2
(pH 7.4), homogenized in a Potter homogenizer, centrifuged three times at 1000× g (10 min)
and the pellet was discharged. The supernatant was further centrifuged at 18,000× g (30
min), and the resulting pellet was then resuspended in HBSS. For the rapid filtration assays,
50 µg of these membrane fractions were used for each test, along with the radiolabeled
agonist [3H]CP55,940 at a concentration of 400 pM. The effect of different drugs on CB1R
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binding was tested by adding the substance, with 80 min of preincubation, directly to the
incubation medium followed by incubation time of 40 min at 37 ◦C [67].
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4.4. Activity-Based Protein Profiling (ABPP)

Mouse brain lysate (14.6 µL, 2.0 mg/mL lysate, cytosol or membrane fraction) was pre-
incubated with vehicle or drugs (0.375 µL, 30 min, 37 ◦C) followed by an incubation with
the activity-based probe (100 nM of MB064 and 100 nM of Bodipy, 10 min, RT). Reactions
were quenched with 5 µL Laemmli buffer + β-mercaptoethanol. The reaction was resolved
on a 30% acrylamide SDS-PAGE gel (180 V, 75 min). Gels were scanned using Cy 2 (80 s),
Cy3 (120 s) and Cy5 (10 s) multichannel settings and subsequently stained with Coomassie
after scanning. Fluorescence was normalized to Coomassie staining and quantified with
Image Lab (Bio-Rad) [53,54].

4.5. Cell Viability

The HaCaT cells are an aneuploid immortalized keratinocyte cell line from adult
human skin [68]. HaCaT cells were cultured at 37 ◦C, 5% CO2 in DMEM supplemented
with 10% (v/v) fetal bovine serum (Gibco) and penicillin (100 unit/mL)-streptomycin
(0.1 mg/mL). Miltefosine was used at 25 µM, while SR1 was at 1 µM. The incubation time
of Miltefosine count was 30 min, and after a further 4 h, the percentage of viable cells was
assessed. SR1 underwent a preincubation period of 30 min, 1 h, 1 h and 30 min, and 2 h,
allowing for a comprehensive evaluation of its effects.

5. Conclusions

This study presents a compelling demonstration of how a combination of computa-
tional and experimental approaches can shed light on CB1R as a promising new target for
marketed drugs. Moreover, the quest to design selective and safe drugs for CB1R can be
addressed through a novel strategy. To this aim, compounds that act on specific targets and
only partially interact with CB1R offer a potentially safer therapeutic approach, minimizing
adverse effects compared to direct CB1R-targeting molecules. Raloxifene, Raltegravir and
Miltefosine could represent an example of this strategy. Considering the widespread distri-
bution of CB1R and its involvement in diverse signaling cascades, further investigations
similar to ours become imperative to evaluate its role in the mechanisms of certain drugs.
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