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Abstract: Background: Diabetes mellitus (DM) is a non-communicable, life-threatening syndrome
that is present all over the world. The use of eco-friendly, cost-effective, and green-synthesised
nanoparticles as a medicinal therapy in the treatment of DM is an attractive option. Objective: In
the present study, silver nanoparticles (AI-AgNPs) were biosynthesized through the green synthesis
method using Azadirachta indica seed extract to evaluate their anti-diabetic potentials. Methods:
These nanoparticles were characterized by using UV-visible spectroscopy, Fourier transform infrared
spectrophotometers (FTIR), scanning electron microscopy (SEM), DLS, and X-ray diffraction (XRD).
The biosynthesized AI-AgNPs and crude extracts of Azadirachta indica seeds were evaluated for
anti-diabetic potentials using glucose adsorption assays, glucose uptake by yeast cells assays, and
alpha-amylase inhibitory assays. Results: Al-AgNPs showed the highest activity (75 ± 1.528%),
while crude extract showed (63 ± 2.5%) glucose uptake by yeast at 80 µg/mL. In the glucose
adsorption assay, the highest activity of Al-AgNPs was 10.65 ± 1.58%, while crude extract showed
8.32 ± 0.258% at 30 mM, whereas in the alpha-amylase assay, Al-AgNPs exhibited the maximum
activity of 73.85 ± 1.114% and crude extract 65.85 ± 2.101% at 100 µg/mL. The assay results of
AI-AgNPs and crude showed substantial dose-dependent activities. Further, anti-diabetic potentials
were also investigated in streptozotocin-induced diabetic mice. Mice were administered with AI-
AgNPs (10 to 40 mg/kg b.w) for 30 days. Conclusions: The results showed a considerable drop in
blood sugar levels, including pancreatic and liver cell regeneration, demonstrating that AI-AgNPs
have strong anti-diabetic potential.

Keywords: green synthesis; AgNPs; Azadirachta indica; biosynthesize nanoparticles; diabetes;
streptozotocin

1. Introduction

Diabetes mellitus (DM) is a chronic illness due to inadequate insulin production by
pancreatic β cells. Diabetes could be hereditary or acquired. The insufficiency of insulin is
a consequence of high blood glucose levels, which cause damage to various body systems,
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especially the circulatory and nervous systems [1,2]. As evident from the data of the Inter-
national Diabetes Federation (IDF), the incidence of diabetes is rising internationally. In
2021, 536.6 million people had diabetes worldwide, and by the year 2045, it is projected to
increase by 46% to 783.2 million [3]. As previously estimated by the IDF and other surveys,
almost 50% of all patients with diabetes are oblivious to their illness [4]. Changing one’s
lifestyle to include increased physical exercise, consuming low-calorie foods, and avoiding
inactive habits is necessary for DM prevention and control [5]. Although synthetic drugs
like miglitol and acarbose have high inhibitory effects against alpha-amylase and alpha-
glucosidase, they have consequences like causing diarrhea, nausea, vomiting, and intestinal
swelling [6]. Therefore, plant extracts that are active in lowering serum glucose levels
with slight or no side effects are used as hypoglycemic medications. Various compounds
extracted from plants are used in combinational treatment for diabetes, such as Azadirachta
indica, T. indica, and Ceilba pentandrat, which are well-known for their hypoglycemic proper-
ties. Therefore, the green synthesis methods are an attractive option. Green nanotechnology
refers to the use of nanotechnology to enhance the environmental sustainability of pro-
cesses producing negative externalities [7]. It includes making and using nano-products
in support of sustainability. Biologically developed chemicals are used in these methods,
which are not harmful for the environment [8]. Green nanotechnology has two goals:
producing nanomaterials and products without harming the environment or human health,
and producing nano-products that provide solutions to environmental problems [9]. Due
to the wide range of applications of NPs, researchers, including biologists, chemists, physi-
cists, and engineers, are working in this fascinating area [10]. Green synthesis has many
advantages compared to chemical and physical methods; it is non-toxic, pollution-free,
environmentally friendly, economical, and more sustainable [11,12]. Therefore, accessing
green principles offers a high degree of safety, eco-friendliness, and cost-effectiveness. On
green pathways, nanoparticles can be fabricated using natural compounds extracted from
various biomass precursors, such as bacteria, fungi, biomolecules, and plant extracts [13].
The most important feature of the biogenic approach is the utilization of biologically reduc-
ing and capping agents to replace toxic chemicals. This alternation makes the biosynthetic
method environmentally friendly, benign, and inexpensive [14].

The AgNPs in this study were developed under controlled conditions following
parameters such as temperature, pressure, and reactant concentrations to obtain stable,
spherical, and small-sized nanoparticles [15,16]. AgNPs have superiorities over other
nanoparticles due to their outstanding properties such as small size, good conductivity,
chemical stability, catalytic activity, optical, thermal, high electrical conductivity, and
biological properties [17,18]. Moreover, the Azadirachta indica seed extract used in this
study contains natural compounds such as Azadarachtin, Nimbin, and Nimbidin that have
synergistic effects on AgNPs and enhance their anti-diabetic potentials [19,20]. A pH of
7 was the best to ensure the reduction of Ag+ to Ag0 during AgNPs production, and the
greatest abundance of synthesized nanoparticles was obtained at pH 7–9. Several studies
have shown that the production rate of AgNPs increases as the pH increases. Furthermore,
AgNPs were almost spherical at higher pH values, and setting the pH at 8 substantially
enhanced the reaction rate [21]. Temperature is one of the most important parameters
that affects the size and morphology of biosynthesized AgNPs. Numerous studies have
confirmed that the dimensions of AgNPs decrease as the reaction temperature increases,
resulting in a change in their morphology [22].

The absorption intensity increased as the incubation time increased, owing to an
increase in the amount of AgNPs produced. AgNPs have also been generated using Ori-
ganum vulgare L. extract, and the yield of nanoparticles increased with an increasing
reaction time up to 3 h [23]. Song et al., 2022 [24] reported that absorbance increased
when light intensity increased. Thus, it is expected that under sunlight, the reduction
process of Ag+ ions can be completed within a few minutes, whereas the reaction requires
a longer duration in the dark. Increasing the plant extract concentration in the reaction
mixture can increase the absorbance intensity [25]. When using high extract concentrations,



Pharmaceuticals 2023, 16, 1677 3 of 20

biomolecules act as reducing agents and cover the nanoparticle surfaces, preventing them
from aggregating and increasing their stability. Due to their peculiar properties, they
have been used for several applications, including as anti-bacterial agents, in industrial,
household, and healthcare-related products, in consumer products, medical device coat-
ings, optical sensors, and cosmetics, in the pharmaceutical industry, the food industry, in
diagnostics, orthopedics, drug delivery, and as anti-cancer agents, and have ultimately
enhanced the tumor-killing effects of anti-cancer drugs [26,27]. It has been shown that
silver nanoparticles have anti-diabetic potential. Recent research in the field of plant-based
nanomedicine has demonstrated that biosynthesized nanoparticles are more effective than
crude extracts [28,29]. They have advantages, including increased surface area, solubility,
and healing capacity. The synthesis of Ag nanoparticles using plants has several advan-
tages compared to other biosynthesized nanoparticles, which is why the use of extract
has received greater attention [30]. Moreover, the application of biomolecules as reducing,
stabilizing, and capping agents rather than costly toxic chemicals makes the biosynthesis of
nanoparticles an efficient process [31].

Several resources, such as pollens, polyoxometalates, irradiations, and polysaccha-
rides, are employed for the environment-friendly biosynthesis of AgNPs [32]. The green
synthesized silver nanoparticles have many applications, such as the breakdown of harmful
pollutants, water purification, food preservation, and the production of nano-insecticides,
nano-pesticides, and cosmetics [33]. Due to their bioactive nature, the scientific research
community is now evaluating them as a new active mediator for the curing of diabetes
mellitus [34]. Sharifi et al. synthesized the AgNPs through a green process and evaluated
their anti-oxidant, anti-bacterial, and anti-inflammatory activities [35]. Jini and Sharmila
have carried out the AgNPs synthesis through the green method and employed them as
plant-mediated medicine for the management of diabetes [36]. Nagaraja et al. investi-
gated the green synthesized AgNPs of leaf extract and stated that the particles act as an
excellent anti-diabetic candidate [37]. Vinodhini et al. have biosynthesized AgNPs using
Allium fistulosum, Tabernaemontana divaricate, and Basella alba extracts. The synthesized
AgNPs exhibited high anti-oxidant and anti-diabetic activities [38]. By using Acacia nilotica
extract, Zubair et al. sustainably created silver nanoparticles. They investigated the anti-
cancer and anti-diabetic properties of the AgNPs [39]. Kaliammal et al. used an extract of
Zephyranthes candida flower for the synthesis of AgNPs. Their results confirmed that the par-
ticles showed anti-diabetic, anti-inflammatory, anti-oxidant, and anti-cancer activities [40].
Badmus et al. synthesized the AgNPs using Annona muricata aqueous leaf extract. They
found that the biosynthesized particles showed cytotoxicity in human keratinocyte cells
(HaCaT) as well as in vitro anti-diabetic, antioxidant, lipid peroxidation inhibition, and
anti-bacterial activities [41]. Das et al. (2021) biofabricated the AgNPs through green syn-
thesis using Dregea volubilis flowers and established better anti-oxidant, anti-diabetic, and
anti-bacterial activities [42]. Thirumal S. and Sivakumar used Cassia auriculata leaf extract
for the green preparation of AgNPs and demonstrated their potent anti-diabetic activ-
ity [43]. Yarrappagaari et al. biosynthesized the AgNPs from the aqueous extract of Cleome
viscosa and evaluated them for anti-bacterial, antioxidant, and anti-diabetic activities [44].
Sathiyaseelan et al. studied the fungus chitosan (FCS)-enclosed Gynura procumbens (GP)
biosynthesized silver nanoparticles (GP-AgNPs) and found them to be excellent candidates
for antibacterial and diabetic-associated enzyme inhibitory activities [45]. Similar studies
reported AgNPs for their anti-diabetic, anti-cancer, anti-bacterial, and anti-inflammatory
capacities [46]. The previous literature survey clearly indicates that various researchers
have biosynthesized the AgNPs by taking different parts of the plant and evaluating their
different biological activities.

According to previous literature [47], if the natural compounds coating the nanoparti-
cles are themselves anti-diabetic in nature, a synergistic anti-diabetic potential of the final
nanomaterial is observed [48], and Azadirachta indica seeds contain the most potent anti-
diabetic compounds, such as Azadarachtin, Nimbin, Nimbidin, etc., so that must reveal
high anti-diabetic potential; therefore, Azadirachta indica seeds extract-mediated AgNPs
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are better than those AgNPs reported earlier in the literature [49,50]. Considering the vast
potentiality of plants as sources, this work aims to investigate the use of Azadirachta indica
seed extract for the biosynthesis of AgNPs, and the synthesized AgNPs were pragmatically
characterized and investigated for their anti-diabetic potential. To the best of our knowl-
edge, this research will represent the first reference to the use of A. indica seed extract for
the green synthesis of silver nanoparticles and anti-diabetic activities.

2. Materials and Methods
2.1. Extract Preparation from Azadirachta indica Seeds

For the preparation of A. indica seed extract, the method of Hameed et al. [51] was
followed. Azadirachta indica (Neem) seeds were purchased from an herbal store, identified,
and specimens placed in the herbarium of the Department of Botany, Abdul Wali Khan
University Mardan (AWKUM), with an accession number of AWKUM. Bot. 425.1.20.
Azadirachta indica seeds were rinsed gently with clean water, dried, and crushed to powder
using a plant grinder (Panasonic Model MX-AC210, Osaka, Japan). For the preparation of
methanolic extract, 1 kg powder of Azadirachta indica was incubated in 2000 mL of 100%
methanol (used as solvent) and stored at room temperature (25 ± 3 ◦C) for 5 days. After
filtration, the solution was rotary evaporated at 48 ◦C under reduced pressure and used for
the biosynthesis of AI-AgNPs.

2.2. Green Synthesizing of Azadirachta indica Seeds-Mediated Silver Nanoparticles (AI-AgNPs)

For the biosynthesis of AgNPs, the protocol of [52] was followed: a 100-mL solution of
1 mM AgNO3 was prepared in a conical flask, and 20 mg of the A. indica seed extract was
added with continuous stirring on a hot plate below the boiling point (70 ◦C) for 4 h. The
AgNPs solution was then exposed to light for the process of reduction. The green synthesis
of the AI-AgNPs was observed by the changing color of the solutions, which was recorded
at regular intervals. The reaction was set to continue for 24 h, and then centrifugation was
performed for 30 min at 10,000 rpm. The supernatant was discarded after centrifugation,
and the pellet was washed three times with double-distilled water. This was followed by
centrifugation to remove any remaining free compounds and obtain pure nanoparticles that
were used for anti-diabetic activities. A total of 0.017 g of precursor (AgNO3), which can
theoretically yield 0.011 g of silver nanoparticles, and in this study, 0.015 g was obtained,
which means the obtained efficiency is very good. A slight increase of 0.004 g in the weight
of the obtained AgNPs is due to the coated organic layer on the surface of these particles.
For further use, the precipitated AI-AgNPs were lyophilized and stored in a dry and cool
place. Figure 1 represents the biosynthesis of AI-AgNPs.
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2.3. Characterization of the Green Synthesized AI-AgNPs

The biosynthesized AI-AgNPs were examined for their physical, morphological, and
chemical characteristics using different techniques, like UV-VIS spectroscopy, FTIR, SEM,
and XRD.

2.3.1. Visible Observation

According to literature studies, silver nanoparticle solutions have a dark brown or
dark reddish color [53]. The color of the A. Indica solution before the addition of AgNO3 was
yellowish, but after its treatment with AgNO3, it changed to dark brown, which indicated
the formation of AgNPs. (Figure 1) This color change is due to the property of quantum
confinement, which is a size-dependent property of nanoparticles that affects the optical
properties of the nanoparticles.

2.3.2. UV-Visible Spectral Analysis of AI-AgNPs

Using a UV-VIS spectrophotometer (Multiskan GO; Thermo Scientific, Waltham, MA,
USA), the absorption spectra of the aqueous solution with dried 80 µg per mL silver
nanoparticles were recorded at a 2-nm resolution between 200 and 800 nm to investigate
how the light affected the green synthesis of AI-AgNPs. The experiment was repeated
three times, and the absorption was measured at wavelengths between 200 and 800 nm
with a 2-nm difference at a 1 h interval and recorded.

2.3.3. FTIR Analysis of AI-AgNPs

To identify distinct functional groups in the green synthesized AI-AgNPs, FTIR
(IRTracer-100, Shimadzu, Kyoto, Japan) was used at wavelengths from 4000 to 500 cm−1

and the corresponding data were recorded.

2.3.4. X-ray Diffraction Technique (XRD) Analysis of AI-AgNPs

XRD was used to examine the purity and crystalline makeup of the biosynthesized
AI-AgNPs following the method of [54] using an X-ray diffractometer (Model-D8 Advance,
Bruker, Bremen, Germany).

2.3.5. Scanning Electron Microscopy (SEM)

A high-resolution image of the AI-AgNPs was produced by SEM (Hitachi, S-4300SE,
Tokyo, Japan), which includes details about their size, shape, composition, electrical con-
ductivity, topography, and other characteristics.

2.4. In Vitro Anti-Diabetic Potential
2.4.1. Assay for Uptake of Glucose by Yeast Cells

The glucose uptake by yeast cells experiment was conducted using a slightly modified
method of Rehman et al. [55]. AI-AgNPs in various concentrations (10 µg/mL to 80 µg/mL)
were combined with 1 mL of 5 mM glucose solutions, and the reaction solution was then
incubated for 10 min at 37 ◦C. The final reaction was started by adding a 10%/V suspension
of yeast. After being vortexed, the reaction mixture was kept for 60 min at 37 ◦C, then
centrifuged for 5 min at 3800 rpm. The supernatant amount of glucose was determined
using a spectrophotometer (UV 5100B spectrophotometer). First, the absorbance value
of the control was found at 520 nm wavelength using the spectrophotometer, then the
absorbance value of the test samples was determined, and the process was repeated in
triplicate. The following formula was used to compute the uptake of glucose by yeast cells:

% Glucose uptake =
Absorbance Control − Absorbance Test sample

Absorbance Control
× 100
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2.4.2. Glucose Adsorption Assay

The glucose adsorption method was used to evaluate the ability of AI-AgNPs to
adsorb glucose by following the method of [56]. 1 g of the AI-AgNPs was combined with a
100 mL solution of glucose (5–30 mM glucose). The final mixture was incubated in a shaker
at room temperature for up to 6 h before being centrifuged for 20 min at 4800 rpm. The
absorbance values of G1 (glucose concentration before reaction, using a spectrophotometer),
then the absorbance value and G6 (after 6 h concentration of glucose) were determined at
520 nm wavelength. Using the following formula, the % glucose adsorption was calculated.

Bounded Glucose =
G1 − G6

Sample weight
× volume of sample

G1—Glucose concentration before reaction.
G6—After 6 h concentration of glucose.

2.4.3. Alpha (α) Amylase Inhibition Assay

The alpha bonds of polysaccharides are hydrolyzed by the enzyme alpha-amylase to
create glucose and maltose. This process of the alpha-amylase enzyme elevates blood sugar
levels, and its inhibition will cause blood sugar levels to drop. According to the procedure
described by [57], a reaction mixture containing porcine pancreatic amylase (500 µL) in
phosphate buffer, a standard drug (250 µL), and AI-AgNPs was prepared and kept at 37 ◦C
for 20 min. After that, 250 µL of PBS (100 mM) and 1% starch were added to the mixture
and kept at 37 ◦C for 60 min. In the last step, 1 mL of a color reagent, di-nitro-salicylate
was added to the solution and heated for 10 min. The optical density was determined at
540 nm. Using the formula below, the percentage of inhibition was calculated.

% Inhibition =
Control Absorbance − sample Absorbance

Absorbance Control
× 100

2.5. Analysis of In Vivo Antidiabetic Potentials
2.5.1. Experimental Animals and Conditions

Adult BALB/C mice weighing 25–30 g and 5 weeks old were bought from the Vet-
erinary Research Institute Peshawar. The animals were kept in controlled environments
(22 ◦C, 60% humidity, 12 h of light and darkness), provided with standard food, and
provided with free access to water. All the experiments were carried out strictly in ac-
cordance with the guidelines of the National Research Council for the handling and use
of lab animals. Before starting the experiments, approval of the protocol was obtained
from the Ethical Committee of the Department of Zoology, Abdul Wali Khan University,
Mardan, Pakistan.

Group I: Normal Control (0.1 M Citrate Buffer, 0.5 mL, and pH 4.5);
Group II: Diabetic Control (Streptozotocin 50 mg/kg body weight);
Group III: Diabetic mice administered with AI-AgNPs (10 mg/kg body weight);
Group IV: Diabetic mice administered with AI-AgNPs (20 mg/kg body weight);
Group IV: Diabetic mice administered with AI-AgNPs (30 mg/kg body weight);
Group V: Diabetic mice administered with AI-AgNPs (40 mg/kg body weight);

2.5.2. Induction of Diabetes in Mice by Streptozotocin

The mice were starved overnight before administering one dose (50 mg/kg body
weight) of streptozotocin (STZ) was injected intraperitoneally into the diabetic groups,
whereas citrate buffer alone was administered to the control group. The diabetes was con-
firmed by estimating the blood sugar after 72 h of STZ injection. Mice having a blood sugar
of more than 120 mg/dl were classified as diabetic and employed in vivo experiments.
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2.5.3. Blood Glucose Level of Experimental Mice

The experimental mice were starved for 12 to 16 h, blood samples were taken by
the tail vein rupturing method, and the blood sugar was estimated using a one-touch
glucometer (Life Scan, Inc., Milpitas, CA, USA). The glucose levels were observed on the
1st, 5th, 10th, 15th, 20th, 25th, and 30th days.

2.5.4. Histopathological Study of the Pancreas and Liver of Experimental Mice

The pancreas and liver were separated, and they were continually cleaned with
phosphate-buffered saline. The tissue samples were subsequently fixed in 10% formalin
and subjected to standard histopathology procedures. The sample tissues were immersed
in wax and subsequently cut into 5µm-thick slices. Hematoxylin and eosin stain were used
to stain the sections, and the morphology of the tissues was observed under the microscope.

2.5.5. Statistical Analysis

The results were expressed as mean ± SD using GraphPad Prism version 9. For
statistical analysis of the data group, the mean was compared using a one-way analysis of
variance (ANOVA). In addition, p < 0.05 was considered to be statistically significant.

3. Results
3.1. Visible Observation

The color of the A. Indica solution before the addition of AgNO3 was yellowish, but
after its treatment with AgNO3, it changed to dark brown, which indicated the formation
of AgNPs (Figure 2). This color change is due to the property of quantum confinement,
which is a size-dependent property of nanoparticles that affects the optical properties of
the nanoparticles.
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3.2. UV-Visible and Bandgap Energy Analysis of AI-AgNPs

UV-visible analysis and band energy values for the synthesized nanoparticles are
presented in Figure 3. Silver nanoparticles have a peak UV absorption wavelength between
400 and 450 nm. The synthesis of AI-AgNPs in the A. indica seed extract is indicated by the
UV-visible density peaks of the A. indica UV-Vis spectra at about 441 nm shown in Figure 3a.
The process of surface plasmon resonance, which results from stimulation of the surface
plasmons that exist on the external surface of the AI-AgNPs and which is stimulated due
to the applied electromagnetic field, is what causes the peak at 380 nm to appear [58]. The
below Tauc plot equation was used to obtain the bandgap energy value for the produced
nanoparticles shown in Figure 3b.

(αhν)γ = A(hν − Eg) (1)

where as α is the coefficient of absorption, h is the planks constant, ν is the frequency of
photons, A is the proportionality constant, γ = electronic transition, and Eg is bandgap
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energy depending on the transition and can have values of 2, 1/2, 2/3, or 1/3. Tauc plots
for AgNPs are presented in Figure 3b. The plot of (αhν)2 against (hν) results in a straight
line, which explains that the edge of absorption is due to the direct transition (n = 1 for
direct transition). The optical band gap (Eg) is indicated by the intercept of a straight line.
The biosynthesized nanoparticles’ direct bandgap energy is Eg = 2.43 eV.
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3.3. SEM Analysis of AI-AgNPs

To evaluate the morphology of the biosynthesized AI-AgNPs, the scanning electron
microscope (SEM; JEOL JSM-7001F) was used. Figure 4A indicates from the SEM result of
the biosynthesized nanoparticles that the particles are evenly and uniformly distributed
and have a spherical shape at the nanoscale. Some agglomerations of the synthesized
nanoparticles were seen because of the plant extract. However, there are also various
plant extract components that function as stabilizing and capping agents, reducing the
aggregation of the particles. Agglomeration led to collecting the nanoparticles in ordinary
shapes, mostly by physical bond, due to the nature of the solvent used. We used biological
sources with organic moieties on their surfaces and functional groups that interact with
each other and cause agglomeration. There are many ways to de-agglomerate nanoparticles,
such as sonication, ultrasound, isopropyl storage, heat, electrostatic charge, etc. We have
overcome this issue by sonicating AgNPs before using them for biological activities. The
coated layer of organic moieties on the silver nanoparticles gives them stability, and as a
result, the nanoparticles are stable and mostly dispersed. The size distribution histogram of
dynamic light scattering (DLS) indicates that the average size of these silver nanoparticles
is 34.43 nm. Figure 4 shows the DLS pattern of the suspension of AI-AgNPs.

3.4. Fourier Transform Infrared Spectrophotometry (FTIR) and X-Ray Diffraction (XRD) Analysis

FTIR and XRD analysis were performed for structural identification, crystallinity, and
phase shifts using an FTIR spectrophotometer (Spectrum Two TM FT-IR Spectrometer;
PerkinElmer, Waltham, MA, USA) at different wavelengths ranging from 200 to 4000 cm−1.
Figure 5a,b shows the FTIR results of the pure A. indica and A. indica-mediated AgNPs. The
extra band observed at 591 cm−1 corresponds to the Ag nanoparticles that appeared in
A. indica-mediated AgNPs shown in Figure 5b. The peak at 1401.37 cm−1 may be due to
the (C-O and C-H) bending vibrations of the A. indica plant. The stretching vibration of the
C-O functional group of alcohol, ester, ether, or carboxylic acid is shown by the peaks at
1031.85 cm−1 and 1041 cm−1, respectively. The peak at 1617.32 cm−1 and 1635 cm−1 might
be caused by the C=O stretching vibration of alkenes, primary amines (N-H bending vibra-
tion), and amides (N-H bending and C=O stretching vibration), as well as the functional



Pharmaceuticals 2023, 16, 1677 9 of 20

groups of aldehydes and ketones. The stretch at 2104 cm−1 is due to the C≡C of the alkene.
The OH stretching vibration of the phenol causes the peaks at 3292 cm−1 and 3311.35 cm−1

respectively. Additionally, the presence of OH and C=O groups suggests that flavanones or
terpenoids have been adsorbed on the surface of nanoparticles. Connections via π-electrons
in the carbonyl groups may be liable for the reduction of Ag ions to AgNPs as well as for
stability and as a capping agent. The presence of various functional groups in Figure 5b
demonstrated the successful green synthesis of A. indica-mediated AgNPs.
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X-ray diffraction (XRD) is a popular analytical technique that has been used for the
analysis of both molecular and crystal structures, qualitative identification of various
compounds, quantitative resolution of chemical species, measuring the degree of crys-
tallinity, isomorphous substitutions, particle sizes, etc. When X-ray light reflects on any
crystal, it leads to the formation of many diffraction patterns, and the patterns reflect the
physico-chemical characteristics of the crystal structures.
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A. indica-mediated AgNPs.

The XRD result given in Figure 5c shows that there are four separate diffraction peaks
in the 2θ range of 10◦ to 80◦. The peaks seen at 2θ angles of 26.23◦, 30.66◦, 44.56◦, 56.22◦,
66.08◦, and 75.35◦ correspond to the 210, 113, 124, 240, 226, and 300, planes correspondingly,
which were indexed for a silver face-centered cube of (JCPDS file no. 04-0783).

The result clearly explains that the biosynthesized AI-AgNPs were crystalline. These
findings support the presence of face-centered cubic AI-AgNPs. The unassigned peaks
might have resulted from the plant extract-dependent capping agent involved in the
stabilization of AgNPs, and the average size of the AgNPs was 34.43 nm.

3.5. Effects of AI-AgNPs and Crude Extract on the Uptake of Glucose by the Yeast Cells

Uptake of glucose by the yeast cells at different concentrations like 10, 20, 30, 40,
50, 60, 70, and 80 µg/mL of AI-AgNPs and crude extract were determined as AI-AgNPs
18 ± 2.64%, 23 ± 2.082%, 29 ± 1.692%, 37 ± 1.00%, 48 ± 2.82%, 57 ± 0.854%, 66 ± 1.311%,
and 75 ± 1.528%, respectively, whereas crude extract was determined as 11.804 ± 1.0%,
16 ± 1.36%, 24 ± 2.03%, 31.63 ± 2.98%, 39.5 ± 1.36%, 48.467 ± 2.73%, 55.01 ± 2.015%, and
63 ± 2.5%, respectively, Acarbose was used as a standard drug in the same concentration
as AI-AgNPs, and crude extract was taken. The results showed 21 ± 1%, 28 ± 1.528%,
34 ± 2.582%, 43 ± 1.206%, 52 ± 1.58%, 63 ± 1.637%, 70 ± 1.528%, and 80 ± 1.20% glucose
uptake, respectively, sowing significant result (p-value ≤ 0.05) indicated in Figure 6A.
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3.6. Analysis of Glucose Adsorption by A. indica Seed Extract-Mediated AgNPs and Crude Extract

Figure 6B shows the glucose adsorption activity of the green synthesized AI-AgNPs
and crude extract at various concentrations of glucose that are 5, 10, 15, 20, 25, and
30 mM. AI-AgNPs showed 1.8 ± 0.62%, 2.88 ± 0.06%, 4.33 ± 0.153%, 6.56 ± 0.50%,
8.95 ± 1.00%, and 10.65 ± 1.58% adsorption of glucose, respectively, and crude extract
showed 0.9 ± 0.02%, 1.5 ± 0.032%, 2.77 ± 0.015%, 4.200 ± 0.20%, 6.25 ± 0.04%, and
8.32 ± 0.258% adsorption of glucose, respectively. The results indicate that this effect is
not just due to the adsorption of glucose but also to the uptake of glucose. Because the
adsorption of glucose depends on the concentration of glucose, as the glucose concentra-
tion increases, the adsorption of glucose also increases, and glucose uptake in yeast cells
depends on the concentration of AI-AgNPs and crude extract.

3.7. Impact of AI-AgNPs and Crude Extract on Inhibition of α-Amylase

The alpha-amylase inhibitory effect of AI-AgNPs (10–100 µg/Ml) was determined for
the prepared AI-AgNPs and crude extract, as shown in Figure 6C. The percent inhibitory
values of AI-AgNPs at 10, 20, 40, 80, 100µg/mL were noted as 23.7 ± 1.4%, 34 ± 1.99%,
42.13 ± 2.44%, 60.92 ± 2.00%, and 73.85 ± 1.114%, respectively, with an IC50 value of
48.26 µg/mL and that of crude extract. The percent inhibitory values of crude extract at
10, 20, 40, 80, and 100µg/mL were noted as 13.7 ± 2.15%, 23 ± 2.67%, 31.500 ± 2.78%,
48.62 ± 2.167%, and 65.85 ± 2.101%, respectively, with an IC50 value of 68.37 µg/mL.
Whereas acarbose, taken as a standard drug, showed % inhibition at 10, 20, 40, 80, and
100 µg/mL as 27 ± 2.082%, 39.56 ± 1.913, 47.6 ± 1.97, 67.66 ± 2.086, 10 µg/mL, and
79.33 ± 1.528, respectively.
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3.8. Analysis of Blood Glucose Level of Experimental Mice

Administration of STZ resulted in increased blood glucose levels, which were reversed
by treating diabetic mice with 10 to 40 mg/kg body weight of AI-AgNPs for 30 days,
resulting in a significant decrease in hyperglycemia as shown in Figure 6D. It is clear
from this figure that there was a significant increase in blood glucose levels (277 ± 5.1 to
420 ± 22.03 mg/dL) in the diabetic control group. The normal control group did not show a
significant increase in blood glucose level (113 ± 3.5 to 118 ± 4.72 mg/dL). Groups treated
with AgNPs at doses of 10, 20, 30, and 40 mg/kg, respectively, showed a significant decrease
(p < 0.05) in glucose level (288 ± 5.0 to 160 ± 5.54 mg/dL, 290 ± 2.5 to 154 ± 5.033 mg/dL,
287 ± 4.2 to 138 ± 7.50 mg/dL, 290 ± 8.3 to 131 ± 7.024 mg/dL), respectively.

3.9. Histological Study of Mice Pancreas

In the histological studies of pancreas, the normal control group displayed the pancreas
with normal anatomy, which shows that the exocrine component of pancreas is well
organized into small lobules and is densely packed with acinar cells, and the pancreatic
lobules are divided by septa into healthy intralobular and interlobular connective tissue
(Figure 7A). Pathological abnormalities in both the exocrine and endocrine systems were
seen in the pancreas of the diabetic control group. Little vacuoles [shown by an arrow] in
the enlarged acinar cell can be seen nearly in all the acinar cells. β-cells in the pancreas of
STZ-treated mice are almost entirely damaged (Figure 7B). The diabetic group receiving
a dose of 10 mg/kg b/w AI-AgNPs displayed general architectural deformation of the
pancreas. Acinar injury manifested by cytoplasmic vacuolation and cell atrophy was seen
in most exocrine acini [indicated by the arrow] of the pancreas (Figure 7C). Diabetic mice
treated with a dose of 20 mg/kg b/w AI-AgNPs showed some restoration of islets of the
pancreas. The basal region of acinar cells has medium-sized vacuoles (Figure 7D). The
diabetic group treated with a dose of 30 m g/kg b/w AI-AgNPs revealed regeneration
of islet cells. Moreover, the tiny vacuoles in the basal region of the acinar cells were
significantly smaller (Figure 7E). The diabetic mice treated with a dose of 40 mg/kg b/w
AI-AgNPs displayed the nearly normal shape of Islets of Langerhans [indicated by the
arrow]. The moderate atrophic alteration occurred in the acinar cells, and the distinction
between the exocrine and endocrine sections of the pancreas improved (Figure 7F).
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Figure 7. Histology section of the pancreas (A) Group–I: in normal control small lobules are densely
packed with acinar cells (indicated by the arrow) (B) Group-II: in diabetic control β-cells of pancreas
are almost entirely damaged (indicated by the arrow) (C) Group-III: treated with 10 mg/kg b/w
AI-AgNPs; shown initial restoration of islets of the pancreas (indicated by the arrow) (D) Group-IV:
treated with 20 mg/kg b/w AI-AgNPs; shows some restoration of islets of the pancreas (indicated
by the arrow (E) Group-V: treated with 30 mg/kg b/w AI-AgNPs revealed moderate regeneration
of islet cells (indicated by the arrow) (F) Group-VI: treated with 40 mg/kg b/w AI-AgNPs shown
nearly normal shaped Islets of Langer-hans (indicated by the arrow).
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3.10. Histological Analysis of Mice Liver

The histology of the normal control group showed a typical normal histological picture
of the liver (Figure 8A). The hepatocytes of the diabetic control group showed significant
deterioration and necrosis in the liver (Figure 8B). Differences in the size of vacuoles of
hepatocytes can be seen in the livers of mice treated with a 10 mg/kg b/w dose (Figure 8C).
In the livers of mice treated with doses of 20 mg/kg b/w and 30 mg/kg b/w, there was a
noticeable decrease in liver deterioration and necrosis of hepatocytes (Figure 8D,E). The
diabetic group of mice treated with 40 mg/kg b/w showed a histological appearance that
was comparable to the normal control group (Figure 8F).
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4. Discussion

Nanotechnology has emerged as a leading technology in several sectors, with an ulti-
mate application in agriculture, food, pharma, and biomedicine engineering. Nanoparticles,
due to their small sizes, versatility, and readiness to couple with optical, textile, magnetic,
electronic, mechanical, and chemical substances, are the candidates for novel applications
in therapeutics, for example, anti-microbial, anti-oxidant, and cancer. In addition, nanopar-
ticles have been extensively studied in the physical, chemical, and biological sciences [59].
Recently, several successful reports affirmed the production of these nanomaterials from
natural sources such as plants and microbes. The biosynthesis of nanocomposites is a
large-scale scientific domain with significant attention in biomedical applications due to
their biocompatibility and multifunctional abilities [60].

Today’s most popular oral anti-diabetic medications rarely provide long-lasting
glycemic control. To fill the gap, several medicinal plant extracts are deemed effective in
lowering blood glucose levels and are administered as anti-diabetic drugs [61]. Several
research studies have described the role of metals and their oxides, such as silver, vana-
dium, chromium, magnesium, and zinc oxides, in carbohydrate metabolism and the control
of DMT2 [62]. The preparation of Ag nanoparticles via the green synthesis approach is
effective due to the use of non-toxic phytochemicals and the absence of hazardous elements
as found in the chemical method [63]. There are three basic categories of these techniques,
including biological, physical, and chemical methods. The best method for synthesiz-
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ing nanoparticles is the biological method due to its simple, nontoxic, and cost-effective
nature [64].

The biosynthesis of AgNPs from plants is an easy procedure that includes the inter-
action of silver nitrate (AgNO3) with the biomolecule components of plant extracts [65].
Nanoparticles are formed primarily in three phases: an ion reduction reaction leads to
cluster formation and then induces the growth of nanoparticles [66]. Each stage has unique
characteristics depending on the reducing agent, its concentration, AgNO3, and pH. The
presence of hydroxyl groups (OH) in plant biomolecules, such as amino acids, proteins,
alkaloids, flavonoids, polyphenols, enzymes, tannins, carbohydrates, and saponins, is
associated with the stabilization and reduction of silver ions (Ag+) to Ag0. Its further
reduction to Ag + leads to the formation of silver nuclei, resulting in the production of
AgNPs [67]. Considering the vast potential of plants as sources of medicinal compounds,
this work aims to biosynthesize AgNPs using Azadirachta indica seed extract. The synthe-
sized AI-AgNPs were pragmatically characterized and investigated for their anti-diabetic
potential for the first time. To the best of my knowledge, this research will represent the first
reference to the use of A. indica seed extract for the green synthesis of silver nanoparticles
in Pakistan. According to literature [68], A. indica is thought to have insulin-like effects,
which could help lower blood glucose levels by improving insulin sensitivity or acting as
an insulin mimetic. It may protect pancreatic beta cells from damage that is responsible for
insulin production. Preserving these cells is crucial for maintaining proper insulin levels.
Components in neem may contribute to the reduction of blood glucose levels, helping
in the management of diabetes [69]. Furthermore, synergistic effects between A. indica
and silver nanoparticles exist [70]. As reported in the previous literature, if the natural
compounds coating the nanoparticles are themselves anti-diabetic in nature, a synergistic
anti-diabetic potential of the final nanomaterial is observed, and Azadirachta indica seeds
contain the most potent compounds, such as Azadarachtin, Nimbin, Nimbidin, etc., so that
must reveal high anti-diabetic potential [71].

Silver nanoparticles can be a potential source of insulin sensitization as they increase
the cytosolic calcium ion concentration and activate AMPK by phosphorylating it via the
CAMKKβ pathway in SH-SY5Y cells and in rats [72]. AMPK activation enhances the
sensitivity towards insulin, and it could mediate the insulin by increasing its action [73].
Insulin binds to its receptor and activates the phosphorylation cascade from IRS1, which
induces the transport of glucose into the cells [57]. Studies have shown that animal models
lacking IRS1 developed hyperglycaemia, or Type 2 diabetes mellitus; hence, increasing the
protein levels of IRS1 will ultimately reduce the hyperglycemia complications [74]. Silver
nanoparticles lead to a reduction in blood glucose levels by increasing the IRS1 and GLUT2
expression levels. In addition, silver nanoparticles elevate the expression levels of insulin
and its secretion [75]. Natural compounds acting as high reducing agents (Azadirachtin,
Vepinin, Limbocidin, etc.) present in the Azadirachta indica seed extract strongly affect
the size and size distribution of nanoparticles; the stronger the reductant present in the
extract, the higher the reaction rate, resulting in the synthesis of nanoparticles with a
smaller size [76]. At the same time, the particle size distribution of nanoparticles remains
narrow. Reducing agents are essential in the fabrication of nanoparticles to enhance their
biomedical functionality by reducing their toxicity and enhancing their biocompatibility
and bioavailability in living cells. They prevent clusters or aggregates of nanoparticles,
enhance their colloidal stability, and prevent the uncontrolled growth of nanoparticles
(especially metal and metal oxide nanoparticles) [77].

People are interested in nanotechnology in the fields of physics, chemistry, biology,
nanomedicine, and electronics as a result of the contemporary scientific period. Nanotech-
nology may create a wide range of nanoscale materials with at least one dimension, ranging
in size from 1 to 100 nm, known as nanoparticles (NPs) [78]. Because of their capacity to
be modified at a scale where characteristics can be controlled, nanomaterials have opened
new areas of scientific and industrial innovation.



Pharmaceuticals 2023, 16, 1677 15 of 20

In the current study, silver nanoparticles were synthesized through a biological method
using the extract of Azadirachta indica seeds, which are well known for their strong bio-
logical potential. The present investigation indicated that post-treatment improved the
hyperglycemic condition of STZ-induced mice with AI-AgNPs. These nanoparticles were
characterized by visual examination (Figure 2), ultraviolet–visible (UV–vis) spectropho-
tometry (Figure 3), scanning electron microscopy (SEM) (Figure 4), and Fourier transform
infrared (FTIR) (Figure 5a), which are in line with [41]. The formation of AI-AgNPs was
predominantly detected by the variation in color of the reaction mixture from light brown
to dark brown after treatment with a 1 mM silver salt (AgNO3) solution. Several characteri-
zation techniques supported the successful production of NPs. The silver nanoparticles
produced from A. indica showed a brown color change at an optimized time of 3 h. The
maximum absorption was at 441 nm from the UV-visible analysis. Similar results were
observed for silver nanoparticles in previous literature. Rajesh Kumar and Malarkodi [79]
got an absorbance peak in the range of 400 to 450 nm when synthesized from different
sources. The FTIR results of the pure A. indica and A. indica-mediated AgNPs. The ex-
tra band observed at 591 cm−1 corresponds to the Ag nanoparticles that appeared in
A. indica-mediated AgNPs, as indicated in Figure 5b. The peak at 1401.37 cm−1 may be
due to the (C-O and C-H) bending vibrations of the A. indica plant. The stretching vibra-
tion of the C-O functional group of alcohol, ester, ether, or carboxylic acid is shown by
the peaks at 1031.85 cm−1 and 1041 cm−1, respectively. The peak at 1617.32 cm−1 and
1635 cm−1 might be caused by the C=O stretching vibration of alkenes, primary amines
(N-H bending vibration), and amides (N-H bending and C=O stretching vibration), as
well as the functional groups of aldehydes and ketones. The stretch at 2104 cm−1 is due
to the C≡C of the alkene. The OH stretching vibration of the phenol causes the peaks at
3292 cm−1 and 3311.35 cm−1, respectively. Additionally, the presence of OH and C=O
groups suggests that flavanones or terpenoids have been adsorbed on the surface of
nanoparticles. Connections via π-electrons in the carbonyl groups may be liable for the
reduction of Ag ions to AgNPs as well as for stability and as a capping agent. The presence
of various functional groups in Figure 5b demonstrated the successful green synthesis of A.
indica-mediated AgNPs [80,81]. The role of AgNPs in various metabolic diseases has been
studied. In the present study, the AI-AgNPs were assessed for their anti-diabetic activity
through in vitro studies using glucose uptake by yeast cells assays, glucose adsorption
assays, and alpha-amylase inhibitory assays, as well as an in vivo study on STZ-induced
diabetic mice. Glucose uptake by yeast cells at various concentrations of AI-AgNPs has
determined good results (Figure 6A). These results were found to be good and in line
with [77]. AI-AgNPs showed the highest activity (75 ± 1.528%), while crude extract showed
(63 ± 2.5%) glucose uptake by yeast at 80 µg/mL. In the glucose adsorption assay, the
highest activity of Al-AgNPs was 10.65 ± 1.58%, while crude extract showed 8.32 ± 0.258%
at 30 mM, whereas in the alpha-amylase assay, Al-AgNPs exhibited the maximum activity
of 73.85 ± 1.114% and crude extract 65.85 ± 2.101% at 100 µg/mL. These results were
found to be similar to previous work [76].

Administration of STZ resulted in increased blood glucose levels; the treatment of
AI-AgNPs has reversed the hyperglycemic condition of diabetic mice. AI-AgNPs (10 to
40 mg/kg b.w.) treatment for 30 days resulted in a significant decrease in blood glucose
level (Figure 6D). It is clear from this figure that there was a significant increase in blood
glucose levels (277–420 mg/dL) in the diabetic control group. The normal control group
did not show a significant increase in blood glucose level (113–118 mg/dL). Groups treated
with AgNPs at doses of 10, 20, 30, and 40 mg/kg, respectively, showed a significant decrease
(p < 0.05) in glucose level (288–160, 290–154, 287–138, 290–131 mg/dL), respectively. Similar
results were shown by [82,83].

In histopathological studies, the normal control group shows a normal architecture
of the pancreas. The exocrine component forms a pancreas closely packed by acinar cells
and arranged into small lobules. Pancreatic lobules are separated by intact intralocular and
interlobular connective tissue septa, while the diabetic control group revealed pathological
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changes of both exocrine and endocrine components. The acinar cells were swollen, and
small vacuoles were observed in almost all acinar cells. Islet β-cells are almost entirely
lost in STZ-treated mice. Diabetic mice treated with different doses of AI-AgNPs revealed
regeneration of islet cells. The small vacuoles in the basal area of acinar cells were also
much smaller. The atrophic change of the acinar cells was less severe, and the border
between the exocrine and endocrine portions became more distinct (Figure 7). These results
are in line with [84–89].

Histological studies of the liver were carried out. Severe degeneration and necrosis
in the hepatocytes were detected in the diabetic control group. Variations in the size of
vacuoles were determined in the cytoplasm of hepatocytes in the 10 mg/kg b.w. AI-AgNPs-
treated group. Degeneration and necrosis were found to be significantly reduced in the
livers of mice in doses of 20 and 30 mg/kg b.w. of AI-AgNPs-treated groups. Similar
histological appearance to the control group was found in the dose-40 mg/kg b.w. AI-
AgNPs-treated group except for slight vacuolation and dilation of sinusoids (Figure 8).
These results are in line with other mechanisms of interaction of nano Ag with cells that
have been presented in the study [90], and various researchers have reported different
approaches for diabetic medicine [91–97]. Considering the results obtained from anti-
diabetic activity, green-synthesised AgNPs are good anti-diabetic agents. They may be
crucial resources in the pharmacological and therapeutic domains for treating diabetes and
other metabolic illnesses.

5. Conclusions

In this study, Azadirachta indica-conjugated silver nanoparticles were synthesized
using their seed extract. The biosynthesized silver nanoparticles were proved to have
excellent anti-diabetic potentials, which are due to the presence of natural compounds
coating the nanoparticles, which are themselves anti-diabetic in nature. A synergistic
anti-diabetic potential of the final nanomaterial was observed. Therefore, AgNPs produced
by A. indica may be potentially utilized for the economical production of AgNPs for many
pharmaceutical applications. To the best of my knowledge, this research will represent
the first reference to the use of A. indica seed extract for the green synthesis of silver
nanoparticles and their anti-diabetic activities in Pakistan.
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