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Abstract: With technology advancing, many prediction algorithms have been developed to facilitate
the modeling of inherently dynamic and flexible macromolecules such as proteins. Improvements
in the prediction of protein structures have attracted a great deal of attention due to the advantages
they offer, e.g., in drug design. While trusted experimental methods, such as X-ray crystallography,
NMR spectroscopy, and electron microscopy, are preferred structure analysis techniques, in silico
approaches are also being widely used. Two computational methods, which are on opposite ends
of the spectrum with respect to their modus operandi, i.e., homology modeling and AlphaFold,
have been established to provide high-quality structures. Here, a comparative study of the quality
of structures either predicted by homology modeling or by AlphaFold is presented based on the
characteristics determined by experimental studies using structure validation servers to fulfill the
purpose. Although AlphaFold is able to predict high-quality structures, high-confidence parts
are sometimes observed to be in disagreement with experimental data. On the other hand, while
the structures obtained from homology modeling are successful in incorporating all aspects of the
experimental structure used as a template, this method may struggle to accurately model a structure
in the absence of a suitable template. In general, although both methods produce high-quality models,
the criteria by which they are superior to each other are different and thus discussed in detail.

Keywords: homology modeling; AlphaFold; Gαi1; Gαs; hemopexin; APC; protein model;
quality assessment

1. Introduction

Proteins are highly complex macromolecules that participate in almost all vital biolog-
ical processes in an organism, including metabolic reactions, transport of molecules, signal
transduction, and many more. Great efforts have been made for decades to determine the
3D structures of these essential macromolecules from their primary amino acid sequences,
and various methods, including template-based and AI-based methods, have been devel-
oped in this context [1]. The key problem therein is that even a small domain of a protein
has the potential to fold into an astronomically large number of conformations due to the
enormous number of degrees of freedom, particularly of the rotatable bonds of the amino
acid side chains [2]. Although it is possible to establish a protein structure with expensive
and laborious experimental methods, such as X-ray crystallography, nuclear magnetic
resonance (NMR), and cryogenic electron microscopy (Cryo-EM), in silico predictions of
protein structures with at least the same quality as experimentally identified equivalents
have become an increasingly important goal [3]. Previously, three principal modeling
techniques were available, namely homology modeling or comparative modeling, thread-
ing (fold recognition), and ab initio modeling [4]. Among these approaches, homology
modeling can predict the structure of a protein from a known sequence and experimental
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structure with a certain degree of homology (>30%) [4]. Bovine α-lactalbumin was the first
structure to be predicted by a homology modeling approach in 1969 [5]. Since then, there
have been plenty of different applications of this method with many success stories [5–7].
However, with the advancement of technologies and the development of different algo-
rithms, homology modeling has gradually lost its reputation to an artificial intelligence
(AI)-based method, i.e., AlphaFold (AF) [8,9]. This AI-based method has been recognized
as a revolutionary breakthrough in the field of structural biology due to its unprecedented
accuracy in predicting unknown structures from an amino acid sequence [9]. Despite the
use of high-resolution crystallographic structures in the training of its deep neural network
architecture, which also contributes positively to the accuracy of the predicted protein
structures [10,11], AF faces several limitations, such as the inability to predict cofactors,
metal ions, or bound ligands, although attempts have recently been made to overcome
these using methods such as AlphaFill [12].

Herein, the quality of structures predicted by AF and homology modeling techniques
is investigated to gain a deeper insight into the prediction qualities. The overall quality of
the individual structures as well as the per-residual quality of the structures is assessed.
In this study, we focused on seven different human proteins, namely Gαi1 [13], Gαs [13],
hemopexin (Hx) [14,15], activated protein C (APC) [16], Rap2 [17], human serum albumin
(has) [18], and Interleukin 36α (IL-36α) [19], mainly from our recent studies. Among
these proteins, Gαi1, Gαs, and Rap2 are classified as cell membrane-associated proteins.
Gαi/s subunits transduce the signal derived from the cell surface receptor GPCR (G
protein-coupled receptors) to the effector protein, adenylyl cyclase (AC), inside the cell
(Gαi and Gαs act as an inhibitor and a stimulator of AC, respectively) [20]. Like Gαi/s
protein subunits, the small GTPase Rap2 participates in different signaling pathways by
interacting with and regulating various intracellular effector proteins [17]. The Gαi/s and
Rap2 proteins harbor dynamic loop structures surrounding the nucleotide-binding pocket,
so-called switch (SW) regions, which are involved in protein activation (Figure S1).

Hx is a glycoprotein with a high heme-binding affinity that is produced in the liver
and belongs to the family of acute-phase proteins. It transports heme to its catabolism sites
and thus prevents heme-mediated oxidative damage [14]. APC, another heme regulatory
protein, is a glycoprotein that is also synthesized in a K-dependent manner in the liver. It
has anticoagulant and cytoprotective properties [21]. HSA is the most abundant plasma
protein and is known as a carrier and scavenger of different molecules via specific and
unspecific binding. HSA scavenges labile heme in the plasma and facilitates its passage to
heme degradation pathways [22].

By upregulating the expression of inflammatory and cartilage catabolic markers,
IL-36α functions as a pro-inflammatory cytokine at the cartilage level. Reduced p38
activation as well as IL-6 and IL-8 mRNA levels in human fibroblast-like synoviocytes from
rheumatoid arthritis patients indicate a considerable reduction in IL-36-mediated signaling
upon heme binding [19,23]. The main reason for focusing on these proteins is that first,
they contain multiple functional domains that allow us to observe how accurately each
domain is predicted in addition and relative to the overall protein structure, and second,
they harbor specific binding sites, such as the nucleotide-binding pocket in Gαi/s protein
subunits and Rap2 protein or heme-binding motifs in APC, Hx, HSA, and IL-36α. The
conformational states of such binding sites are key determinants of function and can often
be related to the conformation and behavior of other regions, e.g., allosteric sites, within the
protein of interest. Therefore, precise and meticulous modeling of such specific regions of
proteins plays a crucial role in determining the accuracy of the computational studies to be
carried out. In this context, the quality of the models predicted by both homology modeling
and AF were compared with each other and with experimentally resolved structures. In
addition, the reliability of these predicted models for utilization in structure-based drug
design methods such as molecular docking and structure-based virtual screening [24]
was evaluated.
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The results here intend to serve as a deep dive into the 3D structure prediction algo-
rithms AlphaFold and homology modeling. On top of that, the pipeline created to analyze
these structures can be readily used to determine the quality of the predicted structure
from any algorithm. In the end, we suggest steps to increase the quality of the predicted
structures with various in silico methods.

2. Results

Once the structures of the proteins of interest (Gαi1, Gαs, APC, Hx, Rap2, IL-36α, and
HSA) were generated from the corresponding FASTA sequences (also from the template
structures selected for homology modeling), the predicted structures were subjected to a
series of systematic probes of their quality by online validation tools. An in-depth analysis
of quality metrics such as the accuracy of the folding, the presence of steric clashes between
two unpaired atoms, the residue-wise stereochemical quality of the protein structure, and
others (Figure 1) was performed. Based on the structural data obtained, protein structures
were first analyzed on the basis of the accuracy of prediction of the functional sites, e.g.,
binding sites, and then the performance of both in silico approaches was evaluated.
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Figure 1. Schematic representation of the workflow for the quality evaluation of computationally
predicted protein structures. (a) FASTA sequence used as input for modeling, (b) computational
approaches applied for modeling, (c) predicted protein structure, (d) molecular dynamics (MD)
simulation, (e) tools for quality verification of the predicted models, and (f) data acquisition for
quality control of the predicted models and evaluation.

2.1. Structure Evaluation and Comparison of Homology Models and AlphaFold Structures

The evaluation of the structures of the created homology models (HMs) was performed
in situ in YASARA with the overall Z-score, which is a model quality score obtained
by averaging the three most precise WHAT IF checks (Ramachandran plot, backbone
conformation, and 3D packing quality) provided by YASARA [25]. The Z-score gives
information about the extent to which the quality of the model deviates from the average
high-resolution crystal structure. A Z-score value greater than zero indicates that the model
is optimal, while values less than zero mean that the model deteriorates compared to an
average X-ray structure. The Z-scores of the HMs of Gαi1, Gαs, Hx, APC, Rap2, IL-36α, and
albumin were found to be 0.67 [13], 0.52, −1.07, −1.41, 0.80, −0.198, and 0.486, respectively,
whereas the Z-scores of the AF structures of Gαi1, Gαs, Hx, APC, Rap2, IL-36α and albumin
were 0.74, 0.41, −1.16, −1.54, 0.01, −0.58, and 0.43, respectively. Accordingly, Gαi1, Gαs,
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Rap2, and albumin were classified as optimal, while Hx, APC, and IL-36αwere ascertained
as satisfactory. Additionally, the predicted local distance difference test (pLDDT) scores,
which provide insights into how well the predicted models reconstructed the local atomic
interactions in comparison to the pretrained experimental structures [8,11] for the proteins
Gαi1, Gαs, and Rap2 revealed that, apart from the overall protein structures, residues
in the SW regions (Figure S1), which play an essential role in nucleotide binding, were
accurately modeled with high confidence (Table S1). In the AF models of Hx and APC,
the aforementioned heme-binding motifs were generally modeled at moderate to high
confidence, apart from two motifs from Hx (PGRGH236GHRN and RGHGH238RNGT) and
one motif from APC (TGWGY391HSSR), which were modeled at a low confidence level
(Table S1). Although the overall quality of the structures was determined by comparison
with the corresponding average crystal structures, in addition, structural alignments were
also performed between the computationally and the experimentally determined structures
to observe how much the modeled structures deviated from the experimental structures
(Table 1). The mentioned experimental structures also served as templates for the HMs of
the respective proteins (5JS8 [26], 3UMS [27], and 1Y3A [28] for Gαi1; 6EG8 [29], 7E5E [30],
and 6AU6 [31] for Gαs; 1QJS [15] for Hx; 1AUT [32], 2AER [33], 3F6U [34], 1W0Y [35],
and 3HPT [36] for APC; 2RAP [37] and 3RAP [17] for Rap2; 1AO6 [18], 1N5U [38], and
4G03 (https://www.rcsb.org/structure/4G03, accessed on 6 November 2023) for HAS;
and 6HPI [39] for IL-36α). The structural alignments of each experimental structure with
the homology and AF models were conducted using MUSTANG [40], which is a multiple
structural alignment algorithm in YASARA. By using this method, in addition to observing
how much the structures deviate, the sequence identities between the experimental and
predicted structures were calculated.

Table 1. Structural alignments of the homology models and AF structures with the experimentally
determined structures.

Protein Experimental
Structure

Homology Model AF Structure
RMSD (Å) Seq. Identity (%) RMSD (Å) Seq. Identity (%)

5JS8 1.05 100 0.81 97.41
Gαi1 3UMS 1.32 99.33 0.77 99.67

1Y3A 1.33 99.29 0.74 100

6EG8 0.98 100 0.83 99.71
Gαs 7E5E 1.05 98.71 0.90 100

6AU6 1.28 97.18 0.99 99.08

Hx 1QJS 0.94 84.34 1.402 19.32

1AUT 0.89 100 0.63 100
2AER 1.35 40.67 1.106 42.58

APC 3F6U 0.90 100 1.03 40
1W0Y 1.15 40.64 1.02 42.11
3HPT 1.28 38.15 1.03 40

Rap2 2RAP 0.78 100 0.80 99.40
3RAP 0.69 100 0.82 99.39

1AO6 2.02 96.15 1.18 100
HSA 1N5U 1.30 100 1.84 96.33

4G03 2.07 95.70 1.27 98.95

IL-36α 6HPI 1.57 100 1.83 100

Note: The alpha-carbon root-mean-square deviations (Cα-RMSD) and sequence identities between the generated
HMs and the experimental structures used as templates, as well as between AF-predicted structures and the
experimental structures for each protein group are shown.

As a result of the structural alignment of the HMs and AF structures with the re-
spective crystal and NMR structures, it was observed that the structures generated by
both computational methods are not much different from the experimental structures
(Figures S2 and S3). In addition, HMs and AF structures of the same protein were also sub-
jected to structural alignment to examine their similarities. Negligible deviations of 1.17 Å

https://www.rcsb.org/structure/4G03
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for Gαi1, 0.99 Å for Gαs, 0.98 Å for Hx, and 0.92 Å for APC between the HMs and structures
predicted by AF were found. In this context, it was also noted that the structures created in
both computational ways are not distinct from each other, although if the numeric RMSD
values are used as a strict metric to pick a winner in each case, AF-derived structures have
the advantage. The general folding and organization of protein structures were checked to
detect deviated residues and to inspect the condition of functionally important regions.

2.2. Evaluation of the Gαi1 Structural Models

When the steric clashes between two non-bonded atoms in the modeled structures
were evaluated on the basis of clashscore, it was observed that the Gαi1 HM does not
contain any steric clashes (owing to the energy minimization procedure performed as the
final step of the homology modeling workflow in YASARA) (Table 2), while the AF-derived
structure showed minimal steric clashes, but less than the other template structures except
5JS8 [26]. Whereas no unfavorable rotamer is present in the AF structure, two residues
(Val185 and Glu239) were observed to have unfavorable rotamers (0.67%) in the HM [26].
The HM structure, however, harbors fewer poor side chain rotamers compared to the
experimentally determined structures, especially 1Y3A [28] and 5JS8 [26]. Unfavorable
rotamers in the HM can be expected due to the presence of poor rotamers in the experimen-
tal structures used as templates (Table 2). The absence of Ramachandran outliers in both
models indicates that the backbone torsional angles of all residues were indeed favorably
constructed (Figure 2). The Rama-Z scores of −0.65 and 0.06 for the homology and AF
models, respectively, suggest that the backbone geometry of both models was optimal, (be-
tween −2 and 2 [41]), but that of the structure predicted by AF was more regular. Although
the Z-score calculated by YASARA also takes into account the torsion angle parameter
while providing an overall quality score, the Rama-Z score, which provides insight into
the accuracy of the torsion angle distribution [41], was used as a detailed metric to assess
the quality of the backbone geometry of the predicted models. The Ramachandran plot
revealed that the backbone φ/ψ torsional angles were accurately constructed for both
homology and AF models since almost all of the residues in both models were in the
favored region and no residue was detected in the disallowed region (Figure 2). In the
HM, only the residue Ala59 located in the linker I region, a short loop connecting two
domains, was found to belong to the generously allowed region (Figure 2). Obtaining
positive G-factors, a log-odds score of stereochemical parameters such as torsional angle
and covalent geometry, for both models indicate that the overall stereochemistry of both
models was indeed optimal.

The mean 3D/1D scores of the residues in the homology and AF models were deter-
mined as 91.69% and 85.31%, respectively. Although this showed that the 3D structure of
both models was compatible with the primary amino acid sequences, and thus validated
the models, it is clear that HM performed better in terms of compatibility. In the HM,
29 residues with a poor compatibility score (<0.2) were found (Figure S3a), five of which
(Thr177–Thr181) are located in the SWI region. On the other hand, it was observed that
52 residues scored less than 0.2 in the AF model (Figure S3b). All residues constituting the
SWI region (Val174–Gly183), as well as some residues in the SWIII region (Ala235–Glu239),
were observed to have low compatibility with their sequences. The overall quality factor
based on the non-bonded atomic interactions of both models (99.41% for HM and 98.26%
for the AF structure) predicted that both models are of high quality (>95%). In general,
nearly all of the residues in the HM (with the exception of two residues) have error rates
below the specified threshold of 95% (Figure S4a). However, in the AF model, while five
residues were found to have an error rate between 90 and 95%, and a critical error (>95%)
was observed in one residue (Leu268) (Figure S4b). But overall, both models have the
characteristics of high quality.
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Table 2. Comparison of the structural validation scores of the computationally predicted and the
experimentally determined Gαi1 structures.

Protein Validation Metric (or Method) Homology
Model * AF * 5JS8 * 3UMS * 1Y3A *

Gαi1

MolProbity
Clashscore, all atoms (percentile) 0 (100th) 1.77 (99th) 0.97 (99th) 4.07 (99th) 12.94 (91th)
Poor rotamers (%) 0.67 0 2.86 0.69 3.80
Favored rotamers (%) 97.67 99.67 91.43 93.10 92.02
Ramachandran outliers 0 0 0.62 0 0.34
Rama-Z score −0.65 ± 0.44 0.06 ± 0.42 −3.94 ± 0.39 −1.43 ± 0.43 −2.10 ± 0.40

Ramachandran plot (%)
Most favored 89.6 95.2 84.8 92.0 93.1
Additional allowed 10.1 4.8 13.9 8.0 6.5
Generously allowed 0.3 0 0.7 0 0.4
Disallowed 0 0 0.7 0 0
Overall G-factors 0.17 0.21 −0.10 0.21 0.39

Verify3D (%)
3D/1D profile 91.69 85.31 86.69 93.77 95.97

Errat (%)
Overall quality factor 99.41 98.26 95.21 98.15 95.52

Prove (µ)
Z-score 0.89 ± 26.80 1.16 ± 28.32 0.43 ± 1.32 0.23 ± 1.28 1.02 ± 29.01
Z-score RMS 26.80 28.33 1.39 1.30 29.01

SwissProt
QMEANDisCo global 0.76 ± 0.05 0.80 ± 0.05 0.74 ± 0.05 0.79 ± 0.05 0.82 ± 0.05

* The experimental structures (5JS8 [26], 3UMS [27], 1Y3A [28]), the HM generated from the experimental
structures, and the structures predicted by AF were specifically evaluated.

Pharmaceuticals 2023, 16, x FOR PEER REVIEW 6 of 24 
 

 

 

Figure 2. Ramachandran plots of computationally generated protein models. The plots on the left 

of the heading are from the homology models while the plots on the right-hand side are from the 

AlphaFold models. The residues found in either generously allowed or disallowed regions are 

shown in red. 

The mean 3D/1D scores of the residues in the homology and AF models were deter-

mined as 91.69% and 85.31%, respectively. Although this showed that the 3D structure of 

both models was compatible with the primary amino acid sequences, and thus validated 

the models, it is clear that HM performed better in terms of compatibility. In the HM, 29 

residues with a poor compatibility score (<0.2) were found (Figure S3a), five of which 

(Thr177–Thr181) are located in the SWI region. On the other hand, it was observed that 52 

residues scored less than 0.2 in the AF model (Figure S3b). All residues constituting the 

SWI region (Val174–Gly183), as well as some residues in the SWIII region (Ala235–

Glu239), were observed to have low compatibility with their sequences. The overall qual-

ity factor based on the non-bonded atomic interactions of both models (99.41% for HM 

and 98.26% for the AF structure) predicted that both models are of high quality (>95%). In 

general, nearly all of the residues in the HM (with the exception of two residues) have 

error rates below the specified threshold of 95% (Figure S4a). However, in the AF model, 

Figure 2. Ramachandran plots of computationally generated protein models. The plots on the left of the
heading are from the homology models while the plots on the right-hand side are from the AlphaFold
models. The residues found in either generously allowed or disallowed regions are shown in red.



Pharmaceuticals 2023, 16, 1662 7 of 22

The atomic volume Z-scores of 0.89 and 1.16 for the HM and AF structures, respectively,
indicate that the volumes of all atoms in the HM are more regular. However, the extremely
high standard deviation for both models (Table 2) indicates that the number of outliers
in both proteins is excessive. In addition, the astronomical RMSD of the volume Z-score
(Z-score rms for both models) gives information about how irregular the buried atoms in
both models are [42].

The overall QMEANDisCo scores of the Gαi1 structures are 0.76 for the HM and
0.80 for the AF structure, suggesting that the residues in the AF model are slightly bet-
ter modeled than those in the HM in terms of the expected pairwise Cα-Cα distances.
Four residues in both SWI (Val179–Thr182) (Figure 3a) and SWII (Gly203–Arg205, Arg208)
(Figure 3b) of the HM were observed to be modeled in low quality, plus almost all of the
residues in the SWIII region (Val233–Met240, Arg242) were identified to be of low quality
(Figure 3c). On the other hand, it was observed that all residues in the SWI, II, and III
regions in the AF structure were well modeled (Figure 3a–c). Although the overall score of
both models was acceptable, it was observed that the residues involved in the nucleotide
binding were better modeled in the AF model than those in the HM.
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in IL-36α are illustrated.
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2.3. Evaluation of the Gαs Structural Models

In the Gαs HM, there is no steric clash between any two non-bonded atoms, whereas
a low level of steric clash was found in the AF structure. With this result, the HM again
outperformed all template structures by having the lowest steric clash, since it was auto-
matically subjected to energy minimization immediately following its generation (Table 3).
Five residues with unfavorable rotamers were found in the HM, while no poorly modeled
rotamer was present in the AF structure. It was observed that the number of favored
rotamers of both the HM and AF structure was within the defined optimal level (>98%).
Additionally, Ramachandran outliers were not detected in any of the computationally
determined structures of Gαs. The fact that the Rama-Z scores of both structures were
both at the specified level and close to zero indicates that the models have a desirable
structure. Moreover, both models appeared to have favorable backbone torsion angles and
an optimally constructed backbone (Figure 2).

Table 3. Comparison of the structural validation scores of the computationally predicted and the
experimentally determined Gαs structures.

Protein Validation Method Homology
Model * AF * 6EG8 * 7E5E * 6AU6 *

Gαs

MolProbity
Clashscore, all atoms (percentile) 0 (100th) 2.20 (99th) 5.71 (97th) 0.18 (100th) 1.25 (99th)
Poor rotamers (%) 1.47 0 0 0.66 0.65
Favored rotamers 98.42 98.86 89.29 97.04 97.73
Ramachandran outliers 0 0 0 0 0.29
Rama-Z score −0.24 ± 0.38 0.15 ± 0.41 −2.85 ± 0.36 −0.24 ± 0.43 −0.25 ± 0.44

Ramachandran plot (%)
Most favored 93.4 93.6 91.6 94.2 90.2
Additional allowed 6.6 6.4 8.4 5.8 9.2
Generously allowed 0 0 0 0 0.6
Disallowed regions 0 0 0 0 0
Overall G-factors 0.27 0.21 0.21 0.21 0.22

Verify3D (%)
3D/1D profile 87.66 87.82 83.60 94.38 99.42

Errat (%)
Overall quality factor 99.73 98.67 96.10 99.70 99.09

Prove (µ)
Z-score 0.37 ± 1.81 0.35 ± 1.17 0.39 ± 1.20 0.36 ± 1.20 0.09 ± 1.21
Z-score RMS 1.24 1.21 1.26 1.25 1.22

SwissProt
QMEANDisCo global 0.77 ± 0.05 0.77 ± 0.05 0.77 ± 0.05 0.77 ± 0.05 0.79 ± 0.05

* The experimental structures (6EG8 [29], 7E5E [30], 6AU6 [31]), the HM generated from the experimental
structures, and the structures predicted by AF were specifically evaluated.

Both models were noted to possess almost identical Ramachandran analysis results.
No residue was found in either allowed or disallowed regions (Table 3). The proportion
of residues belonging to the most favored regions is higher than the specified threshold
of 90% for both models. Possessing positive G-factors, on the other hand, points out that
both models have favorable stereochemical properties. The average 3D/1D scores of the
residues were identified as 87.66% for the HM and 87.82% for the AF structure, meaning
that the overall compatibility of the residues with their 3D structure is optimal. A total
of 47 residues with poor compatibility appeared in the HM, including all residues in the
SWI region (Cys187–Gly193) (Figure S5a). On the other hand, 48 residues in the Gαs AF
structure, only one of which is in the SWI region, were observed to have low compatibility
(Figure S5b). In both models, the residues in the other SW regions were found to be
concordant with the 3D models.

The ERRAT overall quality scores of 99.73% for HM and 98.67% for AF structure
prove that both models are of high quality in terms of the non-bonded atomic interactions.
Although only one residue had an error rate between 95% and 99% in the HM, four residues
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in the AF structure were found to have an error rate of 95% to 99%, and one residue had an
error rate of slightly more than 99% (Figure S6). However, both models had the properties
of a model with a high-quality resolution.

For both protein models, the volumes of the atoms were appropriately formed within
the standard atomic volumes of the atoms (Table 3). Moreover, their Z-score RMSD values
show that the standard deviations of the atoms in the models are generally within normal
ranges except for a few outliers.

The overall QMEANDisCo scores of the HM and AF structure of Gαs were determined
as 0.75 and 0.77, respectively. When the SW regions in the Gαs protein were examined, it
was observed that every residue in the SWI and SWIII of both models was modeled with
ideal quality (Figure 3d–f). Six residues (Gln214, Arg215, and Glu217–Lys220) in the SWII
region of the HM of Gαs were observed to have a score of less than 0.60, whereas only one
residue located in the SWII region (Arg232) has a score lower than the defined score in the
AF model (Figure 3e). In general, the residues in the other SW regions were accurately
formed in both models.

2.4. Evaluation of the APC Structural Models

Despite the fact that the template structure used for homology modeling consisted
of many steric clashes, the model generated from homology modeling consisted of none
while the AF model had very minimal clashes. (Table 4). In contrast, only 1.24% of residues
were identified as having a poor rotamer for the AF model, while it was 2.28% for the
HM model. Even though three out of five templates that were used for generating the
HM have below-par favored rotamer percentages, the HM model exhibited a favored
region percentage within just below the optimal value (94.59%). The AF structure had
the best favored region percentage of 95.02%. Although the Rama-Z scores are at the
optimal level for both structures, the high percentage of outliers in the AF model is a
reason for caution regarding the overall model quality and backbone structure (Table 4).
According to the Ramachandran plot analysis, homology modeling produced a better
model as compared to the AF model. There were fewer residues in generously allowed
regions and disallowed regions of the HM model than in the AF model. The positive overall
G-factor of 0.08 supports this fact in addition to having favorable stereochemical properties
(Table 4). When the overall compatibility of the residues with their 3D structures was
determined, 28% of the residues of the AF model were incompatible with the 3D structure
while in the HM model, only 60.25% of the residues were compatible with the 3D structure,
hence it is labeled as a failed model according to this test. (Table 4). The heme-coordinating
residues Tyr239 and His391 showed above zero average scores while Tyr239 had a raw
score of −0.43 in the HM model (Figure S7a,b). The AF model had the optimum average
and raw score (Figure S7c).

The overall quality ERRAT scores were 94.34% and 95.81% for HM and AF models,
respectively, representing good model quality in both cases. In the per-residue analysis
of ERRAT plots, residues above the 95% limit were almost double in the AF model as
compared to HM (Table 4). Additionally, the AF model had four residues over the 99%
limit, which is very critical for the overall protein structure quality (Figure S8).

The atomic volume analysis reveals that the templates used for the HM have a very
high deviation ranging from 20 to 55 from the standard values. This is reflected in the final
HM with the Z-score rms being 26.88, whereas AF has a very favorable Z-score rms of just
1.38, which reflects minor deviations from the standard atomic volume values (Table 4).
The overall QMEANDisCo scores of 0.74 and 0.67 for the HM and AF models, respectively,
show good quality models globally and are well above the minimum value of 0.6.

As we know, APC is a proven heme-binding protein, and correct prediction of heme
binding sites is of prime importance for many types of studies. There are two heme-binding
motifs present in the APC, where heme binds to Tyr289 and His391 [16]. When the local
QMEANDisCo scores of coordination heme-binding residues were studied, the AF model
showed scores of 0.56 and 0.82, while the HM model showed scores of 0.73 and 0.75,
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respectively (Figure 3g). Hence, one residue of the HBM was predicted with very bad
quality by the AF model whereas HM predicted heme-coordinating residues of both the
motifs above the minimum score value.

Table 4. Comparison of the structural validation scores of the computationally predicted and the
experimentally determined APC structures.

Protein Validation Data Homology Model * AF * 1AUT * 2AER * 3F6U * 1W0Y * 3HPT *

APC

MolProbity
Clashscore, all

atoms (percentile)
0

(100th)
1.39

(99th)
22.49
(86th)

17.06
(40th)

15.26
(95th)

44.14
16th)

33.37
(15th)

Poor rotamers (%) 2.28 1.24 11.42 3.15 14.48 2.77 2.08
Favored rotamers (%) 94.59 95.02 77.85 93.31 73.79 91.70 0.01
Ramachandran outliers (%) 0.50 2.61 0.30 0.54 2.10 0.55 0
Rama. distr. Z-score −1.08 ± 0.38 −1.59 ± 0.37 −2.98 ± 0.38 −0.58 ± 0.34 −3.10 ± 0.40 −2.05 ± 0.31 −0.62 ± −0.30

Ramachandran plot (%)
Most favored regions 89.5 80.7 84.3 88.8 80.1 86.8 85.8
Additional allowed regions 9.7 17.5 15.7 10.6 19.9 12.6 13.9
Generous. allowed regions 0.6 1.5 0.0 0.4 0.0 0.4 0.4
Disallowed regions 0.3 0.2 0.0 0.2 0.0 0.2 0.0
Overall G-factors 0.08 −0.04 0.14 0.19 −0.46

Verify3D (%)
3D/1D profile 85.68 72.02 95.05 93.69 95.40 92.93 91.76

Errat (%)
Overall quality factor 94.33 95.81 85.47 92.18 84.93 9.98 95.96

Prove (µ)
Z-score 1.12 ± 26.87 0.44 ± 1.30 0.96 ± 26.43 1.22 ± 35.12 0.98 ± 26.52 1.80 ± 42.15 2.742 ± 52.014
Z-score RMS 26.88 1.38 26.44 35.14 26.51 42.18 52.078

SwissProt
QMEANDisCo global 0.74 ± 0.05 0.67 ± 0.05 0.87 ± 0.05 0.86 ± 0.05 0.86 ± 0.05 0.85 ± 0.05 0.85 ± 0.05

* The experimental structures (1AUT [32], 2AER [33], 3F6U [34], 1W0Y [35], and 3HPT [36]), the HM generated
from the experimental structures, and the structures predicted by AF were specifically evaluated.

2.5. Evaluation of the Hemopexin Structural Models

Non-bonding atomic partners were evaluated for possible steric clash via clashscore
analysis. Both HMs and AF models showed the presence of none to minimal steric clashes,
respectively (Table 5). There are 0.84% (three residues) poor rotamers present in the HM
model, while the value is 1.56% (six residues) for the AF structure. This directly translates to
high favored rotamers for the HM model (97.21%) as compared to the AF model (95.05%). A
differentiation can be made in the model quality by comparing the Ramachandran outliers.
Even though both models have scores above the limit, the HM model has fewer (0.24%)
outliers as compared to the very high number (4.13%) present in the AF-derived structure.
A lower Ramachandran Z-score of 0.69 for the HM as compared to the higher score of 1.74
for the AF model supports this observation.

On further analysis based on the Ramachandran plot, it was revealed that the HM
model is of better quality than the AF structure as it has higher favored regions (90.3%)
as compared to its counterpart (83.6%). Additionally, the AF model (2.1%) has a higher
number of residues in generously allowed and disallowed regions than the HM model
(0.3%). The HM model’s total G-factor score is positive (0.07), while the AF model’s score
is negative (−0.20) as a result. The proof of a high-quality model from HM was further
supported by a 95.77% 3D/1D profile score, which means all the residues of the HM model
are compatible with its 3D structure whereas only 90% of residues are compatible in the 3D
model generated by AF (Figure S9). These high-quality models from HM had no average
score below 0.2 (Figure S9a) while the AF model had 29 residues below 0.2 (Figure S9b).
These 29 residues do not include any residues from the heme-binding motifs predicted
earlier [15].

The HM model exhibited a lower ERRAT score as compared to the AF model (Table 5).
There was no significant difference in the residue-wise plots as both showed few regions
above the 95% and 99% limits (Figure S10). Another parameter that tips the scale in favor
of the better-quality AF model is atomic volume compared with the standard volumes
of high-quality structures by PROVE. Even though the template used for the homology
modeling had a smaller Z-score (0.49 ± 1.31) and Z-score rms (1.40), the final HM model
had a Z-score of (1.09 ± 24.39) and Z-score rms of 24.41, which is very much higher than its
counterpart AF structure (1.44) (Table 5).
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Table 5. Comparison of the structural validation scores of the computationally predicted and the
experimentally determined hemopexin structures.

Protein Validation Data Homology Model * AF * 1QJS *

Hemopexin

MolProbity
Clashscore, all atoms 0 (100th) 2.11 (99th) 15.46 (96th)
Poor rotamers (%) 0.84 1.56 10.80
Favored rotamers (%) 97.21 95.05 79.55
Ramachandran outliers (%) 0.24 4.13 0.99
Rama. distribution Z-score −0.69 ± 0.38 −1.74 ± 0.35 −3.0 ± 0.25

Ramachandran plot (%)
Most favored regions 90.3 83.6 82.7
Additional allowed regions 8.9 12.4 15.8
Generously allowed regions 0.3 2.1 1.2
Disallowed regions 0.6 1.8 0.3
Overall G-factors 0.07 −0.20 −0.20

Verify3D (%)
3D/1D profile 95.77 90.26 99.75

Errat (%)
Overall quality factor 79.42 82.86 72.31

Prove (µ)
Z-score 1.09 ± 24.39 0.56 ± 1.32 0.49 ± 1.31
Z-score RMS 24.41 1.44 1.40

SwissProt
QMEANDisCo global 0.81 ± 0.05 0.78 ± 0.05 0.91 ± 0.05

* The experimental structure (1QJS [15]), the HM generated from the experimental structure, and the structure
predicted by AF were specifically evaluated.

The overall QMEANDisCo score of the HM model is higher than that of the AF model
(Table 5). Both show very good global model quality. Similarly, like APC, hemopexin is
also a proven heme binder and correct prediction of HBMs is important. There are six
heme coordination residues according to [15]. They are His79, His105, His236, His238,
His260, and His293. When the per-residue local QMEANDisCo score was averaged, both
the HM and AF models showed very similar scores of 0.66 and 0.62, respectively. Moreover,
the individual QMEANDisCo score (Figure 3h) did not show any significant pattern
supporting one algorithm over the other. This means that heme-binding motifs were just
above the optimum range and could be considered to be moderately predicted by both the
prediction technologies.

2.6. Evaluation of the Rap2 Structural Models

As with other proteins, no steric clash was found in the HM of Rap2, while minimal
steric clash was observed in the AF-predicted model. This suggests that HM exceeds
both AF and experimental structures on a protein basis (Table 6). Ser11 in Rap2 HM was
found to have an unsatisfactory rotamer. In contrast, no residue with a poor rotamer was
observed in the AF structure. Overall, residues in the HM were found to have a sufficient
number of favored rotamers (98.09%), while the AF structure had a near-limit number
of residues (97.53%). Moreover, no Ramachandran outliers were detected in Rap2 HM;
however, Cys177 in AF was observed to have an unfavorable torsional angle. Although
the molecular geometries of both predicted models are convenient, it is evident that the
backbone of AF is constructed slightly more properly (Figure 2).

Based on the Ramachandran plot, one can say that the φ/ψ torsion angles of both
predicted models are moderately well generated as the majority of the residues (>90%) are
in the favored region. However, Glu62 in HM was noted to be located in the disallowed
region in the Ramachandran plot (Figure 2). Furthermore, some residues in HM (10)
and AF (15) were found to be in the additional allowed region, and one residue in AF
was also found to be in the generously allowed region (Table 6). Although some of the
residues in both structures are partially disordered in terms of torsional angle, the fact
that both structures have positive G-factors indicates that the backbone stereochemistry
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of the structures is generally in order. The 3D/1D compatibility scores of 58.19 and 47.54
for the HM and AF-predicted models, respectively, indicate that the folding of amino
acid sequences into 3D structures is relatively weak. In both predicted models, feeble
compatibility was noted for all residues in SWI (Gly26-Ile36) and some residues in SWII
(Ala59-Met67 and Tyr71 in HM; Ala59-Ser66) in AF (Figure S11).

Table 6. Comparison of the structural validation scores of the computationally predicted and the
experimentally determined Rap2 structures.

Protein Validation Data Homology Model
* AF * 2RAP * 3RAP *

Rap2

MolProbity
Clashscore, all atoms 0 (100th) 1.39 (100th) 4.44 (99th) 2.59 (100th)
Poor rotamers (%) 0.64 0 5.41 3.38
Favored rotamers (%) 98.09 97.53 85.14 91.22
Ramachandran outliers (%) 0 0.55 0.61 1.21
Rama. distribution Z-score −0.59 ± 0.59 −0.29 ± 0.62 −2.41 ± 0.56 −1.16 ± 0.55

Ramachandran plot (%)
Most favored regions 93.0 90.2 89.3 90.6
Additional allowed regions 6.4 9.2 10.7 7.4
Generously allowed regions 0.0 0.6 0.0 2.0
Disallowed regions 0.6 0.0 0.0 0.0
Overall G-factors 0.20 0.08 −0.18 −0.04

Verify3D (%)
3D/1D profile 58.19 47.54 53.29 61.68

Errat (%)
Overall quality factor 95.65 98.16 93.96 98.68

Prove (µ)
Z-score - - - -
Z-score RMS - - - -

SwissProt
QMEANDisCo global 0.83 ± 0.07 0.83 ± 0.06 0.88 ± 0.07 0.87 ± 0.07

* The experimental structures (2RAP [37] and 3RAP [17]), the HM generated from the experimental structures,
and the structures predicted by AF were specifically evaluated.

According to the high ERRAT scores (Figure S12), both methods (95.65% for HM
and 98.16% for AF structure) seem to work well on the basis of non-bonded interactions
between atoms. Five residues in HM (Ile36, Pro50, Ser51, Leu53, and Gln183) and two
residues in AF (Lys42 and Lys172) were found to have an error rate between 95% and 99%.
Moreover, it was also observed that residues Glu54 and Ile55 in HM, and Asp173 in AF
have error values greater than 99%. However, apart from these erroneous residues, both
models show the characteristic features of proteins with high resolution.

The overall QMEANDisCo score for both structures was 0.83, reflecting that the
residues were predominantly modeled with high accuracy. When the SW regions are
observed specifically, it is evident that all the residues in the SWI of the predicted models
have a confidence score of more than 60% (Figure 3i,j). However, it was noted that both
methods modeled the Gln63 residue in the SWII region with a low confidence score (0.56 in
HM and 0.55 in AF). Principally, besides the residuals in the SW regions, the two methods
seem to generate the residues in the structures with high precision.

2.7. Evaluation of the Structural Models of Human Serum Albumin

Non-bonded atomic partners underwent a clashscore analysis to check for any poten-
tial steric clashes. The HM had a significantly low clashscore of 0.21 as compared to AF
despite the high clashscores of the templates used (Table 7). By contrast, AF had a lower
percentage of poor rotamers and Ramachandran outliers as compared to HM and a higher
favored rotamer percentage than the AF models. This translated to the lower Rama-Z score
of 0.41 as compared to 0.74 given by HM (Table 7).
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Table 7. Comparison of the structural validation scores of the computationally predicted and the
experimentally determined HSA structures.

Protein Validation Data Homology
Model * AF * 1AO6 * 1N5U 4G03

HSA

MolProbity
Clashscore, all atoms 0.21 (100th) 2.07 (99th) 13.92 (86th) 21.97 (23rd) 6.91 (97th)
Poor rotamers (%) 6 (1.16) 3 (0.56) 24 (4.74) 18 (3.54) 27 (5.34)
Favored rotamers (%) 501 (96.72) 522 (97.94) 436 (86.17) 465 (91.36) 431 (85.18)
Ramachandran outliers (%) 2 (0.34) 0 (0.00) 11 (1.91) 6 (1.03) 5 (0.87)
Rama. distribution Z-score 0.74 ± 0.33 0.41 ± 0.32 −4.28 ± 0.28 −0.43 ± 0.32 −2.69 ± 0.30

Ramachandran plot (%)
Most favored regions 93.9 94.9 88.5 93.2 90.4
Additional allowed regions 5.2 5.1 11.5 5.7 9.1
Generously allowed regions 0.7 0.0 0.0 0.9 0.2
Disallowed regions 0.2 0.0 0.0 0.2 0.4
Overall G-factors 0.33 0.24 0.21 0.44 0.18

Verify3D (%)
3D/1D profile 79.12 72.41 74.18 79.55 79.38

Errat (%)
Overall quality factor 98.29 97.63 93.26 98.08 96.47

Prove (µ)
Z-score - - - - -
Z-score RMS - - - - -

SwissProt
QMEANDisCo global 0.81 ± 0.05 0.84 ± 0.05 0.81 ± 0.05 0.82 ± 0.05 0.83 ± 0.05

* The experimental structures (1AO6 [18], 15NU [38] and 4G03 (https://www.rcsb.org/structure/4G03, accessed
on 6 November 2023), the HM generated from the experimental structures, and the structures predicted by AF
were specifically evaluated.

The Ramachandran plot analysis revealed that the AF model is slightly better as it has
1% higher favored regions in contrast to HM, which has 93.9% favored regions. Moreover,
the AF model had lower additionally and generously allowed regions than the HM model
with values of 5.2 and 0.7, respectively. All these positive and negative effects on the
structure are reflected in the AF having a 0.24 overall G-factor while HM had a slightly
higher G-factor of 0.33. A contrasting result was obtained by Verify3D as the 3D/1D profile
score of the AF model was 72.41, which is much lower than its counterpart’s score of 79.12
(Figure S13). The ERRAT results were in line with the 3D/1D profile scores as the AF
model scored lower (97.63) than the HM model (98.29) (Figure S14, Table 7). There were
five residues above the critical 99% error limit in the AF model whereas it was just two in
the HM model.

The overall QMEANDisCo scores of the HM and AF models were 0.81 and 0.84,
respectively (Table 7). This signifies the overall good quality of the predicted models.
Barring the few terminals’ amino acids that scored lower than the benchmark of 0.6, the
individual predictions for all other residues were of very high quality in both approaches.

2.8. Evaluation of the IL-36α Structural Models

When the non-bonding atoms were analyzed for the clashscores due to side chain
orientation, the differences between the HM and AF models were minor. The AF model had
a clashscore of 1.61 while the HM model had a 0 clashscore despite the fact that the template
used to generate the model had a very high clashscore of 7.23. The poor rotamer and outlier
values of 3 and 1, respectively, for HM models, were nil for the models generated by AF
(Table 8).

Interestingly, the values for Ramachandran most favored regions, additional allowed
regions, generously allowed regions, disallowed regions, G-factor, 3D/1D profiles, and
ERRAT score were 89.7, 10.3, 0, 0, 0.03, 70.25, and 90.90, respectively (Figures S15 and S16,
Table 8). This might occur due to the small size of the protein and only one reference
sequence and structure for generating the model. However, the QMEANDisCo scores of

https://www.rcsb.org/structure/4G03
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the HM were marginally higher than those of the AF (Table 8). Additionally, the HM had
better per-residue scores of heme binding regions described [19] than the AF-predicted
structures (Figure 3).

Table 8. Comparison of the structural validation scores of the computationally predicted and the
experimentally determined IL-36α structures.

Protein Validation Data Homology Model * AF * 6HPI *

IL-36α

MolProbity
Clashscore, all atoms 0 (100th) 1.61 (99th) 7.23 (86th)
Poor rotamers (%) 3 (2.14) 0 (0.00) 29 (20.71)
Favored rotamers (%) 135 (96.43) 139 (99.29) 80 (57.14)
Ramachandran outliers (%) 1 (0.64) 0 (0.00) 3 (1.92)
Rama. distribution Z-score 0.38 ± 0.67 −0.79 ± 0.59 −4.62 ± 0.55

Ramachandran plot (%)
Most favored regions 89.7 89.7 73.5
Additional allowed regions 10.3 10.3 25.7
Generously allowed regions 0 0 0.7
Disallowed regions 0 0 0
Overall G-factors 0.03 0.03 −0.16

Verify3D (%)
3D/1D profile 70.25 70.25 59.49

Errat (%)
Overall quality factor 90.90 90.90 85.18

Prove (µ)
Z-score - - -
Z-score RMS - - -

SwissProt
QMEANDisCo global 0.76 ± 0.07 0.71 ± 0.07 0.90 ± 0.07

* The experimental structure (6HPI [39]), the HM generated from the experimental structures, and the structures
predicted by AF were specifically evaluated.

2.9. Impact of Molecular Dynamics Simulation on Predicted Structures

Molecular dynamics (MD) simulations of protein structures predicted by both methods
were performed to observe how the structures would behave in a dynamic environment as
an independent observational approach. The system setup for MD simulation is described
in the methodology Section 4.3.

When the MD simulations of the predicted structures of Gα- proteins were com-
pared with each other, it was observed that Gαs has almost identical RMSDBb (backbone
RMSD) and RadGyration (radius of gyration) profiles in both structures (RMSDBb of HM,
3.283 ± 1.001 Å; RMSDBb of AF 3.353 ± 0.827 Å). Additionally, in the simulation trajectories
of the structures predicted by both methods, it is seen that the overall folding of the Gαs
subunit is the same and hence there is no difference in their compactness as represented
by RadGyration (Figure 4). However, in Gαi1, the difference between the mean RMSDBb
values of the predicted models is noteworthy. The reason behind this deviation was mainly
attributed to the flexibility of the free α-helix located at the N-terminal. The conformational
change in the protein structure due to the mobility of the N-terminal helix affected the
compactness of the protein as reflected in the RadGyration value. In contrast to Gαi1,
Rap2 HM was found to be more deviated compared to its AF counterpart. The principal
underlying reason for this is the mobility of the terminal loop, the so-called long wavy
hook, which is located at the C-terminus. Moreover, deviations were also observed in the
SW regions, which are dynamic loops, of Rap2 HM, compared to AF.

During the simulation of APC, the model generated from HM showed a lower RMS-
DBb of 8.225 ± 3.0 Å as compared to the AF which had an RMSDBb of 12.102 ± 2.292 Å.
The long loop region at the N-terminal is the reason for this higher RMSD change in the AF
model (Figure S14). This loop starts folding, thus reducing the RadGyration significantly.
As a result, the RadGyration change in the AF model is slightly higher (30.444 ± 1.592 Å)
than in the HM model (27.736 ± 1.459 Å).
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Figure 4. Average backbone RMSD and RadGyration parameters of the predicted structures after
MD simulations. The mean RMSD and RadGyration values calculated in the production phase of the
HM and AF-predicted structures are shown in peach and claret error bar graphs, respectively. The
standard deviation of the values is indicated by the black line.

In Hx, the AF model had a very high RMSDBb of 8.712 ± 1.401 Å as compared to the
HM model which had an RMSDBb of only 3.342 ± 0.518 Å. Similar to APC, a long loop
region at the N-terminus contributed to high fluctuations in the dynamic environment
(Figure S17). It is also reflected in the RadGyration as a model from AF had to go through
high folding fluctuations in contrast to the HM model.

In contrast to APC and Hx, HSA and IL-36α had RMSDBb values of 2.755 ± 0.437 Å
and 2.63 ± 0.765 Å from the AF model and 3.352 ± 0.467 Å and 3.843 ± 0.434 Å for the HM
model, respectively. The RadGyration also showed much fewer fluctuations for the model
predicted by both approaches. The absence of a long loop region might have contributed to
this behavior of these two proteins.

It is interesting to note that the overall quality of the protein was lowered when
analyzed for the quality parameters mentioned above (Tables S2–S6). This is often due to
factors such as the stereochemical accuracy of the residues in the structure to be used as
input to the MD simulation and the precision in modeling their side chains.

3. Discussion

The ever-increasing advances in computational approaches to protein modeling have
begun to challenge many experimental methods [43]. Fierce competition in this field has
yielded a variety of tools for protein prediction, while at the same time experimental stud-
ies involving structure analysis using, e.g., cryo-EM are increasing in number, too. In the
domain of protein structure prediction, where new computational algorithms often claim to
give better results than experimental models, the use of the word artificial intelligence has
created hype around the usability of such tools. Especially since the launch of AlphaFold,
accuracy in predicting the 3D structure of proteins has reached high levels, with increasing
competition between old and newly developed methods for protein structure prediction.
In CASP15, it was also observed that with AF version 2, the prediction of protein folding
accuracy was further improved with the developments in the underlying neural architec-
ture [44]. In addition, the development of not only AF but also different AI-based methods
such as ESMFold [45] and RoseTTAFold [46] are among the factors triggering competition
in this field. On the other hand, although experimental determination of the structure of
proteins is still one of the most reliable methods, it is likely to be frequently accompanied
by AI-based methods, as they are both costly and time-consuming. This project aimed to
compare the differences in the quality of the in silico models, as well as the experimentally
identified structures.
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Here, we analyzed the precision of the protein structures generated by both AlphaFold
and homology modeling and compared them with experimentally determined structures.
Both approaches have shown success in modeling Gα- protein subunits and Rap2 pro-
tein [13]. The main factor in the evaluation of the Gα- and Rap2 proteins is how accurately
the residues in the SW regions involved in nucleotide and effector protein binding are mod-
eled in addition to the overall folding of the individual protein [47]. Specifically, when the
organization of residues in the SW regions is examined, it is evident that the AF-predicted
model performed better than the HM for the SW regions in the Gαi1 protein subunit, al-
though the homology modeling and AF seem to model the side chains of the Gαs and Rap2
proteins with more or less the same quality. Concerning the heme-binding proteins APC,
Hx, HSA, and IL-36α, the analysis results suggest that the homology modeling performs
better than AlphaFold when the overall quality of the proteins is considered. The residue-
wise analysis of the heme-binding motifs revealed that two motifs from hemopexin and
one from APC were poorly predicted by AF. This analysis is relevant as correct modeling of
heme-binding sites plays a vital role in predicting transient heme binding to proteins and
the further analysis of the structural and functional changes upon heme binding. In addi-
tion to this, heme bound to hemopexin was not predicted by AF, while the HM predicted
the hemopexin with heme bound to it [14].

Although the overall structures of the proteins were predicted with high quality by both
models, some minor modeling issues, such as side chain prediction, were observed in both
computational approaches; in the generation of the side chains of the proteins, the homology
models performed slightly better in modeling the side chains of residues compared to the
models predicted with AF. In such cases, performing energy minimization or exposing protein
structures to refinement simulations can positively contribute to reducing atomic conflicts,
disordered short contacts, and the overall strain, thereby improving the stereochemical accu-
racy of the residues. The MD simulations conducted on the predicted models proved that
AF structures with the long loop regions went through the folding to equilibrate to a stable
low-energy conformational ensemble. The capability of AF to predict these loop regions is
very low for the proteins whose crystal structure is not used in training the AF algorithm.
Additionally, as earlier homology studies were also complemented by MD simulations [14,16],
an AF structure should also be subjected to MD simulations before being used for practices
such as molecular docking. However, given the fact that the structure used as input may
adversely affect the progression of the MD simulation, it is not surprising that the models
have different levels of structural deviations. A recent study demonstrated this by subjecting
the AF structure to free energy perturbation (FEP) to generate more accurate structures [48].
Overall, it can be said that the local quality of the models predicted by AF is favorable for the
application of computer-aided drug design methods.

In the end, we demonstrated the pipeline and parameters through which one can
analyze and select the appropriate tool for protein structure prediction without falling
for the hype. This approach is valid for the protein structures predicted by any available
methods. Knowledge is the real winner here as knowing the limitations of the tool can
help a user decide on the method to use; e.g., a user would not select methods like default
AF if the protein of interest contains ligands, co-factors, or a loop region to be modeled.
On the other hand, if no suitable template is available for comparative modeling, then AI
algorithms like AlphaFold come to the rescue. Even though each computational method has
advantages and disadvantages compared to the other, the rapid development of AI-based
methods is likely to lead to their increasing reputation in this field. However, this should
not necessarily mean that homology modeling or experimental methods are gradually
becoming obsolete.

4. Materials and Methods
4.1. Homology Modeling and AlphaFold-Predicted Structures

Homology models (HMs) of Gαi1 [13], Gαs, Hx [14,15], APC [16], Rap2 [17], HSA [18],
and IL-36α [19] proteins were generated from experimentally determined structures
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(Table 9) in YASARA (versions 18.2.7–21.8.27) [15], as described earlier. In general, the
structures to be used as templates in this approach were chosen by considering the follow-
ing criteria: sequence similarity, origin, experimental method used for structural analysis,
presence of crucial mutation(s), and how much this would affect the HM to be generated.
The existing HMs were used for comparison of the same proteins generated by AF.

Table 9. Experimental data of the template structures used as the input for the homology models of
the proteins.

PDB Protein Ligand(s) Resolution Released Date
(Updated)

Sequence
Length Organism Mutation(s)

5JS8 Gαi1 GDP NMR
ensemble 2016 (2019) 326 Homo sapiens −

3UMS Gαi1 GDP, SO4
2−, Cl− 2.34 Å 2012 (2012) 354 Homo sapiens +

1Y3A Gαi1 GDP 2.50 Å 2005 (2019) 329 Homo sapiens −

6EG8 Gαs GDP, Mg2+ 2.80 Å 2019 (2019) 381 Homo sapiens −
7E5E Gαs GDP, Cl− 1.95 Å 2022 (2022) 348 Homo sapiens −
6AU6 Gαs GDP, Cl−, Mg2+, GOL 1.70 Å 2018 (2019) 377 Homo sapiens +

1QJS Hemopexin HEM, PO4
3−, Cl−, Na+ 2.90 Å 2000 (2019) 460 Oryctolagus

cuniculus −

1AUT APC 0G6, BHD 2.80 Å 1996 (2013) 364 Homo sapiens −
3F6U APC 0G6, Ca2+, Na+ 2.80 Å 2008 (2013) 338 Homo sapiens −

2AER Factor VIIa GLC, FUC, BEN, Zn2+,
Ca2+, Cl−, Na+, Mg2+, 1.87 Å 2005 (2020) 396 Homo sapiens +

1W0Y Factor VIIa 771, BGC, FUC, CAC, Ca2+ 2.50 Å 2004 (2020) 396 Homo sapiens −

3HPT Factor X YET, MES, GOL, DMS,
ACT, Ca2+, Na+ 2.19 Å 2009 (2017) 332 Homo sapiens −

2RAP Rap2 GTP, Mg2+ 2.60 Å 1998 (2011) 167 Homo sapiens −
3RAP GTP, Mg2+ 2.20 Å 1999 (2023) 167 Homo sapiens −

6HPI IL-36α - NMR
ensemble 2019 (2023) 158 Homo sapiens −

1AO6 HSA - 2.50 Å 1998 (2011) 585 Homo sapiens −
1N5U HSA HEM, MYR 1.90 Å 2003 (2011) 585 Homo sapiens −
4G03 HSA - 2.22 Å 2013 (2013) 585 Homo sapiens −

Note: 5JS8 (10 conformers submitted) [26], 3UMS [27], and 1Y3A [28] are experimentally determined structures of
Gαi1 that were used as templates for the generation of Gαi1 HM [13]. In the construction of the Gαs HM, the
chain I of 6EG8 [29], 7E5E [30], and 6AU6 [31] were used as inputs. Chain A of 1QJS [15] was the only exploited
template structure for the construction of the Hx HM [14]. Five crystal structures, 1AUT [32], 2AER [33], 3F6U [34],
1W0Y [35], and 3HPT [36], were fed in as inputs to construct the APC HM [16]. 2RAP [37] and 3RAP [17] were the
crystal structures utilized in the generation of Rap2 HM. In the generation of IL-36αHM, 6HPI (20 conformers
submitted) [39] was the only experimental structure. Three crystal structures, 1AO6 [18], 1N5U [38], and 4G03
(https://www.rcsb.org/structure/4G03, accessed on 6 November 2023), were used in the prediction of HSA HM.

The coordinates of all heavy atoms of a protein of interest can be predicted at a high
accuracy from the respective amino acid sequence via AF [6]. The prediction of the models
can be performed by directly feeding the primary amino acid sequence into a programmatic
interface known as AlphaFold Colab [16]. However, the accuracy of the protein structure
to be modeled with AF Colab may be decreased due to the potential lack of templates
and limited multiple sequence alignment (MSA) resulting from the restricted database
(reduced by eightfold) utilized [16]. The AF protein structure database (AF DB, hosted by
the European Bioinformatics Institute) covers a wide variety of predicted protein structures,
including the human proteome, as well as different other organisms, such as E. coli (UniProt
ID: UP000000625), M. musculus (UniProt ID: UP000000589), and S. cerevisiae (UniProt ID:
UP000002311) [26]. Therefore, AF DB was queried to check for the presence of the structures
of the proteins of interest. Due to the fact that the AF-predicted structures of Gαi1 (UniProt
ID: P63096), Gαs (UniProt ID: P63092), Hx (UniProt ID: P02790), and APC (UniProt ID:
P04070) are available in the database, they were used directly for quality control without
the requirement for any model generation.

https://www.rcsb.org/structure/4G03


Pharmaceuticals 2023, 16, 1662 18 of 22

4.2. Quality Assessments of the Structures

The quality of both the HMs and the AF-derived structures was examined by con-
sidering several parameters, including the stereochemical quality based on the overall
and per-residue geometries, quality of non-bonded interactions, steric overlaps between
non-bonded atoms, coherence between the 3D structure of the model and its amino acid
sequence, and atomic and residue volumes in the protein structures. Various online val-
idation servers, i.e., MolProbity [49], UCLA-DOE LAB, and SWISS-MODEL [50], were
utilized for carrying out independent evaluations of the structures (Figure 1). The missing
hydrogen atoms in the protein structures were added in the YASARA software (versions
18.2.7–21.8.27) before being used as input in the aforementioned validation tools, after
which the structures were evaluated. MolProbity (version 4.5) is a structural analysis tool
that provides information about the accuracy of macromolecules by evaluating their quality
based on atomic contact analysis, geometry, and backbone torsion angles [51]. One of the
main applications of MolProbity in this study was to determine the clashscores of residues
in proteins calculated by the program Probe [52].

Regardless of the method by which the protein structure was generated, deviations
from the correctly folded conformation may occur. The VERIFY3D tool [53], which checks
the compatibility of 3D folded structures of proteins with their relative amino acid se-
quences, was used to identify local potential folding errors in addition to the general
structures and to compare the accuracy of the folding of the generated HMs and AF
structures. The geometry and stereochemical quality of the residues in the proteins were
evaluated by using PROCHECK [54], since anomalies in certain stereochemical parameters,
such as bond distances, torsion angles, and hydrogen bond energies, can also affect the
atomic volumes in the residues, which is another parameter that contributes to the quality
of a 3D structure [42]. The atomic-volume-associated evaluation of the structures, such as
the conformation of the volume of an atom in the residue of the generated models to the
overall standard volume of the same atom type was performed using the tool PROVE [42].
The residue-based determination of the correctly and incorrectly predicted regions based
on their atomic interactions in comparison to standard values derived from highly resolved
experimental structures was carried out by ERRAT [55]. A further model quality evaluation
was performed using QMEANDisCo, a tool developed by SwissProt for assessing the
absolute quality at both the local and the global level based on various geometrical fea-
tures [56]. A general summary of the quality of the protein structures was obtained by using
WHAT_CHECK [24]. Last, but not least, the confidence of the AF-predicted structures was
additionally assessed by considering a metric called the predicted local distance difference
test (pLDDT), which provides insights into how well the predicted models reconstructed
the local atomic interactions in comparison to the pretrained experimental structures [8,11].

4.3. MD Simulation of Predicted Structures

In order to evaluate the behavior of the structures predicted by both methods in a
physiological environment, the proteins were subjected to MD simulations. In this context,
a group of parameters were assigned. The pH and the concentration of Na+ and Cl- ions in
the solution were adjusted to 7.4 and 0.9%, respectively. The simulations were conducted
at 298 K (24.85 ◦C) with 0.997 g/mL water density under atmospheric pressure (NPT) fixed
at 1 bar. The simulation cell was set in cubic with a width of 10 Å from all sides of the
proteins, and the cell boundary was chosen as periodic.

The predicted models, first, were exposed to a 500 ps refinement simulation by using
the YAMBER force field [57] in YASARA in order to bring the predicted protein structures
to their innate states. The resulting lowest-energy and high-quality structures obtained
through conformational sampling of each protein were then used as input for 50 ns explicit
MD simulations with the AMBER ff14SB [58] force field. The simulation trajectory of each
protein was analyzed considering simulation parameters such as RMSD and RadGyration
during the production phase. Furthermore, the structure in the most recent snapshot of the
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studied protein in the MD simulation trajectory was used as a representative structure for
post-simulation evaluations (Figures S18 and S19).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ph16121662/s1, Figure S1: Structural alignments of the homology
models and AF structures with the experimentally determined structures; Figure S2: Structural
alignments of the homology models and AF structures with the experimentally determined structures;
Figure S3: Verify3D plots for the Gαi1 structures; Figure S4: ERRAT plots for the Gαi1 structures;
Figure S5: Verify3D plots for the Gαs structures; Figure S6: ERRAT plots for the Gαs structures;
Figure S7: Verify3D plots for the APC structures; Figure S8: ERRAT plots for the APC structures;
Figure S9: Verify3D plots for the hemopexin structures; Figure S10: ERRAT plots for the hemopexin
structures; Figure S11: Verify3D plots for the Rap2 structures; Figure S12: ERRAT plots for the Rap2
structures; Figure S13: Verify3D plots for the HSA structures; Figure S14: ERRAT plots for the HSA
structures; Figure S15: Verify3D plots for the IL-36α structures; Figure S16: ERRAT plots for the
IL-36α structures; Figure S17: Structural alignments of the pre- and post-MD simulated structures
from AF; Figure S18: Selection of the representative post MD simulation structure for nucleotide
binding proteins; Figure S19: Selection of the representative post MD simulation structure for heme
binding proteins; Table S1: AlphaFold pLDDT scores of functionally relevant regions of select proteins;
Table S2: Comparison of the structural validation scores of the MD simulated AF-predicted model of
Gαi1 with the HM and pure AF-predicted model; Table S3: Comparison of the structural validation
scores of the MD simulated AF-predicted model of Gαs with the HM and pure AF-predicted model;
Table S4: Comparison of the structural validation scores of the MD simulated AF-predicted model of
APC with the HM and pure AF-predicted model; Table S5: Comparison of the structural validation
scores of the refined AF-predicted model of hemopexin with the HM and unrefined AF-predicted
model. Table S6: Comparison of the structural validation scores of the refined AF-predicted model
of HSA with the HM and unrefined AF-predicted model; Table S7: Comparison of the structural
validation scores of the refined AF-predicted model of Rap2 with the HM and unrefined AF-predicted
model; Table S8: Comparison of the structural validation scores of the refined AF-predicted model of
IL-36αwith the HM and unrefined AF-predicted model.
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