
Citation: Zlotnikov, I.D.; Krylov, S.S.;

Semenova, M.N.; Semenov, V.V.;

Kudryashova, E.V. Triphenylphosphine

Derivatives of Allylbenzenes Express

Antitumor and Adjuvant Activity

When Solubilized with Cyclodextrin-

Based Formulations. Pharmaceuticals

2023, 16, 1651. https://doi.org/

10.3390/ph16121651

Academic Editors: Juan Gambini and

Ángel Luis Ortega

Received: 29 October 2023

Revised: 17 November 2023

Accepted: 21 November 2023

Published: 26 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

pharmaceuticals

Article

Triphenylphosphine Derivatives of Allylbenzenes Express
Antitumor and Adjuvant Activity When Solubilized with
Cyclodextrin-Based Formulations
Igor D. Zlotnikov 1, Sergey S. Krylov 2, Marina N. Semenova 3 , Victor V. Semenov 2 and Elena V. Kudryashova 1,*

1 Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia;
zlotnikovid@my.msu.ru

2 N. D. Zelinsky Institute of Organic Chemistry RAS, 47 Leninsky Prospect, 119991 Moscow, Russia
3 N. K. Koltzov Institute of Developmental Biology RAS, 26 Vavilov Street, 119334 Moscow, Russia
* Correspondence: helenakoudriachova@yandex.ru

Abstract: Allylbenzenes (apiol, dillapiol, myristicin and allyltetramethoxybenzene) are individual
components of plant essential oils that demonstrate antitumor activity and can enhance the antitumor
activity of cytotoxic drugs, such as paclitaxel, doxorubicin, cisplatin, etc. Triphenylphosphine
(PPh3) derivatives of allylbenzenes are two to three orders of magnitude more potent than original
allylbenzenes in terms of IC50. The inhibition of efflux pumps has been reported for allylbenzenes,
and the PPh3 moiety is deemed to be responsible for preferential mitochondrial accumulation and
the depolarization of mitochondrial membranes. However, due to poor solubility, the practical use
of these substances has never been an option. Here, we show that this problem can be solved by
using a complex formation with cyclodextrin (CD-based molecular containers) and polyanionic
heparin, stabilizing the positive charge of the PPh3 cation. Such containers can solubilize both
allylbenzenes and their PPh3 derivatives up to 0.4 mM concentration. Furthermore, we have observed
that solubilized PPh3 derivatives indeed work as adjuvants, increasing the antitumor activity of
paclitaxel against adenocarcinomic human alveolar basal epithelial cells (A549) by an order of
magnitude (in terms of IC50) in addition to being quite powerful cytostatics themselves (IC50 in
the range 1–10 µM). Even more importantly, CD-solubilized PPh3 derivatives show pronounced
selectivity, being highly toxic for the A549 tumor cell line and minimally toxic for HEK293T non-tumor
cells, red blood cells and sea urchin embryos. Indeed, in many cancers, the mitochondrial membrane
is more prone to depolarization compared to normal cells, which probably explains the observed
selectivity of our compounds, since PPh3 derivatives are known to act as mitochondria-targeting
agents. According to the MTT test, 100 µM solution of PPh3 derivatives of allylbenzenes causes the
death of up to 85% of A549 cancer cells, while for HEK293T non-cancer cells, only 15–20% of the cells
died. The hemolytic index of the studied substances did not exceed 1%, and the thrombogenicity index
was < 1.5%. Thus, this study outlines the experimental foundation for developing combined cytostatic
medications, where effectiveness and selectivity are achieved through decreased concentration of the
primary ingredient and the inclusion of adjuvants, which are safe or practically harmless substances.

Keywords: PPh3 conjugates; allylbenzenes; apiol; synergism; A549; efflux inhibitor; anticancer activity

1. Introduction

Modern therapeutic strategies are in some cases ineffective against bacterial infections
and cancers, with such cases being most often associated with multiple drug resistance
(MDR) [1–11]. Resistance mechanisms that reduce the likelihood of a patient’s being cured
can be divided into two groups [12]: (i) cellular metabolism (transferases, topoisomerases,
growth factors), which alters the mechanism of action of the drugs or interferes with their
action, and (ii) a decrease in the intracellular concentration of the drug. The drug enters the
intracellular medium through the transport channels of the plasma membrane, in which
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pump proteins (ATP-binding cassette protein [4,13]) can be expressed, pumping the drug
out of the cell and thus reducing its effect [4,5,14–17]. The main member of the efflux
pump family, MDR1 (P-glycoprotein [3,13,14,18]), causes the resistance of various types of
tumors to chemotherapy. Bacteria also have efflux pumps (for example, NorA [4,9,19–21],
P-glycoprotein) which cause the ineffectiveness of antibiotics. A number of substances
that inhibit efflux (verapamil, reserpine, etc. [22]) are known to be rather toxic. Therefore,
numerous studies are aimed at finding substances that inhibit efflux but at the same time
are non-toxic.

In this regard, the non-toxic components of natural extracts and oils [23–43] at-
tract attention as potential adjuvants to strengthen the main drug (antibacterial or an-
titumor drug) and reduce the off-target effects. The individual components of essen-
tial oils (allylbenzenes [44–47], terpenoids [48,49], terpenes [50–52], flavonoids [30,53,54],
Thai herbs [55], etc.) have antioxidant, antibacterial, restorative and antitumor properties,
and, moreover, they are effective inhibitors of efflux pumps [3,5,6,9,14–17,20,21,28,56–60]
that cause bacterial resistance to antibiotics and the resistance of cancer cells to cytostatics.
Thus, the individual components of essential oils and their modifications are potential
candidates for empowered medicinal combinations. However, such substances are of-
ten lipophilic [2,11,19,25,27,50,58,61–64], which makes it difficult to use them in medical
practice, so the adjuvant should be used in a molecular container, such as liposomes or
a polymeric carrier. Cyclodextrins (CDs) [23,31,32,65–76] or polycations/polyanions (chi-
tosan, polyethyleneimine, pectin, alginate, heparin, etc.) can serve as effective solubilizing
containers that improve the bioavailability and pharmacological properties of the drug.

Apiol (1-allyl-2,5-dimethoxy-3,4-methylenedioxybenzene), a component of parsley
oil, inhibits cytochrome P450 3A4 (IC50 7.9 µM) [19,36,44,58,77–80], which metabolizes
xenobiotics in the liver, reducing their bioavailability. Apiol demonstrates weak antibac-
terial and anticancer activities, but at the same time, it dramatically enhances the effect
of antibiotics (for example, moxi- or levofloxacin) [44,77] and cytostatics (doxorubicin,
paclitaxel, etc.) [49] by inhibiting P-glycoprotein.

Apiol analogues (myristicin, allyltetramethoxybenzene and dillapiol) have also demon-
strated weak antitumor activity, but they have served as a booster for antitumor drugs (pa-
clitaxel, doxorubicin, cisplatin) [49] due to the inhibition of mitochondrial enzymes [81,82],
efflux pumps [49] and the increased permeability of the membrane of cancer cells [49,83].
It was previously shown that dillapiol (25–50 µM) induced G0/G1 cell cycle arrest, the
activation of a number of caspases and, accordingly, the apoptosis of cancer cells, while
apiol and its analogues had virtually no effect on benign epithelial cells in vitro [46]. Myris-
ticin showed a similar but weaker effect. Recently, triphenylphosphine (PPh3) derivatives
of allylbenzenes were suggested for research into improving their antiproliferative po-
tency toward cancer cells taking into account their tendency to preferential mitochondrial
accumulation [46]. The introduction of the PPh3 moiety, possessing both hydrophobic
and charged properties, enhances the conjugate’s localization within the cell membrane
and boosts inhibition against mitochondrial membrane enzymes. This was previously
demonstrated by some of the authors of this article on a micellar model [82]. Cancer cells
have an altered metabolism, in particular the dynamics of mitochondria (the PPh3 fragment
can serve as an address label to cancer mitochondria), which provides many potential
targets for cancer therapy [84–86].

Considering the action mechanism of PPh3 derivatives of allylbenzenes, we can as-
sume their potential synergistic effect with the main drug, paclitaxel. The action mechanism
of paclitaxel is based on the suppression of the normal process of dynamic reorganization
of the microtubule network, which is responsible for cell division. In addition, paclitaxel
induces the formation of abnormal clusters and causes the formation of multiple micro-
tubule stars during mitosis. Paclitaxel is used as a first-line drug in the treatment of ovarian,
breast, lung, cervical cancer, etc. The combination of paclitaxel + adjuvant is expected to be
more effective than a single drug due to the action of different mechanisms and an increase
in the bioavailability of the cytostatic.
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In this paper, the key idea is to realize three main aspects to create enhanced antitumor
activity: (i) a combination of the main cytostatic (paclitaxel) with an adjuvant (as efflux
inhibitor) from the group of allylbenzenes, (ii) an increase in the mitochondrial bioavail-
ability of the adjuvant by conjugating it with a PPh3 fragment due to the depolarization of
mitochondrial membranes in cancer cells, and (iii) the use of cyclodextrins derivatives and
a heparin polysaccharide matrix as molecular containers to obtain soluble forms of drugs
and increase their bioavailability.

2. Results and Discussion
2.1. Article Design

The present work is aimed at developing and studying complex antitumor formu-
lations based on three components: the main drug (paclitaxel), the adjuvant (apiol-PPh3
and its analogues) and the molecular container (cyclodextrins (CD) for the formation of
inclusion complexes with paclitaxel and its adjuvant in the hydrophobic cavity of CD or
heparin polyanion to stabilize the cationic triphenylphosphine fragment). In previous
studies, the authors have shown that cytostatics (paclitaxel, doxorubicin, etc.) are enhanced
by allylbenzenes, which can also act as promising anticancer drugs [49,87]. In this paper,
PPh3 derivatives of allylbenzenes are used to enhance the effect of cytostatics due to the
depolarization of mitochondrial membranes and considering their tendency to preferential
mitochondrial accumulation. However, because PPh3 derivatives are poorly soluble, to
realize their potential, it is necessary to develop the optimal container, providing an increase
in allylbenzene–PPh3 solubility and obtaining double-drug inclusion complexes, which
can provide synergism of the action of the main antibiotic and the adjuvant (cyclodextrin
derivatives or anionic polysaccharides are proposed in this work). To achieve this, the
following tasks were realized: (1) the spectral characterization of PPh3 derivatives of allyl-
benzenes and the study of their solubility, (2) the characterization of double-drug inclusion
complexes of these compounds and paclitaxel with various cyclodextrins derivatives or
heparin and the determination of dissociation constants of complexes, (3) analysis of the
cytotoxic activity of the cytostatic agents alone and in the complex drug formulations
against A549 using the MTT test and (4) analysis of the selectivity of the cytostatic activity
and the safety of drugs for HEK293T non-cancerous cells in vitro using FTIR spectroscopy,
red blood cells and sea urchin embryos in vivo safety study.

2.2. The Spectral Characteristics of PPh3 Derivatives of Allylbenzenes

Allylbenzenes (apiol, myristicin, etc.) have a number of important biological activities,
including experimental prerequisites to be synergists (enhancers) of the action of cytotoxic
drugs. To increase the bioavailability of allylbenzenes, the modified form of allylbenzenes
with a PPh3 fragment (Figure 1) was obtained according to the methodology described
recently [46]. Confirmation of the success of synthesis follows from NMR and FTIR spec-
troscopy data (Figures 2 and S1, Table 1). The original substances (apiol and analogues)
are characterized by the main signals: aromatic protons (6 and 6.5 ppm), protons at the
double bond of the allyl group (5 ppm), protons of methoxy groups and/or methylene
bridges (3.3–4 ppm). After the introduction of the PPh3 residue into these molecules, the
proton signals of the allyl group double bond disappear, but the proton signals of phenyl
substituents (7.6–8.1 ppm) as well as the alkyl spacer (1.7–3 ppm) appear. In the FTIR
spectra (Figure 2c) of the initial allylbenzenes, the most significant are the oscillation bands
C=C 1660 cm−1 (allyl group) and 1450–1550 cm−1 (aromatic system). After the modification
of allylbenzenes with PPh3, the peak of the oscillations of the C=C allyl group disappears,
but peaks corresponding to the deformation fluctuations of the C–H triphenylphosphine
fragment (1400–1480 cm−1) and fluctuations of C=C bonds (1500–1600 cm−1) appear.
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Figure 1. The scheme of synthesis of allylbenzenes’ PPh3 derivatives.

2.3. Solubility of PPh3-Modified Allylbenzenes Adjuvants and Complex Formation with Cyclodextrins
and Heparin

As already mentioned, PPh3 derivatives are poorly soluble, so to realize its potential,
the formation of the inclusion complexes with cyclodextrins (CDs) (with an external hy-
drophilic shell and an internal hydrophobic cavity) or with heparin is suggested. This can
provide the possibility of using aromatic adjuvants (which are otherwise not applicable)
as an antitumor agent and to obtain an efficient combined antitumor formulation. CDs
and heparin can protect the substance from destruction and inactivation, increase the
half-life, and in addition, due to adsorption on cell membranes, increase the membrane
permeability [49,77].

Loading both the main cytostatic agent and its adjuvants (apiol-PPh3 and its ana-
logues) into molecular containers is suggested as a perspective approach to increase the
solubility of substances in aqueous solutions, to increase the bioavailability, and conse-
quently, improve the effectiveness of the antitumor formulation. Previously, we studied
allylbenzenes as independent antitumor preparations and adjuvants to paclitaxel, where
we obtained soluble forms due to complex formation with M-β-CD [77] (otherwise, these
substances cannot be used at all due to insolubility and oil–water phase separation). Here,
we suggest using cyclodextrins or non-cyclic polysaccharide for the preparation of soluble
formulations of triphenylphosphine derivatives. We consider M-β-CD, which was efficient
for allylbenzenes solubilization, as well as γ-CD, which has a larger size of the inner cavity.
We have chosen heparin as a polyanion to form electrostatic complexes with positively
charged PPh3. In addition, heparin as an antithrombotic agent in the tumor microenvi-
ronment could have an additional therapeutic effect, since the tumor’s development is a
thrombosis-associated process.
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Figure 2. 1H NMR spectra of (a) apiol; (b) apiol-PPh3, T = 25 ◦C, d6-DMSO, 400 MHz; (c) FTIR spectra
of apiol, apiol-PPh3, dillapiol-PPh3, myristicin, myristicin-PPh3 and allyltetramethoxybenzene-PPh3,
PBS, T = 22 ◦C.
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Table 1. Positions of characteristic peaks in the FTIR spectra of dillapiol, allyltetramethoxybenzene,
PPh3, dillapiol-PPh3, and allyltetramethoxyallylbenzene-PPh3.

Compound Functional Group *
Position of the Characteristic Peak in the FTIR Spectra, cm−1

Octane–Ethanol (50:50 v:v) Water–Ethanol (50:50 v:v)

Dillapiol

O–CH2–O 2917 2924

=C–O–C 1065 1045

–O–CH3 2848 2858

C–C aromatic 1464 1448

Allyltetramethoxybenzene

Aryl–CH2–CH=CH2 2956 2930

–O–CH3 2924 2901

C–C aromatic 1492 and 1466 1488 and 1449–1456

Propyl-PPh3 C–C aromatic
1421 1414–1420

1440 and 1455 1455

Dillapiol-PPh3

O–CH2–O 2937–2952 2927–2932 (2928)

=C–O–C 1082–1087 1086 (1088)

–O–CH3 2848 –

Aryl–CH2–CH2–CH2–PPh3 2970 2981 (2974)

C–C aromatic
1502 1485

1455 and 1465 1448–1457

Allyltetramethoxybenzene-
PPh3

=C–O–C 1086 1089 (1088)

–O–CH3 2855 2900 (2880–2900)

Aryl–CH2–CH2–CH2–PPh3 2993 and 2957 2980 (2974)

C–C aromatic 1467 1482–1488 (1486)

* the atoms whose bond oscillations are observed are underlined.

FTIR spectroscopy provides valuable data on the interaction of molecules, including
those applicable to characterize the non-covalent complexes of apiol-PPh3 (and analogues)
with cyclodextrins and heparin. In the FTIR spectra of apiol-PPh3 and analogues (Figure 3a),
one characteristic is the bands of valence oscillations of the bonds C=C of the aromatic
system (1450–1650 cm−1) overlapping with the bands of deformation oscillations C-H
(1400–1500 cm−1). The intensity of these peaks increases with the formation of non-covalent
complexes of apiol-PPh3 and its analogues with cyclodextrins and heparin due to the
transition of the solid phase into solution. Linear fitting of the intensity of peaks in the
FTIR spectra on the cyclodextrin or heparin concentration (Section 2.3) in Hill coordinates
allows determining the dissociation constants of the complexes (Table 2). The interactions
of triphenylphosphine derivatives of allylbenzenes with γ-CD is rather weak (Kd 10 mM
values). In the case of M-β-CD, the dissociation constants reach millimolar values, which is
sufficient to obtain soluble forms of adjuvants (Table 2). Thus, the β-cyclodextrin derivatives
are more suitable in terms of size for inclusion of the adjuvants studied. Heparin forms
rather strong complexes due to multipoint electrostatic interactions: Kd 10−3–10−4 M per
heparin monomeric unit or 10−5 M per heparin molecule. Comparing the values of the
dissociation constants of alkylbenzenes and PPh3-derivatives complexes with cyclodextrins,
we observed that these Kd values are close, which means that it is the allylbenzene-fragment
(of apiol-PPh3) that plunges into the cyclodextrin cavity, and the triphenylphosphine radical
looks outward (Figure 3b), which would provide the implementation of mitochondrial
targeting of the developed formulations.
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Figure 3. (a) FTIR spectra of dillapiol-PPh3 with γ-CD, M-β-CD and heparin. PBS (0.01 M, pH 7.4).
T(incubation) = 40 ◦C. T(registration) = 22 ◦C. (b) The proposed structure of the β-cyclodextrin
complex with apiol-PPh3 (for other compounds, the structure is similar). (c) UV spectra of myristicin-
PPh3, apiol-PPh3 and the equimolar complexes with M-β-CD. (d) Micrographs of samples of apiol-
PPh3 and its complexes with M-β-CD in the molar ratio from 1:0, 1:0.25, 1:1, 1:3 to 1:10.

Table 2. Dissociation constants of complexes of adjuvants and cyclodextrins or heparin. Solubility
of X and X-PPh3 in PBS and solubility of their complexes with M-β-CD in PBS. Comparison of
unmodified “apiols” and the PPh3 derivatives.

Substance X-PPh3 −lg Kd (X−M-β-CD) * −lg Kd (X − γ-CD) ** −lg Kd
(X − Heparin) *** Solubility in PBS, mM

Solubility in the
Presence of 0.05 M

M-β-CD, mM

Apiol-PPh3 2.9 ± 0.3 1.2 ± 0.2 2.7 ± 0.2 0.08 ± 0.01 15 ± 2

Dillapiol-PPh3 2.6 ± 0.2 1.4 ± 0.3 3.0 ± 0.3 0.09 ± 0.01 8 ± 1

Myristicin-PPh3 3.0 ± 0.3 1.3 ± 0.1 2.6 ± 0.2 0.04 ± 0.005 12 ± 3

Allyltetramethoxybenzene-
PPh3

3.1 ± 0.2 2.1 ± 0.2 3.2 ± 0.1 0.07± 0.01 17 ± 5

Substance X −lg Kd (X −M-β-CD) **** Solubility in PBS, mM
Solubility in the

presence of 0.05 M
M-β-CD, mM

Apiol 2.6 ± 0.3 0.13 ± 0.01 22 ± 4

Dillapiol 2.7 ± 0.5 0.24 ± 0.05 27 ± 3

Myristicin 3.5 ± 0.2 0.030 ± 0.007 41 ± 5

Allyltetramethoxybenzene 3.4 ± 0.3 0.16 ± 0.02 38 ± 2

* The complex with M-β-CD is formed in a molar ratio of 1 to 1; ** The complex with γ-CD is formed in molar
excess of X approximately 1.2–1.4; *** Dissociation constants were calculated per one unit of heparin by the
formula C12H19NO20S3; ****Data from paper [77].
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Figure 3c shows the UV spectra of myristicin-PPh3, apiol-PPh3 and their complexes
with M-β-CD: PPh3 derivatives due to their low solubility in water do not have a clearly
defined spectrum. On the contrary, their complexes with M-β-CD are soluble, and a clear
peak in the UV spectrum is pronounced (225 nm). Based on UV spectra data in the presence
of M-β-CD, the increase in solubility of apiol-PPh3 and analogues by a second order of
magnitude is observed (Table 2).

Visually, the dissolution of PPh3 derivatives of allylbenzenes is observed in a light
microscope (Figure 3d–g): with an increase in the molar excess of cyclodextrin, an increasing
number of inclusion complexes are formed and, consequently, solubility increases (1:1 molar
ratio) and crystals decrease to complete dissolution (10-fold molar excess of M-β-CD).

2.4. Anticancer Activity of PPh3 Derivatives and Formulations

Previously, we demonstrated the antitumor activity of apiol, eugenol and their ana-
logues from the allylbenzene class, and we showed the ability of these substances to act as
efflux pump inhibitors and as a membrane-penetrating enhancer agent [49]. Apparently
PPh3 derivatives effectively penetrate into cancer cells along a potential gradient, inhibit
efflux proteins and mitochondrial enzymes, causing the apoptosis of cancer cells, with
IC50 values being lower by two orders of magnitude than the corresponding allylben-
zene (Table 3). Surprisingly, PPh3 derivatives (especially apiol-PPh3) in the complex with
M-β-CD are close in terms of the cytostatic efficiency to the well-known cytotoxic drug
paclitaxel (Figure 4a, Table 3); in addition, they demonstrate synergy with paclitaxel, with a
synergy coefficient over 2 (indicating strong synergy). For allylbenzenes, a synergy close
to additivity (the cytostatic effect of adjuvant + paclitaxel is almost equal to the sum of
their individual contributions) was observed; for PPh3 derivatives, a pronounced increase
in the action of paclitaxel is characteristic (the cytostatic effect of adjuvant + paclitaxel is
much higher (>) than the sum of their individual contributions). For apiol-PPh3, the most
pronounced effect of increasing the activity of paclitaxel was observed (Figure 4b).

Table 3. Anti-A549 activity of allylbenzenes, its PPh3 derivatives: alone (middle column) and
combined with paclitaxel in M-β-CD (right column).

Substance X in M-β-CD −lg (IC50) of X in M-β-CD *
against A549

Synergy Coefficients of Adjuvants and
PPh3–Adjuvants with Paclitaxel **

Paclitaxel 6.2 ± 0.2 -

Apiol-PPh3 5.8 ± 0.1 2.2 ± 0.2

Dillapiol-PPh3 5.6 ± 0.2 1.5 ± 0.1

Myristicin-PPh3 5.3 ± 0.2 1.8 ± 0.3

Allyltetramethoxybenzene-PPh3 4.8 ± 0.1 1.3 ± 0.1

Apiol 3.6 ± 0.3 1.3 ± 0.2

Dillapiol 3.2 ± 0.1 1.1 ± 0.1

Myristicin 2.9 ± 0.3 0.9 ± 0.2

Allyltetramethoxybenzene 3.5 ± 0.2 1.4 ± 0.2

* 1:5 mol/mol; ** X −M-β-CD was studied. Synergy coefficient (SC) can be interpreted as strong synergy (SC > 2),
synergy (2 > SC > 1.2), indifference/additivity (1.2 > SC > 0.8), antagonism (0.8 > SC > 0.5), inhibition (SC < 0.5).
For all the studied compounds, the difference between the cytostatic effect of a combination of two substances is
statistically significantly different from the effects of single substances: p < 0.01.
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The mechanism of synergistic action is that the main cytostatic and its adjuvant act
on different targets. The PPh3 fragment serves as an intermediary for the delivery of
allylbenzenes to the mitochondria of cancer cells, which is where the inhibition of enzymes
(dehydrogenases) occurs. Paclitaxel disrupts the cycle of cell division. Meanwhile, CD
improves the solubility of drugs and increases adsorption and absorption by cancer cells,
which in total affects the increase in the effectiveness of the cytostatic drug. The potential
of inclusion of antitumor drugs in CD in terms of enhancing penetration into cancer cells
was demonstrated also in our previous work [49].

Thus, allylbenzene-PPh3 inclusion complexes with cyclodextrin are potentially ap-
plicable in medicine as antitumor drugs. At the same time, it is important to find out the
selectivity of the cytostatic action of the formulation developed against cancer cells and the
safety of these formulations for normal cells.

2.5. Selectivity of Action and Safety of Cytotoxic Formulations Developed
2.5.1. HEK293T as Normal Cell Model

HEK293T are model normal (non-cancer) cells that are widely used to compare the
selectivity of cytostatic formulations on cancer cells [49]. Quantitative data on the safety
and selectivity of action for the formulations based on PPh3 derivatives are presented in
Table 4. According to the MTT test, the concentration of cytostatics of 100 µM causes the
death of up to 85% of cancer cells A549 (Figure 4a), while for non-cancer cells (HEK293T),
the dying rate is only 15–20%.

Table 4. Anti-HEK293T activity of PPh3 derivatives of allylbenzenes in M-β-CD as a criterion for
the safety of medicinal formulations. MTT assay. RPMI-1640 medium supplemented with 5% fetal
bovine serum and 1% sodium pyruvate at 5% CO2/95% air in a humidified atmosphere at 37 ◦C.

Substance X in M-β-CD HEK293T Viability (%) at
CX = 300 µM

HEK293T Viability (%) at
CX = 100 µM

HEK293T Viability (%) at
CX = 10 µM

Apiol-PPh3 71 ± 2 82 ± 3 93 ± 2

Dillapiol-PPh3 70 ± 5 84 ± 5 95 ± 3

Myristicin-PPh3 75 ± 3 91 ± 2 97 ± 3

Allyltetramethoxybenzene-PPh3 83 ± 4 88 ± 3 98 ± 1

Earlier, we showed that the data of FTIR spectroscopy correlate with the data of the
MTT test on cell survival [49,83]. The main cell structural units that contribute to the
absorption of IR diapason can be assigned as follows (Figure 5): lipids of the cell membrane
(2800–3000 cm−1), proteins, especially transmembrane (1500–1700 cm−1), phosphate groups
of DNA (1240 cm−1) and carbohydrates, including lipopolysaccharides (900–1100 cm−1).
Previously, we developed a technique for tracking the penetration and adsorption of the
drug into cells using FTIR spectroscopy: dramatic changes in the intensity of the peaks
of amide 1 and amide 2 indicate effective penetration of the drug into cells and vice
versa [49,87,88].

Here, we present the real-time data of FTIR spectroscopy during the incubation of a
suspension of HEK293T cells with apiol-PPh3 in M-β-CD (Figure 5). Comparing the red
spectrum (at 0 min incubation) and the black spectrum (after 60 min), it is obvious that there
are practically no changes in the intensity of the peaks of amide I and II, characterizing the
interaction of the drug with trans-membrane proteins, and indicating drug penetration.
There is only a shift of the peak of amide 1 to the low-frequency region (inserts in Figure 5,
the normalized intensity is shown) and amide 2 to the high-frequency region with the
simultaneous appearance of the shoulder. This indicates the only adsorption of drug
molecules on the cell surface, which is also confirmed by a weak increase in the intensity of
the peaks at 2850–3000 cm−1 corresponding to the valence vibrations of the CH2 groups
(lipid bilayer). Thus, PPh3 derivatives show only marginal activity against normal cells.
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For comparison, we present a positive control of the active and inactive reagent on the
HEK293T cells (Figure 5b). Dramatic changes in the intensity of the amide 1 and amide
2 peaks (Figure 5b, left) indicate the penetration of the model cells’ membrane-penetrating
drug (doxorubicin) into the cells and effective cytostatic effect (according to MTT test). On
the contrary, small changes in the intensity of the peaks of amide 1 and amide 2 indicate
the weak penetration of the drug into the cells and the non-cytostatic effect of doxorubicin
in the composition with “intelligent” micelles (Figure 5b, right).

2.5.2. Hemolytic Activity, Thrombogenicity and Phenotypic Sea Urchin Embryo Assay

Hemolytic activity and thrombogenicity are the primary parameters for evaluating the
safety of medical formulations [89–91]. The phenotypic sea urchin embryo assay developed
by colleagues is a visual way to study the toxicity of formulations in vivo. The sea urchin
and human genomes contain more than 7000 common genes, including orthologs associated
with a number of human diseases. Therefore, sea urchins can be considered as a reliable and
versatile model organism for studying the safety of new and existing cytotoxic formulations
in vivo. Table 5 presents data on the % of erythrocyte hemolysis, the degree of whole blood
thrombosis of apiol-PPh3 and analogues, and data of phenotypic sea urchin embryo assay.
Thus, the non-toxicity of PPh3 derivatives of allylbenzenes for normal non-cancer cells, as
well as the selectivity of action against cancer cells, is shown. The selectivity of cytotoxic
action against cancer cells in comparison with normal cells can be explained by the fact
that the PPh3- cation provides selective accumulation and reduction in the mitochondrial
membrane potential of the transformed cancer cells [92]. Cyclodextrin (M-β-CD) and
heparin are non-toxic (and approved by the FDA for intravenous application).
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Figure 5. (a) FTIR spectra of HEK293T cells during online incubation (with step 5 min) with apiol-
PPh3 in the form of inclusion complexes with M-β-CD. The inserts show enlarged fragments of
peaks of amide I and II with a normalized intensity for the better visualization of shifts of maxima.
T = 37 ◦C. The inserts show enlarged fragments of peaks of amide I and II with a normalized intensity
for better visualization of shifts of maxima. (b) FTIR spectra of HEK293T cells pre-incubated with
doxorubicin (left), doxorubicin in “intelligent” micelles [87] (right) as a control of the correlation of
changes in the intensity of peaks with the penetration and cytostatic effect of the drug.

Table 5. Safety data on triphenylphosphine derivatives and paclitaxel in the complex with M-β-CD.

Substance X in M-β-CD Hemolysis Index *, % Thrombosis Index **, %
Concentration Causing
Changes in Sea Urchin

Embryos, µM

Paclitaxel <0.5 (p = 0.012) 0.6 ± 0.1

>4 ***

Apiol-PPh3 0.8 ± 0.2 1.1 ± 0.2

Dillapiol-PPh3 0.9 ± 0.2 1.0 ± 0.1

Myristicin-PPh3 0.5 ± 0.1 1.5 ± 0.2

Allyltetramethoxybenzene-PPh3 0.7 ± 0.1 0.7 ± 0.2

* For 0.1 mg/mL samples. The amount of released hemoglobin from erythrocytes relative to the control sample
containing 0.05% Triton X-100; ** For 0.1 mg/mL samples. The amount of non-released hemoglobin in thrombus
when H2O was added relative to the control sample containing microscopic glass particles; *** p < 0.05.

3. Materials and Methods
3.1. Reagents

γ-cyclodextrin (γ-CD) and methyl β-cyclodextrin (M-β-CD) were purchased from
Sigma Aldrich (St. Louis, MI, USA). Apiol, dillapiol, allyltetramethoxybenzene and myris-
ticin were isolated from plant extracts as described earlier [77]. Heparin (MM 50–80 kDa),
organic solvents, salts and acids were from Reakhim (Moscow, Russia).
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The synthesis of triphenylphosphine derivatives of allylbenzenes was performed as
described earlier in the work [46].

3.2. Characterization of PPh3 Adjuvants Using NMR Spectroscopy

The 1H and 13C NMR spectra of the apiol, apiol-PPh3 and analogues in d6-DMSO were
recorded on a Bruker Avance 400 spectrometer (Bruker Biospin, Rheinstetten, Germany) at
an operating frequency of 400 MHz. The chemical shifts are shown in ppm on the δ scale
relative to hexamethyldisiloxane as an internal standard. The analysis and processing of
the NMR spectra were performed with the program MestReNova v.12.0.0–20080).

3.3. Non-Covalent Complexes of Apiol, Apiol-PPh3 and Analogues with Cyclodextrins and Heparin,
Preparation and Characteristics

Non-covalent complexes of apiol, apiol-PPh3 and analogues with cyclodextrins (with
different molar ratios) and heparin (15 kDa, 1:1 w/w) were obtained by adding solu-
tions of cyclodextrins (100 mg/mL) or heparin (20 mg/mL) in PBS to apiol or apiol-
PPh3 (or analogues) samples (2–3 mg). The excess of CDs or heparin was varied from
0.04 to 10 mol/mol. Then, mixtures were incubated for 1 h at 40 ◦C. Cyclodextrin or heparin
are necessary for the solubilization of extremely poorly soluble compounds.

Concentrations of the active substance varied from 10−2 to 10−4 M. For MTT assay
and biological experiments, substances in the concentration range from 10−3 to 10−9 M
were studied by the dilution of initial ones in a cell growth medium or buffer.

The solubility of apiol and apiol-PPh3 (or analogues) in aqueous solution was deter-
mined by UV spectroscopy. UV spectra were recorded on the UltraSpec 2100 pro device
(AmerSham Biosciences, Cambridge, UK) three times. The substances were dissolved in
acetonitrile followed by recording the UV spectra at various cytostatics’ concentrations,
and then we plotted calibration dependencies. Next, saturated solutions of substances in
water were prepared, and the spectra of the aqueous solutions were recorded. Considering
the extinction coefficients in water and acetonitrile to be approximately equal, the solubility
was determined.

3.4. MCD Inclusion Complexes Synthesis

The inclusion complexes of Paclitaxel with MCD were prepared as described in our
previous paper [49].

3.5. Determination of the Dissociation Constants of Complexes of Apiol-PPh3 and Analogues with
Cyclodextrins and Heparin Using FTIR Spectroscopy

The ATR-FTIR spectra of samples (Section 3.3) were acquired using a Bruker Tensor
27 spectrometer equipped with a liquid N2 cooled MCT (mercury cadmium telluride)
detector. Samples were placed in a thermostatic cell BioATR-II with ZnSe ATR element
(Bruker, Germany). FTIR spectra were recorded from 850 to 4000 cm−1 with 1 cm−1 spectral
resolution; 50 scans were accumulated and averaged. Spectral data were processed using
the Bruker software system Opus 8.2.28 (Bruker, Germany). The spectrum of cyclodextrin
or heparin in the corresponding concentration was subtracted from the spectra of the com-
plexes. Then, the dependencies of the peak intensities of the corresponding C=C oscillation
(aromatic system of apiol-PPh3 and analogues (1475–1510 cm−1)) was constructed, which
least overlaps with the spectrum of cyclodextrin and heparin.

Calculation of the dissociation constants X −M-β-CD, X − γ-CD and X − heparin,
where X is Apiol-PPh3 and analogues, was performed as follows:

(1) Consider the equilibrium (given for the M-β-CD, for the rest, it is the same):
X + nM-β-CD↔ X · nM-β-CD, where Kd = [M-β-CD]n · [X]/[X · nM-β-CD];

(2) Complexation degree calculation θ = (ξ− ξ0)/(ξ∞− ξ0), where ξ is FTIR peak current
intensity, ξ0 is FTIR peak initial intensity (only Apiol-PPh3 and analogues without
M-β-CD, etc), ξ∞ is FTIR peak intensity of Apiol-PPh3 and analogues with a large
excess of M-β-CD, etc.;
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(3) Linear fitting of data: lg (θ/(1 − θ)) versus logarithm of concentration of the M-β-CD,
γ-CD or heparin was carried out using the Hill equation: lg (θ/(1 − θ)) = n · lg
[M-β-CD] − lg Kd.

3.6. Confirmation of Particle Formation and Their Characterization

Confirmation of particle formation was carried out using Atomic Force Microscopy
(NTEGRA II Moscow, Russia), and Fourier Infrared Microscopy (Micran-3 IR microscope,
Simex, Novosibirsk, Russia).

Topography, phase and magnitude signal images of the micelles deposited onto
freshly cleaved surface of mica were obtained by AFM microscopy using a scanning
probe microscope NTEGRA operated in a semi-contact mode with 15–20 nm peak-to-
peak amplitude of the “free air” probe oscillations. Using AFM, the formation of ordered
particles of heparin complexes with drugs (100–150 nm) from disordered heparin aggregates
(50–480 nm) was observed.

Using IR microscopy, dry powders of drugs and their complexes with CD and heparin
were studied: they showed a uniform distribution of the drug over the area of the studied
sample (i.e., evenly inclusion in molecular containers).

Circular dichroism spectra of heparin were recorded on the Jasco J-815 CD Spectrome-
ter (Tokyo, Japan) for the determination of heparin in the tested formulations.

3.7. Cell Cultivation and Determination of Cytotoxic Activity

Adenocarcinomic human alveolar basal epithelial cells A549 cell lines (Manassas, VA,
USA) were cultured in RPMI-1640 medium, linear cells of the embryonic kidney human
epithelium (HEK293T) were grown in DMEM medium as described earlier [49]. Cell lines
were obtained from Lomonosov Moscow State University Depository of Live Systems
Collection and Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry
(Moscow, Russia).

The cytotoxic activity of paclitaxel, Apiol-PPh3 and analogues was determined using
an MTT test [49]. Paclitaxel-adjuvant synergism coefficients (SC) were calculated as CV
(paclitaxel) × CV (alone adjuvant)/CV (combo paclitaxel + adjuvant), where CV represents
the cell viability. The synergy coefficient can be interpreted as strong synergy (SC > 2),
synergy (2 > SC > 1.2), indifference/additivity (1.2 > SC > 0.8), antagonism (0.8 > SC > 0.5),
and inhibition (SC < 0.5), as described earlier [49,77].

3.8. Phenotypic Sea Urchin Embryo Assay

Adult sea urchins, Paracentrotus lividus L. (Echinidae), were collected from the Mediter-
ranean Sea on the Cyprus coast and kept in an aerated seawater tank and were used to
study the cleavage alteration of Apiol-PPh3 and analogues [46,93]. Experiments with sea
urchin embryos comply with the requirements of biological ethics. Artificial spawning
does not lead to the death of animals, embryos develop outside the female body, and both
adult sea urchins after spawning and an excess of intact embryos return to the sea, which is
their natural habitat.

3.9. Study of the Safety of Formulations (Hemolytic Activity and Thrombogenicity)

The hemolytic activity and thrombogenicity of apiol-PPh3 and analogues were studied
using an earlier published technique [83].

3.10. Statistical Analysis

Statistical analysis of cytotoxicity and spectral data was performed using Student’s t-
test Origin 2022 software (OriginPro 2022 v.9.9.0.225, OriginLab Corporation, Northampton,
MA, USA). Values are given as the mean ± SD of three or five experiments.
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4. Conclusions

In this paper, soluble forms (inclusion complexes in cyclodextrins or complexes with
polyanionic polymer) of triphenylphosphine derivatives of allylbenzenes (individual com-
ponents of plant (parsley) essential oils) are presented as potential independent cytostatic
drugs (IC50 are in the micromolar concentration range (10−6 M) against A549) and as
adjuvants to the classical cytotoxic drug paclitaxel. The positively charged PPh3 fragment
is used as an address label for the preferential delivery of apiol and its analogues to the
mitochondria of cancer cells, which is possible due to altered metabolism in cancer cells.
Allylbenzene-PPh3 enhances the effect of paclitaxel by 1.5–2 orders of magnitude in terms
of IC50. At the same time, a high selectivity of the action of cytostatics against cancer cells
is achieved and, practically, the drugs do not act on healthy HEK293T model cells. In
addition, the high safety of triphenylphosphine formulations for erythrocytes, thrombosis
and sea urchin embryos has been shown. In many cancers, the mitochondrial membrane
is more prone to depolarization as compared to normal cells, which probably explains
the observed selectivity of our compounds, since PPh3 derivatives are known to act as
mitochondria-targeting agents. Furthermore, their efficacy as adjuvants may be the most
pronounced in combination (or in conjugation) with anticancer drugs whose mechanism of
action affects mitochondria or the mitochondrial membrane, which is an emerging field in
cancer research.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/ph16121651/s1, Figure S1. 1H NMR spectra of (a) dillapiol, (b) dillapiol-PPh3,
(c) myristicin, (d) myristicin-PPh3. T = 25 ◦C. d6-DMSO. 400 MHz.
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