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Abstract: Alzheimer’s disease (AD) is a neurodegenerative disease characterized by progressive
loss of cognitive functions, and it is the most prevalent type of dementia worldwide, accounting
for 60 to 70% of cases. The pathogenesis of AD seems to involve three main factors: deficiency in
cholinergic transmission, formation of extracellular deposits of β-amyloid peptide, and accumulation
of deposits of a phosphorylated form of the TAU protein. The currently available drugs are prescribed
for symptomatic treatment and present adverse effects such as hepatotoxicity, hypertension, and
weight loss. There is urgency in finding new drugs capable of preventing the progress of the disease,
controlling the symptoms, and increasing the survival of patients with AD. This study aims to present
new multipurpose compounds capable of simultaneously inhibiting acetylcholinesterase (AChE),
butyrylcholinesterase (BChE)—responsible for recycling acetylcholine in the synaptic cleft—and beta-
secretase 1 (BACE-1)—responsible for the generation of amyloid-β plaques. AChE, BChE, and BACE-1
are currently considered the best targets for the treatment of patients with AD. Virtual hierarchical
screening based on a pharmacophoric model for BACE-1 inhibitors and a dual pharmacophoric
model for AChE and BChE inhibitors were used to filter 214,446 molecules by QFITBACE > 0 and
QFITDUAL > 56.34. The molecules selected in this first round were subjected to molecular docking
studies with the three targets and further evaluated for their physicochemical and toxicological
properties. Three structures: ZINC45068352, ZINC03873986, and ZINC71787288 were selected
as good fits for the pharmacophore models, with ZINC03873986 being ultimately prioritized for
validation through activity testing and synthesis of derivatives for SAR studies.

Keywords: Alzheimer’s disease; human acetylcholinesterase; human butyrylcholinesterase; human
beta-secretase 1
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1. Introduction

Alzheimer’s disease (AD) is a progressive and irreversible neurodegenerative disease
that causes memory loss and several cognitive disorders [1]. AD is responsible for 70% of
all cases of dementia and affects approximately 50 million people worldwide [2]. Those
numbers are expected to double by 2050 [2].

1.1. Pathogenesis of Alzheimer’s Disease

Alzheimer’s pathogenesis involves three main factors: the first is characterized by a
deficiency in cholinergic transmission due to the selective loss of cholinergic neurons, the
second is related to extracellular deposits of β-amyloid protein due to the catalytic action
of beta-secretase 1 (BACE-1; EC 3. 4. 23. 46), and the third occurs through the formation of
neurofibrillary clumps of a phosphorylated form of the TAU protein [1,3].

The cholinergic hypothesis is described as one of the main causes of AD [1]. Since
the decline of cholinergic neurons induces a lack of acetylcholine (ACh), one way to
compensate for this is to reduce the postsynaptic destruction of ACh by cholinesterases.
Cholinesterases are a family of enzymes responsible for catalyzing the hydrolysis of ACh
into choline and acetic acid to be reused into neuronal processes and are divided into
two types: acetylcholinesterase (AChE; EC 3.1.1.7), and butyrylcholinesterase (BChE;
EC 3.1.1.8). These enzymes are found mainly in the central nervous system, and their
inhibition would lead to an increase in the available ACh at the synaptic cleft, promoting
cognitive improvement [3].

The hypothesis of extracellular deposits of β-amyloid protein is noteworthy as it can
explain the neurodegeneration process. This hypothesis states that the catalytic action of
beta-secretase 1 generates, through the amyloidogenic pathway, the accumulation of insolu-
ble β-amyloid peptide plaques in neurons. This pathophysiological process begins with the
enzyme β-secretase (BACE1), which initiates the cleavage of the transmembrane protein
called APP (Amyloid Precursor Protein). This cleavage is completed by another enzyme, γ
secretase, generating the β-amyloid peptide (Aβ), which aggregates into oligomers, form-
ing plaques that are deposited in different parts of the brain, mainly in the hippocampal
neurons, basal nucleus, cortex entorhinal, and associative cortex [4].

1.2. Current Pharmacotherapy for Alzheimer’s Disease

The therapeutic resources currently available for AD include cholinesterase inhibitors
(donepezil, rivastigmine, and galantamine), N-methyl-D-aspartate (NMDA) receptor an-
tagonists (memantine), chelating agents (deferiprone), and metal–protein attenuating com-
pounds (MPACs) (clioquinol) [1]. These drugs are essentially prescribed for symptomatic
treatment and cannot prevent neurodegeneration. They also present serious adverse effects
(e.g., hepatotoxicity, hypertension, and weight loss) and low therapeutic efficacy [4], giving
urgency to the search for new drugs capable of preventing the disease’s progression and
controlling its symptoms.

1.3. Multitarget Inhibitors

An approach that has been attracting interest for the treatment of multifactorial dis-
eases such as AD is the identification and/or design of multitarget inhibitors, compounds
capable of simultaneously acting on two or more biological targets, enhancing the thera-
peutic efficiency with lower doses. Previous studies show that treatment with multi-active
drugs or molecular hybrids has greater efficacy and fewer adverse events [5] when com-
pared with drug combination therapy in patients with complex diseases. This approach
of using molecular hybrids has good potential to achieve the goal of slowing down the
progression of AD [6].

One way to identify lead compounds with multitarget inhibition properties involves
the use of computational strategies capable of prioritizing promising molecules for bi-
ological assays and accelerating the discovery of new, safe, and effective drugs. The
ligand-based approach of computer-aided drug design can help to identify promising
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inhibitors with triple activity by defining the main stereo-electronic requirements of phar-
macophore models for compounds with activity against each of the three molecular tar-
gets [7]. Ligand-based approaches have shown high efficiency in screening large datasets
with low computational costs [8]. The selected compounds can be further subjected to
structure-based approaches (e.g., molecular docking), and those showing complementarity
with the target site are refined, helping to hypothesize the binding modes responsible for
biological activity [9].

This study aimed to build and validate pharmacophore models of BACE-1, AChE,
and BChE inhibitors and use them for a joint hierarchical virtual screening, followed
by molecular docking virtual screening. Those models were used to identify promising
multitarget inhibitors of beta-secretase 1, acetylcholinesterase, and butyrylcholinesterase in
a Sigma-Aldrich® (St. Louis, MO, USA) dataset.

2. Results and Discussion

Computational methods used to mine for potentially active compounds have pre-
sented a quicker enrichment rate of potential candidate molecules for biological testing
than random methods. Their capacity for building pharmacophore models can quickly
identify essential stereo-electronic requirements for inhibition of specific targets and help
to prioritize potentially active compounds.

2.1. Pharmacophore Model Generation and Evaluation

The search parameters for potential BACE-1 inhibitors were based on the main phar-
macophore features of known active inhibitors and were used to identify molecules sharing
the same stereo-electronic features. In total, 56 inhibitors were chosen with an IC50 equal or
lower than 1000 nM, with 14 of them being used to generate the model and the remaining
42 for the validation stage.

The heuristic of the Genetic Algorithm (GA) generated ten pharmacophore models,
and their parameters are presented in Table 1. Those internal statistical parameters are
expected to fit a strain energy criterion lower than 100.0 kcal/mol [10], as high energy
values (>100.00 Kcal/mol) reflect a high conformational tension, building energetically
unfavorable conformers [11]. Therefore, models 05, 06, 07, and 10 were discarded.

Table 1. Internal statistical parameters of each pharmacophore model for the BACE-1 inhibitors
provided by GALAHAD.

Model Energy (Kcal/mol) Sterics H_Bond Mol_qry Pareto

01 21.74 756.00 155.60 9.09 00
02 42.36 746.60 151.50 15.59 00
03 20.65 687.30 157.00 14.42 00
04 50.89 713.40 161.20 8.47 00
05 1043.58 746.90 153.00 14.40 00
06 783.55 738.00 161.30 6.34 00
07 151,768.74 779.70 152.30 15.64 00
08 64.82 750.30 161.20 2.92 00
09 25.54 693.90 155.80 9.04 00
10 254.77 723.20 153.60 10.54 00

All models were evaluated for the PARETO value, which considers the listed pa-
rameters Mol_qry, H_bond, Sterics, and Energy. The conformers are overlapped and the
pharmacophore agreement for the generation of the models is directly linked to the quality
of pharmacophoric models [12]. All models, even the rejected ones, had PARETO = 0, mean-
ing all the models were statistically similar. The parameters provided by GALAHAD were
not sufficient to define the best model, and another metric, the Receiver Operation Char-
acteristic (ROC) curves, was calculated to assess the ability of the models to differentiate
between real and false positives.
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A dataset with 42 BACE-1 inhibitors (IC50 ≤ 1000 nM) and 2100 decoys was aligned to
each pharmacophore model. Their superposition value (QFIT value; 0–100) was employed
to calculate the ROC curves, and their respective areas (area under the curve—AUC-ROC)
were calculated [13]. The results are presented in Figure 1.
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Figure 1. ROC curves for the BACE-1 inhibitor pharmacophore models.

The ROC curve displays the recognition of assets (represented by the Y coordinate)
and false positives (represented by the X coordinate). An ideal curve first runs vertically
along the Y axis, recognizing all assets, and then horizontally along the X axis continuously,
which represents the recognition of all assets from the aligned molecule bank without
any false positive recognition with its area under the curve (AUC) equal to 1.0 [13]. The
diagonal line represents the ROC curve of a randomized trial, where pharmacophoric
models with AUC < 0.50 are associated with models that perform worse than a random
selection. In contrast, models with AUC > 0.70 are moderately predictive [14]. Previous
research [15] describes hydrogen donor centers as essential requirements for the inhibition
of BACE-1, while hydrogen acceptor centers define the potency of those inhibitors.

Based on the AUC values, pharmacophore model 1 (Figure 2) was chosen for fur-
ther pharmacophore-based virtual screening. Its AUC-ROC was higher than 0.7, which
characterized it to be the model with the highest potential capacity to correctly recognize
active compounds.
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a potent inhibitor. Cyan = hydrophobic centers (HY), red = positive centers, green = hydrogen
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the tolerance radii calculated by GALAHAD™ (Seattle, WA, USA).
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2.2. Pharmacophore-Based Virtual Screening

After identifying a useful pharmacophore model, successive filtering of 214,446 molecules
from a Sigma Aldrich® dataset was performed. In total, 14,273 molecules showed
QFIT > 0 when aligned to the BACE-1 inhibitor pharmacophore model 1. Subsequently,
those molecules were filtered through the dual pharmacophore model previously built [7],
with 119 molecules showing QFIT > 56.34 (Scheme 1), suggesting that they have stereo-
electronic features important to biological activity. After virtual screening through pharma-
cophore models and based on alignment values, the selected structures were submitted to
molecular docking studies with AChE, BChE, and BACE-1.
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Scheme 1. Virtual screening by the pharmacophore model.

Although the pharmacophore model is helpful in searching for and selecting molecules
that meet essential molecular requirements for biological activity [16], it has some limi-
tations, such as the lack of information on how the molecules bind to the target site, as
well as the limit imposed by the volume of the site. Those gaps in knowledge can be filled
when the three-dimensional structure of the macromolecular target is available. The opti-
mized application of molecular docking can also be used to assist in prioritizing bioactive
molecules [17].

2.3. Molecular-Docking-Based Virtual Screening

Structures selected through pharmacophore model virtual screening (n = 119) were
subjected to molecular docking against AChE, BChE, and BACE-1 using two different
systems. AutoDock Vina, selected for molecular docking to AChE and BChE [7], scores
structures by mapping intermolecular forces in kcal/mol, with lower energy indicating bet-
ter docking. GOLD (ASP score function) was selected for molecular docking to BACE-1 [18].
It assigns a dimensionless number to each pose generated, and unlike AutoDock Vina,
higher numbers indicate better docking.

The docking of the cholinesterases presented an average of the AChE energy values of
−9.1, with 55 molecules showing lower affinity energy values. The BChE showed mean
values of −10.02, with 67 molecules showing lower affinity energy values. The docking of
BACE-1 showed mean energy values of 36.06, with 66 molecules presenting higher affinity
energy values.

Then, the 22 molecules presenting the best values overall were selected and analyzed
in order to exclude enantiomers. They were further evaluated based on their molecular
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coupling (or bonding) and on the presence of chiral centers. Three compounds, presenting
the best values overall, were selected for further evaluation (Table 2).

Table 2. Scores of the three best compounds selected through molecular docking.

Molecule AChE * BChE * BACE-1 **

ZINC45068352 −9.6 −10.4 43.32
ZINC03873986 −10.6 −11.2 41.54
ZINC71787288 −9.6 −10.6 41.91

* AutoDock Vina 1.1.2—kcal/mol—lower energy indicates better docking. ** GOLD—dimensionless—Higher
numbers indicate better docking.

In order to confirm our results, we re-ran the molecular docking of those three com-
pounds against the three targets using the same programs. In other words, we ran
ZINC45068352, ZINC03873986, and ZINC71787288 against AChE, BChE, and BACE-1
using AutoDock Vina 1.1.2 (despite it not being validated for BACE-1) and again, using
GOLD 5.8.1, despite it not being validated for cholinesterases. The results, presented in the
Supplementary Materials (Tables S1 and S2) confirm all three compounds present good
scores in both programs, justifying their prioritization.

2.4. Application of Physicochemical Filters

Good scores in molecular docking do not guarantee the selected molecules will have
the physicochemical requirements to reach the target site. Therefore, the best candidates
were further screened for their physicochemical properties according to Lipinski’s Rules
and Veber’s parameters [19,20], which are capable of virtually predicting oral bioavailability
quickly and at a low computational cost. The results are presented in Table 3.

Table 3. Physicochemical analysis of the best candidates for triple inhibition according to Lipinski’s
Rule and Veber’s parameters.

Molecule MW
(g/mol) HBD HBA cLogP PSA (Å2) RB HBD + HBA

ZINC45068352 486.58 0 7 4.77 89.45 5 7
ZINC03873986 442.43 2 6 4.15 100.27 0 8
ZINC71787288 444.44 0 7 5.38 61.53 3 7

MW = molecular weight; HBD = hydrogen bond donor; HBA = hydrogen bond acceptor; cLogP = calculated
octanol–water partition coefficient; PSA = Polar surface area; RB = Rotatable bonds.

Table 3 shows that the selected structures (ZINC45068352, ZINC03873986, ZINC71787288)
satisfy all parameters for oral bioavailability according to Lipinski’s and Veber’s criteria,
with only one suffering a penalty (ZINC71787288, with a cLogp value > 5). This penalty,
however, does not justify eliminating the structure from consideration, as about 6% of the
drugs orally bioavailable, currently in use, do not fully obey the accepted parameters for
bioavailability [21].

2.5. Analysis of Intermolecular Interactions

Despite the importance of a selected structure overlapping the pharmacophore model,
obtaining a good score in molecular docking, and having the physicochemical requisites
for oral bioavailability, these metrics do not identify the bonds between potential inhibitors
and their targets. Three-dimensional complexes were generated based on the known
crystallographic structures of AChE, BChE, and BACE-1 to study the molecular bonds and
mode of interaction of the three best-ranked compounds with the enzymatic active sites.

2.5.1. AChE Complexes

The analysis of the interactions performed by the AChE crystallographic inhibitor
(Figure 3) can be useful in understanding the interactions important for biological activity
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and mapping those interactions for the subsequent analysis of the drug candidates screened
by previous computational methods.
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The AChE crystallographic ligand forms a hydrogen bond with PHE295, a π-stacking
interaction with TRP286, and hydrophobic interactions with TYR72, TRP286, PHE297,
TYR337, PHE338, and TYR341 (Figure 3).

Based on this figure, interaction maps were generated for ZINC45068352 (Figure 4A),
ZINC03873986 (Figure 4B), and ZINC71787288 (Figure 4C) in the AChE active site to
observe whether the prioritized molecules maintained the same intermolecular interaction
profile as the crystallographic ligand.

ZINC45068352 (Figure 4A) showed hydrophobic interactions at the AChE active
site with TRP286 and TYR341, similar to the crystallographic ligand and additionally
with the residue GLU292. ZINC03873986 (Figure 4B) repeated important interactions
established by the crystallographic ligand, such as the hydrogen donor to PHE295, π-
stacking interaction with TRP286, and hydrophobic interactions with TRP286, TYR337,
PHE338, and TYR341. Furthermore, this molecule established π-stacking interactions
with TYR341 and hydrophobic interactions with LEU76. ZINC71787288 (Figure 4C) made
hydrophobic interactions with residues TYR72, TRP286, and TYR341, hydrogen bonding
with TYR72, and π-stacking interactions with TRP286. Notably, the binding with TRP286 is
related to potent compounds at the nanomolar scale, which also interact with the PHE 338
residue and participate in the binding of the substrate to the enzyme, ensuring catalytic
efficiency [22–24].
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2.5.2. BChE Complexes

The crystallographic structure of BChE with its inhibitor was analyzed to highlight
the requirements for the proper interactions of the three best-ranked compounds. The
interaction map of the BChE crystallographic ligand shows π-stacking interactions with
TRP82 and hydrophobic interactions with TRP82, ALA328, and TRP430 (Figure 5).
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Interaction maps were subsequently generated for ZINC45068352 (Figure 6A),
ZINC03873986 (Figure 6B), and ZINC71787288 (Figure 6C) to compare the interactions ob-
served with the crystallographic ligand with the expected interactions with the
selected molecules.

ZINC45068352 forms hydrogen bonds with GLY116, GLY117, HIS438, π-stacking in-
teraction with HIS438, and hydrophobic interactions with residues ASP70, TRP82, THR120,
TRP430, and TYR440 (Figure 6A). ZINC03873986 forms hydrophobic interactions with
residues ASN68, ASP70, TRP82, and THR120 (Figure 6B). ZINC71787288 forms hydrogen
bonds with HIS438 and hydrophobic interactions with ASP70, TRP82, THR120, ALA328,
TYR332, and TRP430 (Figure 6C). The interactions observed with the TRP82 residues in the
anionic site prevent the substrate from reaching the catalytic site. In the interaction maps, it
is also possible to observe binding with residue ASP70, which is part of the peripheral site.
This interaction is also important for inhibitory activity against BChE since it also prevents
the entry of the substrate [25]. Interactions with residues THR120, GLY116, and GLY117
were observed in potent BChE inhibitors [26,27].
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2.5.3. BACE-1 Complexes

The BACE-1 crystallographic ligand (Figure 7) forms hydrogen bonds with TRP76,
ASP32, ASP228, and GLY230 and hydrophobic interactions with LEU30, VAL69, TYR71,
ILE118, and ARG128 [18]. Figure 8 shows the analysis of the complexes generated between
BACE-1 and ZINC45068352, ZINC03873986, and ZINC71787288.
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At the BACE-1 active site, ZINC45068352 held π-stacking interactions with TYR71,
hydrophobic interactions with residues TYR71, PHE108, TRP115, ILE118, and ILE226, and
π-cation interactions with ARG35 (Figure 8A). As for ZINC03873986, it formed a hydrogen
bond with TRP76, π-stacking interactions with TYR71, hydrophobic interactions with
residues VAL69, TYR71, TRP76, PHE108, ILE118, and ARG128, and π-cation interactions
with ARG35 (Figure 8B). ZINC71787288, displayed π-stacking interactions with TYR71,
hydrogen bonding with TYR71, and hydrophobic interactions with residues LEU30, VAL69,
TYR71, PHE108, ILE110, and TRP115 (Figure 8C). The published data showed that the
observed interactions with the amino acid residue TYR71 are essential for inhibiting activity,
as they promote conformational changes and prevent the substrate from reaching the
catalytic site [28,29]. Interactions with amino acid residues VAL69, ILE118, and TRP115
are cited as important for BACE-1 inhibition, which has been observed in the molecular
dynamics simulations already described [30].



Pharmaceuticals 2023, 16, 1645 12 of 18

Pharmaceuticals 2023, 16, x FOR PEER REVIEW 12 of 18 
 

 

are cited as important for BACE-1 inhibition, which has been observed in the molecular 
dynamics simulations already described [30].  

 
(A) 

 
(B) 

 
(C) 

Figure 8. Interaction map of ZINC45068352 (A), ZINC03873986 (B), and ZINC71787288 (C) in the 
BACE-1 active site generated by the Protein–Ligand Interaction Profiler online server. (The infor-
mation is contained in Figure 7). 

2.6. Analysis of AMES Test (Cytotoxicity) and Other Parameters of Toxicity 
After the molecular docking stage and the evaluation of their interactions with the 

three target enzymatic sites, the three compounds ZINC45068352, ZINC03873986, and 
ZINC71787288 were subjected to an in silico AMES test, using the online server pkCSM 
[29]. The AMES test is an essay originally performed on Salmonella typhimurium and 

Figure 8. Interaction map of ZINC45068352 (A), ZINC03873986 (B), and ZINC71787288 (C) in
the BACE-1 active site generated by the Protein–Ligand Interaction Profiler online server. (The
information is contained in Figure 7).

2.6. Analysis of AMES Test (Cytotoxicity) and Other Parameters of Toxicity

After the molecular docking stage and the evaluation of their interactions with the
three target enzymatic sites, the three compounds ZINC45068352, ZINC03873986, and
ZINC71787288 were subjected to an in silico AMES test, using the online server pkCSM [29].
The AMES test is an essay originally performed on Salmonella typhimurium and Escherichia
coli. It is based on the knowledge that if a substance is mutagenic for these bacteria, it also
presents a risk of developing cancer in humans [31]. In silico mutagenicity screening tools
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were later developed and optimized to screen drug candidates, yielding comparable results
to the original AMES test [32–34].

ZINC03873986 and ZINC71787288 were negative for the AMES test, but ZINC45068352
was positive and discarded from future steps. Additional simulations were performed
for the structures ZINC03873986 and ZINC71787288 to characterize other aspects of their
toxicity profile. According to our analysis, presented in the Supplementary Materials
(Table S3), ZINC71787288 is hepatotoxic, which leaves ZINC0387398 as our lead compound.

3. Materials and Methods
3.1. Dataset

A dataset of 56 compounds (Supplementary Materials Tables S4 and S5) with
IC50 ≤ 1000 nM for human BACE-1 was obtained from the literature [35]. The 2D structures
and most reliable tautomers (pH = 4.5) were drawn using Marvin® Sketch 15.4.20 [36].
Subsequently, the structures were converted to 3D format using the CONCORD module,
implemented in the SYBYL®-X 2.0 package [37]. Partial atomic charges were calculated
using the Gasteiger–Hückel method, as available on the SYBYL platform. Energy mini-
mization was performed through Conjugate Gradient (CG) with a convergence criterion of
0.001 kcal/mol and Tripos force field (dielectric constant ε = 80.0 and a maximum number
of iterations = 50.000) [12]. Four compounds with the best IC50 values were selected, two for
the construction and two for the validation stage of the pharmacophore model (Figure 9).
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3.2. Pharmacophore Model Generation

The GALAHAD (Genetic Algorithm Linear Algorithm for Hyper molecular Align-
ment of Data sets) implemented on the SYBYL platform was used to obtain the conformers.
The flexibly superimposed training set compounds generated the pharmacophore fea-
tures to create hyper molecular alignments. The Genetic Algorithm (GA) employed in
this step starts with 80 conformations (population size) of each compound that evolves
through a maximum of 830 generations. The other parameters (CROSSING = 1.0 and
MUTATION = 1.0) were maintained at their default values, as implemented in the GALA-
HAD module from SYBYL-X® 2.0 [37].

3.3. Pharmacophore Model Evaluation

The statistical parameters of GALAHAD (ENERGY < 100 Kcal/mol and PARETO 6= 00)
were used to select the pharmacophore models. The discriminatory power to recognize ac-
tive compounds and decoys evaluated the remaining models. Thus, the DUD-E server [38]
was used to build decoys, and the SigmaPlot® program v. 12.0 [39] was used to calcu-
late the area under the curve of each receiver operating characteristic (AUC-ROC curve).
The model that attained an AUC-ROC > 0.7 was chosen as the best BACE-1 inhibitor
pharmacophore model.

3.4. Pharmacophore-Based Virtual Screening

The best BACE-1 pharmacophore model was used to filter the database Sigma-
Aldrich® (n = 214,446) (http://zinc15.docking.org/catalogs/sialbb accessed on 5 September
2020) available on the ZINC15 platform [40] by using the UNITY module of SYBYL-X 2.0.
This step was implemented through the option “3D flexible alignment”, available in the
UNITY 3D module. The quality of the alignment of the molecules was expressed by the
value of QFIT, which can vary from 0 to 100.

The superimposed compounds in the BACE-1 model (QFIT > 0) were then flexibly
aligned with a dual AChE and BChE inhibitors pharmacophore model [7], available in the
GALAHAD™ module. To prioritize the best-superimposed compounds in this model, the
mathematical equation of average plus the standard deviation of QFIT values (Equation (1))
was employed as a cutoff. Compounds showing QFIT > x + σ were then selected for
molecular docking with AChE, BChE, and BACE-1. Equation (1) was used to select the
compounds best fitting the dual pharmacophore model:

X ≥ x + σ, (1)

where X = QFIT value, x = average, and σ = standard deviation.

3.5. Molecular Docking

The crystallographic structures of AChE (PDB ID: 4M0E) [22], BChE (PDB ID: 4BDS) [41],
and BACE-1 (PDB ID: 6UWP) [42] were prepared with Biopolymer implemented on SYBYL-
X 2.0 [37], where ions and water molecules were removed. Hydrogen atoms were inserted
to optimize the hydrogen bonds. For the AChE and BChE target structures, the protonation
state of the receptors was adjusted to pH 7.4 through the PropKa [43] server, and the
conformational search and scoring were performed by AutoDock Vina 1.1.2 [44], according
to previously validated parameters [7]. As for the BACE-1 structure, the receptor had its
protonation state evaluated by the H++ 1.0 server [http://newbiophysics.cs.vt.edu/H++/
accessed on 24 September 2020] program, and pKa was corrected at pH 4.5 [45]. Validation
methods were used, and the program selected for molecular docking with BACE-1 was
GOLD 5.8.1 [46]; the score was provided by the Astex Scoring Potential (ASP, knowledge-
based function derived from a database of protein–ligand complexes) function with the
parameters previously validated [18].

http://zinc15.docking.org/catalogs/sialbb
http://newbiophysics.cs.vt.edu/H++/
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3.6. Physicochemical Filters

The designed molecules were characterized using the pkCSM server [34] for the
physicochemical descriptors for Lipinski’s [19] and Veber’s [20] descriptors. For reference:

• Lipinski’s: Molecular Weight (MW) ≤ 500 Da; Hydrogen Bond Donors (HBD) ≤ 5;
Hydrogen Bond Acceptors (HBA) ≤ 10; and cLogp ≤ 5.

• Veber’s: Polar Surface Area (PSA) ≤ 140 Å
2
; Rotatable Bonds (RB) ≤ 10; Sum of HBD

and HBA ≤ 12.

3.7. Evaluation of Intermolecular Interactions

Molecules having one or fewer penalties were selected for evaluation of the inter-
molecular interaction through the Protein–Ligand Interaction Profiler (PLIP) server and
PyMOL v. 2.4.0 [47,48].

3.8. AMES Test (Cytotoxicity) and Other Parameters of Toxicity

After the molecular docking stage and evaluation of active-site interactions, the three
higher-scoring compounds were subjected to the AMES test [31] to predict their potential
cytotoxicity using the pkCSM server [34]. The results led to ZINC45068352 being discarded.
The same pkCSM server was used to analyze other parameters of toxicity, such as oral
rat acute toxicity (LD50), hepatotoxicity, and skin sensitization, among others. The results,
presented in Table S3 of the Supplementary Materials, indicated that ZINC71787288 was
hepatotoxic, leading to it also being discarded.

4. Conclusions

The use of multitarget drugs is relatively recent in the history of therapy, with those few
showing distinct advantages over a combination of separate drugs. We expect a multitarget
treatment against AD would need lower doses, present fewer drug–drug interactions, and
encourage higher patient compliance.

The virtual screening strategy associated with the individual pharmacophore models
for AChE, BChE, and BACE1 allowed the generation and evaluation of models evaluated
for recovery rate of true inhibitors versus false positives, resulting in the selection of a
pharmacophore model with discriminatory power (AUC > 0.7). This approach, aligned with
a dual pharmacophore model and docking, allowed the identification of possible hybrid
triple-inhibitors against AChE, BChE, and BACE1. Computational techniques employed
in a hierarchical process enabled the selection of molecules with proper stereo-electronic
requirements for triple-target inhibition.

ZINC03873986 was selected as a good fit for the pharmacophore models with low cyto-
toxic potential, which makes it a potential multitarget hybrid compound for the treatment
of Alzheimer’s disease. Our next steps aim to validate these computational results through
enzymatic testing on the targets and synthesis of derivatives of those lead compounds for
SAR studies.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/ph16121645/s1, Table S1. Scores of the three best com-
pounds selected through molecular docking by AutoDock Vina 1.1.2. Table S2. Scores of the three
best compounds selected through molecular docking by GOLD. Table S3. Toxicological analysis of
the remaining molecules. Table S4. Chemical structure and biological activity of inhibitors against
BACE-1 used in generating pharmacophore models. Table S5. Chemical structure and biological
activity of inhibitors against BACE-1 that were used in evaluating pharmacophore models.
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