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Abstract: Lithium has been used in the treatment of bipolar disorder for several decades. Treat-
ment optimization is recommended for this drug, due to its narrow therapeutic range and a large
pharmacokinetics (PK) variability. In addition to therapeutic drug monitoring, attempts have been
made to predict individual lithium doses using population pharmacokinetics (popPK) models. This
study aims to assess the clinical applicability of published lithium popPK models by testing their
predictive performance on two different external datasets. Available PopPK models were identified
and their predictive performance was determined using a clinical dataset (46 patients/samples) and
the literature dataset (89 patients/samples). The median prediction error (PE) and median absolute
PE were used to assess bias and inaccuracy. The potential factors influencing model predictability
were also investigated, and the results of both external evaluations compared. Only one model
met the acceptability criteria for both datasets. Overall, there was a lack of predictability of models;
median PE and median absolute PE, respectively, ranged from −6.6% to 111.2% and from 24.4% to
111.2% for the literature dataset, and from −4.5% to 137.6% and from 24.9% to 137.6% for the clinical
dataset. Most models underpredicted the observed concentrations (7 out of 10 models presented a
negative bias). Renal status was included as a covariate of lithium’s clearance in only two models.
To conclude, most of lithium’s PopPK models had limited predictive performances related to the
absence of covariates of interest included, such as renal status. A solution to this problem could
be to improve the models with methodologies such as metamodeling. This could be useful in the
perspective of model-informed precision dosing.

Keywords: lithium; bipolar disorder; population pharmacokinetics; external evaluation; therapeutic
drug monitoring; treatment optimization

1. Introduction

Bipolar disorder (BD) is a serious mood disorder that affects up to 4% of the world’s
population and is among the leading causes of disability [1]. It is characterized by recurrent
episodes of depression alternating with episodes of hypomania and/or mania that are usu-
ally separated by periods of relatively normal mood and functioning [2]. Pharmacological
treatment is extremely important for managing patients with BD. During acute episodes,
treatments are used to reduce symptoms and hopefully to obtain a full remission. For
maintenance treatment, drugs are used to prevent the recurrences of mood episodes [3].

Lithium was the first drug to be effective in the treatment of BD, and has been used for
over sixty years [4]. It is, indeed, the oldest and most prescribed drug in this pathology, and
it presents a high response rate [5–7]. Lithium’s mechanism of action in mood regulation is
not entirely clear, but is progressively being understood and involves the direct inhibition of
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glycogen synthase kinase 3β and various effects on neurotrophic factors, neurotransmitters,
oxidative metabolism, apoptosis, second messenger systems, and biological systems [4].
Concerning its pharmacokinetic (PK) properties, this drug is not metabolized, and is almost
exclusively excreted via the kidney in the form of a free ion. It is able to freely cross the
glomerular membrane and is reabsorbed at 80% via passive diffusion in the proximal
tubules [8]. This makes renal status, and thus the glomerular filtration rate (GFR) or
creatinine concentration and clearance, important predictors of lithium’s elimination [1]. In
addition, the reabsorption of lithium is competitively inhibited by sodium; indeed, sodium
deficiency has proven to promote lithium reabsorption and then induce an increase in
serum lithium concentration [9]. It has also been found that body size could be a predictor
of lithium’s clearance [10].

Though lithium is an efficient drug in BD, its clinical use remains complex due to its
PK and pharmacodynamic (PD) properties. Indeed, lithium has a narrow therapeutic range
(0.4–0.8 mEq/L, up to 1.2 mEq/L un acute phase), and displays significant intra-patient PK
variability [8,11]. Therefore, predicting the right dose for each patient remains challenging,
and treatment optimization is needed for this drug. An overexposure to lithium can induce
progressive or acute renal insufficiency and adverse events such as nausea, vomiting
and diarrhea. To ensure safety and avoid toxic adverse events, international guidelines
recommend the close monitoring of concentrations through therapeutic drug monitoring
(TDM) [12], even though studies have found that the prevalence of TDM for lithium was
low [13,14].

In addition to TDM, attempts have been made to predict adapted lithium doses to
attain therapeutic levels, and one of them relies on population pharmacokinetics (popPK)
models to individualize dosing regimens [15]. Indeed, modeling and simulation methods
have shown major advantages in several therapeutic areas in supporting dosing regimen
selection for patients, like in the dosing adjustment of antibiotics [16,17]. In the psychiatric
field, numerous molecules require precision dosing; however, we observed that only few
popPK models of psychotropic drugs have been developed, even for lithium, which has
been used for several decades. Moreover, prior to any kind of use for model-informed
precision dosing (MIPD), the predictability of the models must be assessed. Indeed, the
external evaluation of models has proven to be an important additional feature and to be
necessary for use in patients’ dose individualization in clinical settings [18]. However, few
popPK models developed in psychiatry have been externally evaluated. Among the popPK
models of lithium identified in the literature, only one used external evaluation to assess
model predictive performance.

Therefore, this study aimed to assess the applicability for MIPD of previously pub-
lished popPK models of lithium by testing their predictive performances. Two different
external datasets were used including clinical or literature data.

2. Results
2.1. Published Models

After the literature search, 10 popPK models were identified [10,19–27] (see Figure 1).
Three studies were conducted in China and two were conducted in the USA. The other
studies were conducted in Japan, Egypt, China, France, Thailand and Saudi Arabia (Table 1).
Only two studies included more than 100 subjects [10,26]. All models followed linear first-
order kinetics. Lithium’s PK was described using one-compartmental models in three
studies and two-compartmental models in seven studies. In those compartmental models,
the absorption phase was described in eight models by a fixed constant of absorption
(ka). The volume of distribution (V) was fixed in three models, unlike clearance (CL), for
which inter-individual variability was estimated in all the models. Overall, 11 different
covariates were tested in the 8 published models (weight, age, gender, serum creatinine
(Scr), glomerular filtration rate (GFR), creatinine clearance (CrCl), body mass index (BMI),
co-administration (risperidone, diazepam, clonazepam, valproic acid, and perphenazine),
lean body weight (LBW), fat-free mass (FFM), and total daily dose (TDD) and 7 were
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included in parameter estimation: FFM (n = 1), LBW (n = 1), GFR (n = 1), weight (n = 4),
age (n = 1), ClCr (n = 2), and TDD (n = 1). FFM was included for V1, V2 and CL in one
study. LBW was included for CL, V1, V2 and Q in one study. Weight was included for V1
in two studies, for CL in three studies and for V2 in one study. GFR, age and TDD were
included for CL in one study each. And ClCr was included for CL in two studies.
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2.2. External Evaluation Data

The literature dataset was composed of 89 concentration data samples from 89 patients
(62 males and 27 females) in 11 different studies (see Figure 2). Concentration data were
provided from single-dose studies in healthy volunteers or PK studies of bipolar patients in
a steady state and corresponded to through concentration or Cmax. The exact time of the
sample was not available. The characteristics of the datasets are summarized in Table 2. We
observed a significant variability, with patients’ presented age ranging from 8 to 87 years
old and weight ranging from 27 to 125 kg. Amongst them, GFR was not described for
50 patients. For the 39 others, the mean GFR value was 120.61 (± 88.54) mL/min.

The clinical dataset was composed of 46 concentration data samples from 46 patients
(20 males and 26 females). All samples were through concentrations at steady state, and
the exact time at which the sample was taken was available. The demographic data are
summarized in Table 2. Patients had ages ranging from 16 to 68 years old and weight
ranging from 49 to 125 kg. For each patient, GFR was reported for all 46 patients, and
ranged from 61 to 127 mL/min.

 

 

 

 
Pharmaceuticals 2023, 16, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/pharmaceuticals 

2.2. External Evaluation Data 

The literature dataset was composed of 89 concentration data samples from 89 pa-

tients (62 males and 27 females) in 11 different studies (see Figure 2). Concentration data 

were provided from single-dose studies in healthy volunteers or PK studies of bipolar 

patients in a steady state and corresponded to through concentration or Cmax. The exact 

time of the sample was not available. The characteristics of the datasets are summarized 

in Table 2. We observed a significant variability, with patients’ presented age ranging from 

8 to 87 years old and weight ranging from 27 to 125 kg. Amongst them, GFR was not 

described for 50 patients. For the 39 others, the mean GFR value was 120.61 (± 88.54) 

mL/min.  

Table 2. Characteristics of the external evaluation datasets. 

Characteristics 
Number or Mean ±SD 

Clinical 

Median (Range) 

Clinical 

Number or Mean ±SD 

Literature 

Median (Range) 

Literature 

No. of patients (male/female) 46 (20/26) NA 89 (62/27) NA 

No. of samples 46 NA 89 NA 

No. of samples per patient 1 NA 1 NA 

Age (years) 41.15 (±14.78) 42 (16–68) 24.76 (±14.68) 19 (8–87) 

Weight (kg) 74.99 (±18.40) 71.50 (61–127) 66.30 (±22.94) 65 (27–125) 

Height (cm) 170.39 (±−10.32) 170 (147–189) 168 (NA) 168 (NA) 

Concentration (mg/L) 5.04 (±1.99) 5.14 (1.04–11.94) 4.50 (±2.31) 4.16 (0.69–13.9) 

GFR (mL/min) 99.80 (±16.05) 102 (61–127) 120.61 (±88.54) 105.50 (66–218) 

Lithium dose (mg) 13.23 (±7.57) 16.22 (3.38–54.05) 15.84 (±8.24) 12.16 (4.05–32.43) 

Bipolar patients 46 NA 65  NA 

NA: non available 

The clinical dataset was composed of 46 concentration data samples from 46 patients 

(20 males and 26 females). All samples were through concentrations at steady state, and 

the exact time at which the sample was taken was available. The demographic data are 

summarized in Table 2. Patients had ages ranging from 16 to 68 years old and weight 

ranging from 49 to 125 kg. For each patient, GFR was reported for all 46 patients, and 

ranged from 61 to 127 mL/min.  

 
Figure 2. Overview of the strategy used in the literature search for individual PK data of lithium. N:
number of articles returned by the search.



Pharmaceuticals 2023, 16, 1627 4 of 15

Table 1. Literature review summary.

Study
(Publication

Year)

Country
(Sin-

gle/Multiple
Sites)

Number of
Patients

(Male/Female)

Number of
Samples
(Sample

Type)

Analytical
Method Pathology Software

Number of
Compart-

ments of the
Model

Covariates
Tested

PK Parameters and Formula
(Lithium)

IIV
(%)

Residual
Error

Swann et al.
(1990) USA (single) 14 (10/4) NA (pk

study)

Atomic
absorption

spectrometry
Manic episode None Two FFM

CL (L/h)
V1 (L)
V2 (L)

K12 (h−1)
K21 (h−1)
Ka * (h−1)

0.09 × V1
0.3 × FFM

(0.4 × FFM)−0.3
0.56
0.41
1.03

Landersdorfer
et al. (2016)

USA
(multiple) 61 (32/29) 2730 (pk

study)

Atomic
absorption

spectrometry,
ICP-OES,

automated
assays

Bipolar
disorder

S-ADAPT/
NONMEM Two

TBW, age,
LBW, gender,

CrCL, Scr

CL (L/h)
V1 (L)
V2 (L)

Q (L/h)
Klag (h−1)
Ka (h−1)

1.63
×(LBW/53)0.75

24.5 × (LBW/53)
33.5 × (LBW/53)

3.19 ×
(LBW/53)0.75

3.64
1.21

20.7
11.6
40.3
31.1
88.2
21.0

0.0422
mEq/L

Yoshida et al.
(2017)

Japan
(multiple) 82 (44/38) 131 (TDM)

Atomic
absorption

spectrometry

Bipolar
disorder,

depression,
schizophrenia

SPSS/PRISM One
CL (L/h)
Ka * (h−1)
V1 * (L)

1.236
1.5

0.79 × WT
0.13 mEq/L

Eldesoky
et al. (2008)

Egypt
(single) 50 (21/29) 50 (TDM) Ion sensitive

electrode
Bipolar

disorder NONMEM Two WT, GFR,
gender, age

CL (L/h)
V1 * (L)
V2 * (L)

Q * (L/h)
Ka * (h−1)

0.51 ×
(GFR/105.3)0.438

15.2
7.44
6.7

0.62

12.77 15%

Yu et al.
(2016)

China
(single) 20 (20/0) 560 (pk

study)
Flame

photometry Healthy NONMEM Two

Demographic
factors and
laboratory
indicators

CL (L/h)
V1 (L)
V2 (L)

Q (L/h)
Tlag (h)

Ka * (h−1)

9.39
10.4
216
22.1

0.186
0.293

13.2
84.2
19.7
127
19.4

5.19%
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Table 1. Cont.

Study
(Publication

Year)

Country
(Sin-

gle/Multiple
Sites)

Number of
Patients

(Male/Female)

Number of
Samples
(Sample

Type)

Analytical
Method Pathology Software

Number of
Compart-

ments of the
Model

Covariates
Tested

PK Parameters and Formula
(Lithium)

IIV
(%)

Residual
Error

Couffignal
et al. (2018)

France
(single) 17 (6/11) 68 (pk study) ICP-OES Bipolar

disorder MONOLIX Two None

CL (L/h)
V1 (L)

V2 * (L)
K12 * (h−1)
K21 (h−1)
Tlag * (h)
Ka * (h−1)

F

1.21
23

64.7
3.63
9.46
0.92
2.22
0.62

20
30
27
72

0.98

10%

Methaneethorne
et al. (2019)

Thailand
(single) 222 (114/108) NA Ion-sensitive

electrode
Bipolar

disorder NONMEM One

Weight, age,
gender, Scr,

CrCl, BMI, co
administra-

tion.

CL (L/h)
Ka * (h−1)
V1/F * (L)

1.43 ×
(WT/65)0.425 ×
(age/38)−0.242

0.462
54

3.11 19 mg/L

Alqahtani
et al. (2019)

Saudi Arabia
(single) 31 (7/24) 170 (TDM) Spectrophotometric

methods
Bipolar

disorder MONOLIX Two CrCl

CL (L/h)
V1 * (L)
V2 * (L)

Q * (L/h)
Ka * (h−1)

1.15 ×
(ClCr/119.2)0.117

22.1
3.35
0.44
0.62

14 0.223 mmol/L

Yuan et al.
(2021)

China
(single) 52 (38/14) 160 (pk

study)

Ion sensitive
electrode
methos

Intellectual
disability,
pediatric

NONMEM Two Weight, age,
gender

Cl/F (L/h)
MTT(h)

V1/F (L)
V2/F (L)

Q/F (L/h)

0.98 × (WT/20)
0.52

13.1 × (WT/20)
8.2 × (WT/20)

0.84

4.6
9.9
7.2

17.7
9.5

0.091 mmol/L

Jin et al.
(2022)

China
(single) 268 (NA) 476

Phosphatase
assay

(Siemens®

ADVIA 1800)

Bipolar
disorder NONMEM One

Weight, CrCl,
total daily
dose, sex

Cl/F (L/h)
V1 (L)

Ka * (h−1)

0.909 ×
(TDD/600)0.354 ×

(WT/62)0.33 ×
(CrCl/116)0.186

10.9
0.293

20.8
40.4 0.0236 mmol/L

* Fixed value from the literature.
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Table 2. Characteristics of the external evaluation datasets.

Characteristics Number or Mean ± SD
Clinical

Median (Range)
Clinical

Number or Mean ± SD
Literature

Median (Range)
Literature

No. of patients
(male/female) 46 (20/26) NA 89 (62/27) NA

No. of samples 46 NA 89 NA
No. of samples per patient 1 NA 1 NA

Age (years) 41.15 (±14.78) 42 (16–68) 24.76 (±14.68) 19 (8–87)
Weight (kg) 74.99 (±18.40) 71.50 (61–127) 66.30 (±22.94) 65 (27–125)
Height (cm) 170.39 (±−10.32) 170 (147–189) 168 (NA) 168 (NA)

Concentration (mg/L) 5.04 (±1.99) 5.14 (1.04–11.94) 4.50 (±2.31) 4.16 (0.69–13.9)
GFR (mL/min) 99.80 (±16.05) 102 (61–127) 120.61 (±88.54) 105.50 (66–218)

Lithium dose (mg) 13.23 (±7.57) 16.22 (3.38–54.05) 15.84 (±8.24) 12.16 (4.05–32.43)
Bipolar patients 46 NA 65 NA

NA: non available.

2.3. External Evaluation

The results of the external evaluation are presented in Table 3. All the samples from
both datasets were used to evaluate the predictive performance of all models. For the
literature dataset, the MDPE ranged from −6.6% to 111.2% and the MADPE ranged from
24.4% to 111.2%. Only two models, the ones by Alqahtani et al. and by Swann et al., met
the aforementioned criteria (MDPE ≤ ±20% and MADPE ≤30%) [19,25]. For the clinical
dataset, the MDPE ranged from −4.5% to 137.6% and the MADPE ranged from 24.9% to
137.6%. Only three models, the ones by Swann et al., Jin et al. and Methaneethorn et al., met
the aforementioned criteria [19,26,28]. Only the model by Swann et al. met the acceptability
criteria for both datasets [19]. Most models had an MDPE ≤ 40% and MADPE ≤ 50%.
Figures 3 and 4 show the boxplots of the PE for all 10 published models for each dataset.
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Table 3. Results of the external evaluation for 10 published popPK models (MDPE/MADPE in %).

MDPE
(Literature)

MADPE
(Literature)

MDPE
(Hospital)

MADPE
(Hospital)

Swann et al. −16.7 29.5 −13.5 26.7
Landersdorfer et al. −50.9 52.4 −30.2 35.8

Yoshida et al. 17.4 37.4 −4.5 30.5
Eldesoky et al. 99.8 99.8 137.6 137.6

Yu et al. −85.7 85.7 −42.7 44.2
Couffignal et al. −8.7 31.5 −4.5 29.9

Methaneethorne et al. −36.5 40.4 −14.4 24.9
Alqahtani et al. −5.5 24.4 7.8 32.4

Yuan et al. −58.4 59.7 −70.0 70.0
Jin et al. 12.7 47.9 18.6 28.7
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Figure 4. Box plots of the PEs for the 10 published popPK models for the literature dataset. The black
solid lines and blue dotted lines are reference lines indicating the PE% of 0% and ±20%, respectively.

For all models, predictions were plotted versus observations for each dataset (see
Figures 5 and 6). Overall, most models had a tendency to underpredict the concentra-
tions. For both the literature and the clinical dataset evaluation, 7 out of 10 models had a
negative bias. For the 10 models, the PEs were plotted versus observations to visualize
whether there was a difference in the predictive performance according to concentration (see
Figures 7 and 8). We observed a higher inaccuracy in the low-concentration predictions.

To assess the impact of patients’ renal status on the models’ predictive performances,
the PEs were plotted versus GFR. No relationship between GFR and PE could be seen (see
Supplementary Figures S1 and S2).
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3. Discussion

In a recent systematic review for popPK models of lithium, the authors point out
the lack of data on the evaluation of predicate performance of these models [10]. From
the perspective of the model-based personalization of lithium therapy, we conducted an
external evaluation of published lithium popPK models. To the best of our knowledge,
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this is the first study that evaluated the predictive performance of popPK models of
lithium using independent external evaluation datasets. External evaluations are usually
conducted in clinical datasets from hospitalized patients. However, obtaining a qualitative
clinical dataset of concentrations for lithium is quite difficult due to the characteristics
of the studied population; many of them were outpatients, meaning it was difficult to
obtain robust information on the time of the last drug intake and there was possibly
poor adherence to medication [29]. Consequently, we tested an alternative method using
literature-extracted individual data as an external evaluation dataset, and we compared
the results to an external evaluation for clinical data.

During our evaluation, significant variability was observed in the predictive perfor-
mance of the studied popPK models, and most of them presented limited results. Moreover,
we observed a negative bias trend, concentrations being mostly underpredicted. This could
be due to a lack of representation of some significant causes of variability for lithium’s
elimination, such as sodium concentration or the coadministration of other drugs, which
might have an impact on the renal elimination of lithium [9].

Among the available popPK models of lithium, only one met the acceptability criteria
for each dataset [19]. This model, by Swann et al., included FFM as a covariate, and was
slightly better for the clinical dataset for which this covariate was fixed for none of the
patients. The model by Alqhatani et al. [30] presented the best predictive performance for
the literature dataset, but did not meet the acceptability criteria for the clinical dataset. This
model included renal status as a covariate, and therefore presented better performance
for patients with variable renal function (renal impairment or augmented renal clearance),
as observed in the literature dataset. Two models, the one by Jin et al. [26] that included
CrCl, weight and TDD as covariates, and the one by Methaneethorne et al. [28] that
included weight and age as covariates, presented good predicting performances for the
clinical dataset but not for the literature dataset. This could be explained for both models
by the higher variability of patients’ characteristics observed in the literature dataset,
which includes different populations from different studies and therefore generates a
more heterogenous dataset. Moreover, in the clinical dataset, covariates’ information was
available for the whole population, whereas they were fixed for some of the patients from
the literature dataset. Another example of the heterogeneity of the literature dataset is the
analytical methods of lithium quantification. Different methods were observed from one
study to another, and could also partly explain the differences in predictive performances
for both datasets [31].

Two models presented poor predictive performances for both datasets. These results
were expected for the model by Yuan et al. [27], as it was built on a pediatric population
with a different pathology and therefore did not fit our populations. The model by Eldesoky
et al. [22] was the least predictive for both datasets. These results are consistent with the
population prediction versus observation graphs observed in this study, which show the
low predictability of the model. However, the individual prediction versus observation
graph of this model shows a better predictability, suggesting that approaches such as
Bayesian forecasting could improve the results of the external evaluation of this model.
Unfortunately, we could not perform Bayesian forecasting in this study, as only one sample
per patient was available in both datasets.

The studied covariates can be classified in two categories: the ones that impact the elim-
ination of the drug (GFR, ClCr, and age), which were included in three models [22,26,30],
and the ones that impact the distribution (weight, FFM, LBW, and body size), which were
included in six models [19,21,26–28,32]. However, most models failed to include those
covariates alone or together, and, most significantly, failed to include the impact of renal
status on lithium clearance. For example, the most predictive model [19] failed to include
renal status as a covariate of lithium’s elimination, even though it is well known that
lithium’s elimination is mainly renal (90%). This issue is probably due to the lack of vari-
ability of this covariate in their training dataset. For patients with normal renal function,
this model would be efficient; however, it would fail to include the variability expected
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for lithium elimination in patients with altered renal function. Moreover, we observed
that models including covariates impacting the elimination of the drug tended to present
better predictive performances for the literature dataset, and models including covariates
impacting the distribution of the drug tended to present better predictive performance
for the clinical dataset. These results could be due to the significant variability of renal
status observed for the literature dataset and the fact that weight, age, and height were not
available for a significant number of patients in the literature dataset.

Studying and comparing the details of the predictions for both datasets, overall, we
observed qualitatively similar results. Therefore, our study supports that a literature dataset
could be an acceptable alternative in PopPK external evaluation procedures, but requires
data imputation for coping with missing covariates [33,34]. These results seem interesting,
because the main challenge for the external evaluation of models remains the ability to
gather enough reliable retrospective data to perform the analysis [35]. This methodology
can be an interesting option for drugs such as lithium, for which data are hardly available or
often not of good quality, as most patients are outpatients (lack of demographic information
and potential noncompliance to treatment). In addition, gathering clinical data is time-
consuming and challenging; it requires either a dedicated prospective study or retrospective
data extraction cleaning in hospital information systems, and data reliability is not always
guaranteed. There are, however, limits to this methodology. In our literature dataset, we
had access to a limited variability of endpoints of interest (peak/trough concentration),
and we had no choice in the population in which the data were available. In addition,
all the necessary covariates were not systematically available for each patient. Therefore,
we had to perform a simple data imputation by fixing some of them to a standard value,
thus losing patient-centered information to provide to the models. Indeed, in the literature
dataset, only the described covariates could be used, whereas in a clinical dataset we can
prospectively gather all the needed covariates. This limitation probably explains the better
results of the external evaluation of the clinical dataset than the literature dataset in 6 out
of the 10 models.

4. Materials and Methods
4.1. Search Methods and Inclusion Criteria

We performed a literature search in PubMed/Medline/Prospero/Clinicaltrials (ac-
cessed on 31 May 2023) for all popPK models of lithium published before December 2022.
The used query was “lithium [Ti] AND (population pharmacokinetics OR model)”. To be
included in this review, the study had to meet the following inclusion criteria: (1) models
had to be popPK models of lithium, (2) all the parameters (fixed effects) of the model had
to be explicitly described, such as all the population equations, and, (3) the publication had
to be written in English. Exclusion criteria were if the study were a review, on animals, or
in vitro.

4.2. External Evaluation Data
4.2.1. Literature Cohort

We performed a literature search in PubMed/Medline/Prospero/Clinicaltrials (ac-
cessed on 31 May 2023) for all individual pharmacokinetics or blood samples of lithium
published before December 2022. The used query was “lithium [Ti] AND (pharmacokinet-
ics)”. All sources describing popPK models identified from the first query were excluded.
To be included in our dataset for external evaluation, the study had to meet the following
inclusion criteria: (1) the study had to contain data associating plasma lithium concentra-
tion with each patient, a time of sampling, a dosing regimen of lithium and descriptive
information of the patient, and (2) the publication had to be written in English. Exclusion
criteria were if the study were a review, conducted on animals, or in vitro. Among the
covariates of interest that were used by at least one of the models, the ones for which the
values were not available in the study for each individual were fixed to the population
mean of the study or to a standard value if the information was not available.
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4.2.2. Clinical Cohort

Data were retrospectively collected from patients with BD followed in the Fonda-
Mental Bipolar Disorder Expert Center of Marseille from the 11 September 2022 to the
5 December 2022. This study was approved by the Marseille university hospital committee
as a retrospective, noninterventional, and anonymous study, following the European GDPR
standards (RGPD/AP-HM N8 2021-85). Patients included in this study were treated with
lithium and received at least one dose of lithium for TDM. To ensure the robustness of
the data and pharmacological data (sample time, time of last dose, and dosing regimen),
demographic and physiological data (age, weight, glomerular filtration rate, sex, and
height) were collected afterwards from the patients’ files. The time and dosing regimen
were precisely collected. The exact time of blood sampling was recorded by the attending
medical staff. Lithium concentrations were analyzed via colorimetric assays using a Cobas
8000 analyzer (Roche Diagnostics®) between the 11 September 2022 and the 30 May 2022
and using an AtelliCha analyzer (Siemens®) between 30 May 2022 and 5 December 2022.
Accuracy between the two methods was guaranteed with a cross validation study and
when a mean bias <10% was observed. The limit of quantification was 0.1 mmol/L for the
two methods.

4.3. Model Evaluation

The external evaluation was conducted using the ExactCure simulation library, which
is developed in Python language (European Single Registration number: FR-MF-000003719).
The final popPK models were simulated based on the formulas and parameters reported
for each of the included popPK studies. The external evaluation was performed without
any additional fitting of the model to the data.

The prediction error (PE) and absolute prediction error (APE) were used to assess the
predictive performance of the models. PE and APE were determined using the follow-
ing equations:

PE(%) =
Cpred − Cobs

Cobs
× 100

APE (%) = |PE| × 100

where Cpred and Cobs are the predicted and observed concentration, respectively.
The median prediction error (MDPE) and the median absolute prediction error (MADPE)

were used as a measure of bias and inaccuracy, respectively.

1. Bias (i.e., the direction and the size of the deviation from the observed concentration)
of model predictions is given for the ith individual and th jth blood sample, by the
median prediction error (MDPE):

MDPE(%) = MEDIAN(PE(%)(ij))

2. Inaccuracy (i.e., the size of the typical error) of model predictions is given for the
ith individual and the jth blood sample, by the median absolute performance er-
rors (MADPE).

MADPE(%) = MEDIAN(APE(%)(ij)) (1)

A MDPE between −20% and 20% and a MADPE ≤ 30% are considered to be acceptable
criteria for bias and inaccuracy [36].

5. Conclusions

To conclude, published lithium popPK models were evaluated using two different
datasets, one from clinical data and one from literature data. Our study showed that
gathering an external evaluation dataset from the literature could be an alternative when
clinical data are not readily available. In addition, even if clinical data are available, both
approaches could be used in combination to increase the data and therefore the reliability of
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the external evaluation. We observed a heterogeneity in the predictive performances of the
models, and only one model met the acceptability criteria for both datasets and included
FFM as a covariate. This model could be used in clinical practice for lithium to provide a
supportive tool to determine the optimal dose, and then to assist drug dosage decisions
during treatment titration. However, it failed to incorporate renal status as a covariate of
lithium’s elimination. Methodologies like metamodeling, which allow the amalgamation of
different models’ information into one meta model, could allow a more predictive model,
including both covariates of interest from the perspective of MIPD, to be built for this drug.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ph16111627/s1, Figure S1: Prediction errors (%) versus GFR
(mL/min) of the 10 published popPK models on the literature dataset., Figure S2: Prediction errors
(%) versus GFR (mL/min) of the 10 published popPK models on the clinical dataset.
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