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Abstract: Neuropathic pain is a complex and debilitating condition that affects millions of people
worldwide. Unlike acute pain, which is short-term and starts suddenly in response to an injury,
neuropathic pain arises from somatosensory nervous system damage or disease, is usually chronic,
and makes every day functioning difficult, substantially reducing quality of life. The main reason
for the lack of effective pharmacotherapies for neuropathic pain is its diverse etiology and the
complex, still poorly understood, pathophysiological mechanism of its progression. Numerous
experimental studies, including ours, conducted over the last several decades have shown that
the development of neuropathic pain is based on disturbances in cell activity, imbalances in the
production of pronociceptive factors, and changes in signaling pathways such as p38MAPK, ERK,
JNK, NF-κB, PI3K, and NRF2, which could become important targets for pharmacotherapy in the
future. Despite the availability of many different analgesics, relieving neuropathic pain is still
extremely difficult and requires a multidirectional, individual approach. We would like to point out
that an increasing amount of data indicates that nonselective compounds directed at more than one
molecular target exert promising analgesic effects. In our review, we characterize four substances
(minocycline, astaxanthin, fisetin, and peimine) with analgesic properties that result from a wide
spectrum of actions, including the modulation of MAPKs and other factors. We would like to draw
attention to these selected substances since, in preclinical studies, they show suitable analgesic
properties in models of neuropathy of various etiologies, and, importantly, some are already used
as dietary supplements; for example, astaxanthin and fisetin protect against oxidative stress and
have anti-inflammatory properties. It is worth emphasizing that the results of behavioral tests also
indicate their usefulness when combined with opioids, the effectiveness of which decreases when
neuropathy develops. Moreover, these substances appear to have additional, beneficial properties for
the treatment of diseases that frequently co-occur with neuropathic pain. Therefore, these substances
provide hope for the development of modern pharmacological tools to not only treat symptoms but
also restore the proper functioning of the human body.

Keywords: neuropathic pain; minocycline; astaxanthin; fisetin; peimine; p38MAPK; ERK; JNK;
NF-κB; PI3K; NRF2

1. Neuropathic Pain

According to the definition formulated by the International Association for the Study
of Pain (IASP), neuropathic pain is caused by somatosensory nervous system damage
or disease and affects approximately 7–10% of the population [1,2]. It is manifested by
abnormal sensations (dysesthesia) or pain caused by physiologically painless stimuli (allo-
dynia) of a continuous or paroxysmal nature. People affected by this type of pain exhibit
symptoms such as burning, tingling or stabbing pain [1]. These symptoms significantly
reduce quality of life and have a negative impact on the physical, emotional, and social
aspects of human functioning. Central neuropathic pain occurs in spinal cord injuries
and multiple sclerosis, and sometimes accompanies strokes. Apart from diabetes (diabetic
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neuropathy) and other conditions associated with metabolic disorders, the most common
causes of painful peripheral neuropathies are shingles; neuropathies associated with HIV
infection; nutritional deficiencies; toxins; and genetic and immunological diseases [3]. This
type of pain is also common in cancer, not only as a direct effect of the tumor on the
peripheral nerves, but also a side effect of some chemotherapeutic agents or as a result of
damage caused by radiation [4]. Neuropathic pain is distinguished by a reduced sensitiv-
ity to treatment with conventional painkillers; weaker effects of the two main groups of
analgesics, opioids and nonsteroidal anti-inflammatory drugs, are observed. Therefore,
its therapy requires a more comprehensive and interdisciplinary approach [1]. Currently,
pregabalin and gabapentin, including extended-release formulations, as well as tricyclic
antidepressants, are recommended as first-line drugs; second-line drugs are patches with
capsaicin, lidocaine or tramadol; and third-line drugs are opioids and botulinum toxin
type A [3].

Despite intensive research into neuropathic pain mechanisms, most available pharma-
cological treatments are based on old medicaments or drugs designated for other therapeu-
tic interventions. Importantly, according to statistics, less than half of patients suffering
from neuropathic pain report actual pain relief [2], which indicates the need for new drugs
and more effective therapies for this condition. The latest data in the literature, including
ours, suggest that, in addition to substances directed against one specific target, compounds
with a broader spectrum of action may have analgesic properties. This is understandable
when taking into consideration the complexity of neuropathic pain patomechanisms. For
years, the mitogen-activated protein kinase (MAPK) family has been considered as one
of the most important intracellular signaling pathways influencing nociceptive transmis-
sion in neuropathic pain. Initially, researchers focused on neurons, but in the last two
decades, many studies have pointed out the important role of MAPKs in glial cells [5–16].
The MAPK family consists of three members, p38, extracellular signal-regulated kinase
(ERK), and c-Jun N-terminal kinase (JNK); they are components of a series of crucial signal
transduction pathways that regulate processes such as embryogenesis, cell differentiation,
cell proliferation, and cell death [17]. MAPKs have a hierarchical structure, and consist
of MAPK class kinases that are phosphorylated and activated by MAPKK (or MAP2K),
which are in turn phosphorylated and regulated by MAPKKK (or MAP3K). Typically,
MAPKKKs are activated by interactions with proteins belonging to the family of small
GTPase proteins such as Ras/Rap or RhoA [18]. In our opinion, MAPK kinases may be
promising therapeutic targets in neuropathic pain, especially when comodulated with other
factors involved in nociception. In the following paper, using the PubMed database (ap-
plied keywords: neuropathic pain, minocycline, astaxanthin, fisetin, peimine, p38MAPK,
ERK, JNK, NF-κB, PI3K, and/or NRF2), we discuss some of the interesting multitarget
substances that exert analgesic effects to draw attention to their possible usefulness for
neuropathic pain management. Importantly, among these are dietary supplements that are
relatively safe to use and naturally derived, which makes them exceptionally interesting
for further investigations.

2. MAPKs and Neuropathic Pain

p38 mitogen-activated protein kinases (p38 MAPKs) are a family of serine/threonine
kinases expressed by many cells and consist of four isoforms: p38α, p38β, p38γ and p38δ. It
has already been shown in rodent studies that, after nerve injury, the activation of p38 takes
place in spinal microglia but not in neurons or astrocytes [8,15,19,20]. It is well established
that p38 contributes to the development of neuropathic pain and additionally influences
opioid treatment effectiveness [15,19–24]. Many pharmacological studies have provided
evidence that the intrathecal administration of selective p38 inhibitors (skepinone-L [25],
SB203580 [15,19,26,27], FR167653 [24], and CNI-1493 [28]) diminish the development of
neuropathic pain. Moreover, FR167653 improves morphine analgesia in diabetic mice [29],
and that SB203580 delays morphine tolerance development in rats [30]. It was also shown
that an intraperitoneal injection of the p38αMAPK inhibitor SD-282 reversed or prevented
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alterations in mechanical and thermal responses induced by prolonged hyperglycemia
in diabetic rats [31]. Importantly, the first clinical trials were undertaken to evaluate the
analgesic action of the potent p38 inhibitors, dilmapimod (SB-681323) [32] and losmapimod
(GW856553) [33], in patients suffering from neuropathic pain. Dilmapimod appeared to be
promising; however, it needs to be further evaluated in larger trials to precisely determine
the potency of its analgesic effect. The involvement of p38 in nociception is still under
investigation. Behavioral experiments showed that the recently discovered FGA-19, which
acts as a docking-site-oriented p38 inhibitor, relieves inflammatory pain [34]. Addition-
ally, a new pyridin-2(1H)one derivative was developed, which is a selective p38 inhibitor
that alleviates mechanical hypersensitivity in inflammatory pain [35]. Both compounds
are extremely interesting but have not yet been studied in the context of neuropathic
pain. The experimental data provide evidence that p38 activation is initiated by the stim-
ulation of NMDA receptors and participates in hyperalgesia [36]. In many neuropathic
pain models, increased activation of p38MAPK is observed in microglia [11,19,24,37,38].
p38 MAPK is involved in the synthesis of many pronociceptive factors via transcriptional
regulation [8,12,26,39–41]. It was shown that an increase in p38 levels in microglia enhances
the synthesis of pronociceptive factors such as TNFα, IL-1β, IL-18, IL-6 and iNOS [8,42–49].
Interestingly, p38 activation in microglia was thought to play an equivalent role in both
sexes; however, recently, it was shown that first, nerve injury primarily activates spinal
p38 in male mice, and second, that an intrathecal injection of the selective p38 inhibitor
skepinone reduced neuropathic pain in male but not in female rodents [25]. This is impor-
tant information because clinical data clearly indicate that neuropathic pain develops much
more often in women and is more difficult to treat [50]. The latest trends in research on
the neuroimmune basis of neuropathic pain focus on sexual dimorphism, and the main
difference between sexes is the activation of microglia.

Extracellular signal-regulated kinases 1 and 2 (ERK1/2) are serine/threonine kinases
that also belong to the MAPK family. ERK1/2 kinases are involved in many cellular regula-
tion processes and are important for nociceptive transmission [5,51–54]. ERK signaling can
be altered by blocking the upstream protein kinases MEK1/2 (mitogen-activated protein
kinase 1/2). ERK1/2 kinases affect the function of the A-type potassium channel Kv4.2 [55]
and voltage-dependent calcium channels in sensory neurons [56]. However, ERK1/2 ki-
nases are activated in both neurons and glia after nerve and spinal cord injury, which
causes the development of hypersensitivity [8,16,21,57]. The available literature clearly
indicates that ERK activation is crucial for the development of neuropathic pain symptoms
because it causes the secretion of many pronociceptive factors, such as TNFα, IL-1β, iNOS,
and nNOS [8,21,22,58]. It has already been shown that the intrathecal injection of selective
MEK-ERK pathway inhibitors, such as U0126 [57,59], PD198306 [60], and PD98059 [8,16,22],
reduces neuropathic pain symptoms in rodent models. Moreover, it has been demonstrated
that PD98059 reduces nerve injury and elevates the levels of p38, ERK1/2, JNK, and prono-
ciceptive factors such as IL-1beta, IL-6, and iNOS [22]. The latest research also indicates
that repeated intrathecal injections of U0126 [59] and PD98059 [22] potentiate morphine
and/or buprenorphine analgesia in rats with neuropathic pain. Moreover, PD98059 delays
morphine tolerance development in rats [30]. Interestingly, it was recently shown, using
an oxaliplatin-induced neuropathic pain model, that the activation of ERK1/2 kinases
promotes the expression and activation of CREB, which leads to an increase in Nav1.6
protein expression, enhancing neuronal excitability and evoking pain [61]. The results of
numerous studies clearly indicate the important role of the MEK/ERK signaling pathway
in neuropathic pain.

c-Jun N-terminal kinase (JNK) is the third major member of the MAPK family, with
three isoforms, JNK1, JNK2 and JNK3 [62]. JNKs have been revealed to be involved in
neurodegeneration and inflammatory responses [7,62–64]. In mammals, the JNK1 and
JNK2 proteins are ubiquitously expressed, whereas JNK3 is found almost exclusively in the
brain [65]. The results show that JNK3 is present in neurons, but JNK1 is mainly expressed
in nonneuronal cells, including immune cells [7,66,67]. JNK1 and JNK2 are expressed in the
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spinal cord [7]; however, JNK1 is predominantly upregulated in astroglial cells after nerve
injury [7,22,68]. Compared to p38 and ERK, much less is known about how JNK regulates
nociception. To date, JNK activation appears in DRGs in primary sensory neurons after
nerve injury but only in the early phase of neuropathy (until day 10) [7]. In contrast, at the
spinal cord level, JNK upregulation is observed in astrocytes over a long period of time.
Therefore, it is suggested that this kinase is especially important with respect to the persis-
tence of neuropathic pain. It was already shown that SP600125, a small-molecule inhibitor
of JNK1/2/3, diminishes spinal nerve ligation-induced neuropathic pain [7] and prevents
hypersensitivity induced by the antiretrovirals zalcitabine and stavudine in mice [69]. Simi-
larly, the intrathecal administration of D-JNKI-1, JNK1/2/3 inhibitor, diminishes spinal
nerve ligation-induced hypersensitivity by suppressing the phosphorylation of c-Jun in
spinal astrocytes [7]. Moreover, the infusion of D-JNKI-1 into the L5 DRG prevented,
but did not reverse, previously established tactile hypersensitivity [7]. In summary, JNK
activation in the DRG and spinal cord plays distinct roles in regulating the development
and maintenance of neuropathic pain, respectively. Targeting the JNK pathways in glia
and sensory neurons may represent a novel effective treatment for intractable neuropathic
pain symptoms.

In summary, taking into account both the literature and our many years of research,
we think that, in the treatment of neuropathic pain, pharmacological tools with broad-
spectrum actions are particularly valuable. In our review, we paid attention to substances
that not only have a beneficial effect on kinases from the MAP family but also influence
several nociceptive factors listed as targets in Table 1. We focused on four substances,
briefly presenting their mechanism of action, impacts on nociceptive factors and effects on
opioid treatment efficacy in neuropathy. In the following sections, we discuss in detail the
importance of minocycline, astaxanthin, fisetin, and peimine in nociceptive transmission
and present data on their analgesic effects on neuropathic pain. Additionally, we also
include information about other properties of these substances that are not directly related
to nociception but are useful from a clinical point of view.

Table 1. Summary of suggested targets of minocycline, astaxanthin, fisetin, and peimine and their
influence on important factors in nociception and on the effectiveness of opioid treatment in various
animal models of neuropathic pain.

NEUROPATHIC PAIN

SUBSTANCE
SUGGESTED

DIRECT
TARGETS

NEUROPATHIC
PAIN ANIMAL

MODELS

INFLUENCE
ON

IMPORTANT
FACTORS IN

NOCICEP-
TION

EFFECT ON
OPIOID

TREATMENT
EFFECTIVENESS

Minocycline
p38 [42,70,71]

ERK [72]
MMP9 [73]

CCI (mouse)
[74,75]

CCI (rats)
[76,77]

SCI (rats) [78]
STZ (rats) [79]
SNL (rats) [70]
STZ (mouse)

[80]

iNOS ↓ [81]
IL-1β [82]
IL-6 ↓ [26]

IL-18 ↓ [26]
MMP9 ↓ [26]
MMP2 ↓ [26]
XCL1 ↓ [83]

pERK ↓ [72,84]
PI3K ↓ [84]

morphine ↑
[26,74]

Astaxanthin

p38 [85]
ERK [85]

NF-κB [86]
NR2B [87]
ROS [88]

SNL (mouse)
[85]

CCI (rat) [89]
SCI (rat) [87]
CCI (mouse)

[90]

IL-1β ↓ [85]
IL-6 ↓ [85]
IL-4 ↑ [85]

IL-10 ↑ [85]
pERK ↓ [85]
pp38 ↓ [85]

NF-κB ↓ [85]

morphine ↑ [90]
buprenorphine

↑ [90]
oxycodone ↑

[90]
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Table 1. Cont.

NEUROPATHIC PAIN

SUBSTANCE
SUGGESTED

DIRECT
TARGETS

NEUROPATHIC
PAIN ANIMAL

MODELS

INFLUENCE
ON

IMPORTANT
FACTORS IN

NOCICEP-
TION

EFFECT ON
OPIOID

TREATMENT
EFFECTIVENESS

Peimine

p38 [91]
ERK [92]
JNK [92]

NF-κB [92]
Kv1.3 [93]

Nav1.7 [93]

CCI (mouse)
[90] __________ morphine ↑ [90]

Fisetin

p38 [94]
ERK [95]
Pi3K [96]

NF-κB [97]
5HT7 [98]

GABA [99]

CCI (mouse)
[98]

CCI (mouse)
[90]

STZ (mouse)
[99]

STZ (rat) [100]

IL-6 ↓ [100]
TNFα ↓ [100]
NF-κB↓ [100]
NRF2 ↑ [100]

morphine ↑ [90]
oxycodone ↑

[90]

Abbreviations: spinal nerve ligation model (SNL); chronic constriction injury of the sciatic nerve model (CCI);
spinal cord injury model (SCI), streptozotocin-induced diabetic model (STZ), interleukin (IL); inducible nitric oxide
synthase (iNOS); chemokine-C-motif ligand 1 (XCL1); tumor necrosis factor alpha (TNFα); reactive oxygen species
(ROS); complement component 1q (C1q); microglia/macrophage markers (Iba, CD11b/c), astroglia marker (GFAP);
matrix metalloproteinases (MMP); p38 Mitogen-Activated Protein Kinase (p38MAPK); Extracellular signal-
regulated kinases (ERK); phosphoinositide 3-kinase (PI3K); Nuclear factor kappa B (NF-κB); glutamate N-methyl-
D-aspartate receptor subunit NR2B (NR2B); 5-hydroxytryptamine 7 receptor (5-HT7); Gamma-Aminobutyric
Acid receptor (GABA); Nuclear factor erythroid 2-related Factor 2 (NRF2); ↓decrease; ↑ increase.

3. MMPs and Neuropathic Pain

Recently, there has been an increasing amount of new information about the important
role of matrix metalloproteinases (MMPs) in the development of neuropathy. MMPs are
involved in many proteolytic processes that require matrix remodeling in both physiological
and pathological conditions. A previous study showed that MMPs were strongly activated
after CNS and PNS injury, contributing to disruption of the blood–brain barrier and
enabling the influx of immune cells into the nervous system [101]. Numerous studies
indicate that MMP-9 and MMP-2 are involved in nociception. In 2008, it was documented
for the first time that L5 spinal nerve ligation induces a quick (24 h after injury) rise in
MMP-9 levels in the DRGs of rats. The authors also showed that the level of MMP-2 did
not increase until day 7, but lasted up to 21 days [102]. The published results suggest that
MMP-9 is responsible for the initiation, while MMP-2 is responsible for the maintenance,
of neuropathic pain [102]. Later, it was described that sciatic nerve injury also strongly
enhanced the levels of MMP-9 and TIMP-1 (tissue inhibitor of metalloproteinase 1) not
only in DRGs but also within the spinal cord [26]. Moreover, it was reported that after
axon damage, Schwann cells release a large amount of MMP-9, which contributes to the
initiation of macrophage infiltration and degradation of myelin basic protein [103,104]. As
a consequence, neuron hypersensitivity occurs, and sensitization develops [105].

Importantly, pharmacological studies conducted in parallel confirmed the important
role of MMP-9 in the development of neuropathic pain symptoms. It has been suggested
that an intrathecal injection of MMP-9 evokes neuronal hypersensitivity by transforming
inactive proIL-1beta to the active IL-1beta form [102]. As a result, there is increased
excitability of neurons and uncontrolled activation of microglia in the dorsal horn of the
spinal cord [26,102].

Notably, MMP-2 also cleaves IL-1β; however, it activates astrocytes at later time
points [102]. Moreover, it was revealed that both the gene deletion of MMP-9 or MMP-9
siRNA administration reduced the development of hypersensitivity in animal models of
neuropathic pain [101,102] Similarly, the preemptive and repeated administration of MMP-
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9 inhibitor-I for five days after nerve injury delayed hypersensitivity development [102].
Furthermore, the intrathecal administration of antibodies against IL-1beta reduces MMP-
9-induced hypersensitivity [102]. Additionally, the administration of TIMP-1 diminishes
the development of neuropathy to a similar extent [102]. The results obtained by many
researchers indicate that time-dependent changes in MMP-2 and MMP-9 levels offer differ-
ent options for the treatment of neuropathic pain [102], and that blocking MMP-9 appears
to be effective in inhibiting the development of hypersensitivity.

4. MINOCYCLINE—A MAPK and MMP Modulator in Neuropathic Pain

Considering the important role of MAPKs and MMPs in the development of neuro-
pathic pain, it can be assumed that substances which affect these factors will also influence
nociception. Previous studies have identified minocycline, a second-generation tetracy-
cline antibiotic that acts against both Gram-positive and Gram-negative bacteria, as one
of these substances [106–109]. Minocycline is a highly lipophilic molecule that can easily
pass through the blood–brain barrier [108,110], which enables its use in the treatment of
many diseases [107,108,111–125]. Numerous data in the literature indicate that, although
minocycline exhibits effects characteristic of antibiotics, it also exerts other biological
properties, such as anti-inflammatory, antioxidant, antiapoptotic and immunomodula-
tory properties [106]. What is more, minocycline also plays a neuroprotective role, which
has been confirmed in experimental models of ischemia [123,124], brain [125] and spinal
cord [111,112,122] injury, and several neurodegenerative conditions [113–117]. Moreover,
preclinical data have confirmed the ability of minocycline to prevent tumor growth [126]
and human immunodeficiency virus replication [127].

Importantly, numerous studies have indicated that minocycline reduces neuropathic
pain symptoms not only in animal models [26,74,75,81,128–130] but also in humans [131].
In 2006, Piao et al. showed that the molecular mechanism of minocycline’s action is the
inhibition of p38MAPK in microglia, while in 2013, Niimi et al. provided evidence of
its ability to inhibit the activity of MMP-9 [73]. The crucial role of both these molecular
targets of minocycline in neuropathic pain is beyond doubt. It was already shown that
repeated intraperitoneal and intrathecal minocycline administration strongly diminished
microglial activation [11,26,37] by reducing the activation of p38 kinase [11,42]. The inhibi-
tion of microglial activation has very important consequences, since these cells have already
been shown to be the source of many factors with pronociceptive properties [132,133]. It
has already been demonstrated that repeated minocycline administration downregulates
pronociceptive factors (IL-6 and IL-18) but does not influence antinociceptive factors (IL-1α,
IL-4, and IL-10) [26]. Moreover, in vitro studies showed that minocycline reduces the
activation of M1-polarized microglia but does not affect the beneficial M2-polarized mi-
croglia [26,103]. The critical role of MMP-9 in the development of neuropathic pain was
also confirmed in animal models, as described above. Interestingly, the MMP-9 inhibitor
(MMP9-INH. I) was more effective at diminishing neuropathic pain symptoms than a
selective p38MAPK inhibitor (SB203580) [26]. Therefore, in our opinion, the excellent anal-
gesic effect of minocycline is related to the direct inhibition of both MMP-9 and p38MAPK,
and consequently, after repeated administration, it indirectly affects the levels of spinal
pronociceptive factors (IL-1β [82] IL-6 [26]; IL-18 [26]; iNOS [81]; XCL1 [83], MMP-2 [26])
and kinases (pERK [72,84]; PI3K [84]). Importantly, previous studies have revealed that pre-
emptive and repeated intrathecal or intraperitoneal minocycline administration potentiated
morphine analgesia [75,130]. Similar results were obtained after intrathecal coadministra-
tion of minocycline with selective ligands of the MOP (DAMGO), KOP (U50,488H) and
NOP (nociceptin) receptors [129,130]. Notably, minocycline coadministered with morphine
strongly delayed the development of morphine tolerance [74]. Its beneficial effect is proba-
bly related to the ability of this substance to silence microglial activation, which reduces
the production of pronociceptive factors that are capable of exhibiting anti-opioid activity,
as suggested by many studies [22,132–142]. These newly discovered properties of minocy-
cline are very promising from a clinical point of view, as there is still a need for drugs
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that improve the effectiveness of opioid treatment in patients suffering from neuropathic
pain, and that inhibit or delay the development of tolerance to its analgesic effect. The
latest data suggest that minocycline has beneficial effects on relieving diabetes-induced
or chemotherapy-induced neuropathic pain in humans [131]. Of particular interest are
studies indicating that, apart from hypersensitivity reduction, minocycline in a rat model of
streptozotocin-induced diabetic neuropathy also has a beneficial effect on cardiodynamic
parameters [143] and inhibits kidney damage [144].

In summary, minocycline restores the neuroimmunological balance that is biased
toward pronociceptive factors in the development of neuropathic pain. The proposed
mechanisms by which minocycline produces its analgesic effects are presented in brief
in Scheme 1. Numerous studies provide a rational basis for the further evaluation of
minocycline in the treatment of neuropathic pain. A safe translation from animal studies to
clinical trials is still challenging. Although minocycline is a well-tolerated drug it exhibits
some side effects [120,145,146]; therefore, more studies are still needed.
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IL-1β [73,102]. (B) The influence of minocycline on activation of cells important for neuropathic
pain development as proposed by in vitro [26,83] and in vivo [26,83] studies; and (C) the influence
of minocycline on opioid effectiveness in neuropathic pain models [74]. Abbreviations: mitogen-
activated protein kinases (MAPK); extracellular signal-regulated kinase (ERK); p38 mitogen-activated
protein kinase (p38); c-Jun N-terminal kinase (JNK); nuclear factor kappa B (NF-κB); inducible nitric
oxide synthase (iNOS); nitric oxide (NO); matrix metalloproteinase 9 (MMP9); tumor necrosis factor
α (TNFα); interleukin 1 beta (IL-1β); interleukin 6 (IL-6); interleukin 18 (IL-18).

5. NRF2 and Neuropathic Pain

Recent studies have highlighted the potential role of the nuclear factor erythroid
2-related factor 2 (NRF2) pathway in the modulation of neuropathic pain. One of the mech-
anisms implicated in the pathogenesis of neuropathic pain is oxidative stress, characterized
by an imbalance between reactive oxygen species (ROS) production and antioxidant de-
fense mechanisms. NRF2 is a transcription factor that plays a crucial role in cellular defense
against oxidative stress [147]. Under normal conditions, NRF2 is localized in the cytoplasm
and bound to Kelch-like ECH-associated protein 1 (KEAP1) [147]. NRF2 is the product
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of the NFE2L2 gene and a member of the cap ‘n’ collar subfamily of basic-leucine zipper
(bZip) transcription factors [148]. NRF2 contains a bZip domain at the C-terminus that is
responsible for the formation of heterodimers with other bZip proteins [149]. In response to
oxidative stress, NRF2 dissociates from KEAP1, translocases into the nucleus, and by these
heterodimers influences approximately 250 human genes located at the regulatory enhancer
sequence known as the antioxidant response element (ARE), leading to the upregulation of
various antioxidant and cytoprotective enzymes. Studies have shown that NRF2 activation
exerts a neuroprotective effect [150].

In animal models of neuropathic pain, NRF2 activation has been shown to attenuate
hypersensitivity and reduce neuronal damage [151,152]. This effect is mediated through
the upregulation of antioxidant enzymes, such as heme oxygenase-1 (HO-1), superoxide
dismutase (SOD), and glutathione peroxidase (GPx), which scavenge ROS and protect
neurons from oxidative damage. Additionally, NRF2 activation inhibits the production of
proinflammatory cytokines, such as TNF-α and IL-1β, which contribute to neuropathic
pain hypersensitivity [153]. Interestingly, pharmacological, and genetic research reports
crosstalk between NF-κB and NRF2, such that the absence of NRF2 can exacerbate NF-κB
activity, leading to increased cytokine production. Moreover, NF-κB can modulate the
transcription and activity of NRF2 [154]. In our opinion, understanding these relationships
in experimental models should provide insights into the development of pharmacological
tools and more effective therapies for neuropathic pain.

Only a few selective NRF2 modulators have been studied in animal models of neu-
ropathy to date. One of these substances is sulforaphane, a natural compound found in
cruciferous vegetables such as broccoli and cabbage [155]. It has been shown to activate
NRF2 and exert neuroprotective effects [156]. Studies have demonstrated that sulforaphane
administration can reduce neuropathic pain behaviors in animal models by reducing ox-
idative stress [157,158]. The latest published data indicate that sulforaphane also increases
the effectiveness of morphine treatment in neuropathy [157]. Another NRF2 modulator is
dimethyl fumarate, which was recently shown to reverse hypersensitivity induced by nerve
damage in male and female mice by reducing the injury-induced elevation in IL-1β, CCL2
and TNFα levels [159]. The advantage of dimethyl fumarate is that it is already approved by
the FDA for the treatment of multiple sclerosis. Therefore, clinical trials could be initiated
to determine its usefulness in the treatment of neuropathic pain of various etiologies [160].
Dimethyl fumarate activates NRF2 by covalently modifying KEAP1, leading to NRF2
release and the subsequent upregulation of antioxidant enzymes [161]. Preclinical studies
have shown that dimethyl fumarate administration can alleviate neuropathic pain symp-
toms by reducing oxidative stress and modulating neuroinflammatory responses [159,162].
Bardoxolone methyl, which is also an activator of NRF2, showed promising results in
preclinical studies in the treatment of neuropathic pain caused by nerve damage [90] and di-
abetes [90,163]. Moreover, the administration of morphine, buprenorphine and oxycodone
preceded by the injection of bardoxolone-methyl effectively alleviated tactile and thermal
hypersensitivity after sciatic nerve injury [90]. Taking into account the available literature
and our own studies, we believe that, from a clinical point of view, the regulation of NRF2
in neuropathy is extremely important, and that pharmacological modulation of this factor
may contribute to more effective polytherapy.

6. ASTAXANTHIN—A MAPK and NRF2 Modulator in Neuropathic Pain

Taking into consideration the substantial influence of MAPKs and NRF2 on neuro-
pathic pain development, it can be expected that their modulators would exert excellent
analgesic properties. The available literature demonstrates that astaxanthin, a naturally
occurring carotenoid that belongs to the xanthophyll family, which is found in various
marine organisms, such as microalgae, krill, shrimp, and salmon, is one of these modu-
lators. Astaxanthin is known for its potent antioxidant activity and has been shown to
be significantly more effective than other well-known antioxidants, such as vitamin C,
vitamin E, and beta-carotene [164]. The molecular structure of astaxanthin enables it to
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neutralize free radicals and protect cells from oxidative damage and to reduce the expres-
sion levels of pronociceptive factor genes [165]. This makes it potentially beneficial for
conditions associated with chronic inflammation, such as arthritis, cardiovascular diseases,
and neurodegenerative disorders [166].

A study from 2018 evaluated the analgesic effect of trans-astaxanthin following three
weeks of oral administration in mice exposed to sciatic nerve injury [167]. This substance
not only ameliorated symptoms of thermal and mechanical hypersensitivity but also re-
duced depressive-like behaviors induced by long-term neuropathic pain. Additionally, it
revealed that the analgesic action of astaxanthin is relatively fast, which may be due to
its ability to cross the blood–brain and blood–spinal cord barriers, and even more inter-
estingly, these pain-relieving effects were observed as quickly as four days after the last
administration [167]. This effect is a result of its beneficial influence on the serotonergic
system and the kynurenine pathway, and the downregulation of pronociceptive cytokines
such as IL-1β, IL-6 and TNFα in the spinal cord in mice after sciatic nerve injury [167].
A subsequent study performed in rats following compression spinal cord injury revealed
that an intrathecal injection of astaxanthin attenuated neuropathic pain development and
reversed motor dysfunction, which is associated with a reduction in elevated levels of p-p38
MAPK, NR2B and TNFα in the spinal cord [87]. The analgesic effect of astaxanthin was also
confirmed in other studies conducted on rats after spinal cord injury, where protein analysis
showed decreased activation of ERK1/2 and increased activation of AKT after treatment
with this drug [168]. Moreover, an additional mechanism by which astaxanthin may exert
an analgesic effect is its influence on NMDA receptors. In silico molecular docking studies
revealed that astaxanthin fits into the inhibitory binding pocket of the NMDA receptor, and
especially into that of NR2B, a subunit important for nociception [89]. It was also shown
that, using in vitro studies on C6 glial cells, astaxanthin administration reduced LPS-evoked
inflammation by decreasing the activation of astrocytes, which are known to be important
in the progression of neuropathic pain [89]. Recent research performed on spinal nerve
ligation-exposed mice also confirms the analgesic properties of astaxanthin. The study
found that astaxanthin could effectively inhibit neuroinflammation by reducing p-ERK1/2
and p-p38 MAPK activation and the nuclear translocation of NF-κB p65 [85]. In recent
years, numerous studies have suggested that a very potent target of astaxanthin is NRF2. It
was shown that astaxanthin upregulates the expression of NRF2-dependent antioxidant
enzymes and phase II detoxifying enzymes, which help combat oxidative stress and in-
flammation [169,170]. In complete Freund’s adjuvant-induced inflammatory pain in mice,
astaxanthin relieved mechanical and thermal hypersensitivity and inhibited the inflamma-
tory response [171]. Although the anti-inflammatory, antioxidative and anti-neuropathic
effects of astaxanthin have been previously highlighted, its peripheral antinociceptive
mechanisms are not fully understood. Newer studies also suggest the involvement of the
l-arginine/NO/cGMP/KATP pathway in the analgesic effect of astaxanthin [172]. Moreover,
it was also reported that the intrathecal administration of astaxanthin in mice subjected
to sciatic nerve injury increased the effectiveness of morphine, buprenorphine and oxy-
codone [90]. Importantly, in 2023, the results of a multicenter clinical trial were published,
showing that the drug FlexPro MD®, containing astaxanthin, is well tolerated and can be
effectively used to treat pain in patients with osteoarthritis [173]. Additionally, there are
data that suggest that astaxanthin may influence different states that sometimes co-occur
with neuropathic pain and are related to its etiology; for example, it has preventive effects
against diabetes, as indicated by lower glucose levels after supplementation with this
substance [174,175]. There are also initial reports indicating that astaxanthin can block the
proliferation of cancer cells, which is also a promising prognostic, because neuropathic
pain often develops as a result of tumors [176,177]. What is more, this substance also exerts
neuroprotective [178] and cardioprotective [179] properties. The suggested targets affected
by astaxanthin are presented in brief in Scheme 2. Further research, primarily preclinical
research, should be conducted to determine the usefulness and mechanism of action of
astaxanthin in neuropathies of various etiologies.
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the aforementioned pronociceptive factors [86]; ® inhibition of the ROS production, which are
involved in maintenance of persistent pain [88]; ¯ activation of NRF2, which causes the dissociation
of keap1 with translocation of NRF2 to the nucleus, and as a consequence, an increase in HO-1
synthesis, which evokes reduction of pronociceptive factors levels, and simultaneously increases the
production of antinociceptive cytokines [171]; ° inhibition of the NR2B, NMDA receptor subunit,
which, as a consequence, reduces Ca2+ mobilization and diminishes hypersensitivity [87]. (B) The
influence of astaxanthin on the activation of cells important for neuropathic pain development as
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effectiveness in a neuropathic pain model [90]. Abbreviations: mitogen-activated protein kinases
(MAPK); extracellular signal-regulated kinase (ERK); p38 mitogen-activated protein kinase (p38);
c-Jun N-terminal kinase (JNK); nuclear factor kappa B (NF-κB); tumor necrosis factor α (TNFα);
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(HO-1); N-methyl-D-aspartate receptor (NMDA); NMDA receptor subunit epsilon-2 (NR2B); reactive
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7. NF-κB and Neuropathic Pain

Nuclear factor kappa B (NF-κB) is a pleiotropic protein transcription factor that is acti-
vated in response to a wide variety of immune stimuli [180,181]. Recently, numerous papers
have indicated an essential role of the NF-κB pathway in pain [21,22,44,59,182–184]. In the
central nervous system, NF-κB primarily exists as a p50/p65 heterodimer [180,185,186] and
its activation is mediated via two distinct kinase-dependent pathways, classical (canonical)
and alternative (noncanonical). For nociception, the classical pathway seems to be the
most important since it is initiated by many receptors, including cytokine receptors and
TLRs. [187,188].

It is currently well established that after nerve damage, activated NF-κB influences
the expression of many genes, which contributes to the production of many nociceptive
factors [21,119,182,184,189]. Moreover, increased NF-κB activity has been demonstrated
not only in the DRGs but also in the spinal cord of various neuropathic pain model
animals [21,22,44,182,184,190,191]. Recently, it was also shown that the levels of the prono-
ciceptive factors TNFα and IL-6, which are involved in neuropathic pain development after
spinal cord injury, can be decreased by inhibiting the TLR4/MyD88/NF-κB pathway [192].
Similarly, after sciatic nerve injury, the selective inhibition of NF-κB reduces hypersensi-
tivity, which has been shown to be associated with beneficial effects on the levels of the
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pronociceptive factors IL-6 and iNOS [182]. Interestingly, repeated intrathecal administra-
tion of parthenolide (an NF-κB inhibitor) increases microglial activation after sciatic nerve
injury in rats [21], although it provides pain relief and increases the analgesic properties
of morphine [21,59]. These surprising results were partly explained by in vitro studies, in
which it was shown that parthenolide, apart from activating microglia, reduces the levels
of pronociceptive factors produced by M1 microglia (iNOS, IL-1β, IL-18) and increases
the levels of antinociceptive factors produced by M2 microglia (TIMP1, IL-10) [21,59]. It is
already known that parthenolide directly downregulates NF-κB and probably indirectly
modulates p38 and ERK1/2 kinase [21,59]. In conclusion, the available literature indicates
that the inhibition of NF-κB may directly or indirectly alleviate neuropathic pain symptoms
and promote neuroprotective microglial M2 polarization.

8. PEIMINE—A MAPK and NF-κB Modulator in Neuropathic Pain

A very interesting substance in terms of its potential analgesic effect and its ability
to targets MAPKs and NF-κB is peimine. It is a natural compound that belongs to a class
of substances known as amaryllidaceae alkaloids. It is primarily found in plants of the
Amaryllidaceae family, such as the Chinese herb Fritillaria thunbergii [193]. This substance
has been studied for its various biological activities, including its anti-inflammatory, antiox-
idant, antitumor, and antiviral properties [194]. It has been shown that peimine is able to
inhibit both the growth of cancer cells and inflammation in animal models [195,196]. In
Chinese medicine, it has been claimed to promote lung infection recovery, reduce phlegm,
and relieve cough symptoms [194]. There are only a few studies on the pain-relieving effects
of this compound. It was shown that peimine inhibits the writhing reaction induced by
acetic acid in mice [197] and strongly reduces hypersensitivity to mechanical and thermal
stimuli in mice after sciatic nerve injury [90]. Moreover, the administration of peimine
with opioids resulted in more effective attenuation of tactile hypersensitivity in the case of
morphine and oxycodone, while thermal hypersensitivity was more effectively reduced in
the case of administration with morphine or buprenorphine [90]. The mechanism of the
analgesic action of peimine in neuropathic pain has not yet been fully elucidated but it
may be related to its beneficial effect on MAPKs and NF-κB. Moreover, emerging studies of
peimines conducted in vitro indicate a very broad spectrum of activity. It has been shown
that this substance can not only block the Nav1.7 ion channel but also preferentially inhibit
the Kv1.3 ion channel [93], which are channels closely involved in nociceptive transmission.
It was also recently pointed out that peimine targets nAChRs with high affinity, which
might account for its anti-inflammatory actions [198]. The in vitro experiments performed
on chondrocytes provide evidence that peimine can inhibit the IL-1β-induced activation of
MAPK [91]. Moreover, a study on human mast cells proved that peimine reduced MAPK
phosphorylation, downregulated nuclear NF-κB expression, and consequently inhibited
the production of pronociceptive cytokines such as IL-6, IL-8, and TNFα [195]. Peimine
significantly inhibits the phosphorylation of p38, ERK and JNK and decreases p65 and IκB
in lipopolysaccharide-stimulated RAW 264.7 macrophages [92]. The suggested mechanisms
of action of peimine are presented in brief in Scheme 3. Notably, the pharmacokinetics of
peimine are sex-dependent; this drug is slowly eliminated from the plasma of male but not
female Sprague–Dawley rats, and there are also substantial gender-related differences in
pharmacokinetic parameters [194].

Undoubtedly, further research on peimine is needed to assess its usefulness in the
treatment of neuropathic pain; however, according to the latest reports, this substance may
have a toxic effect on the heart [194]. Importantly, we do not know whether the doses of
peimine that could produce an analgesic effect will cause any side effects. At this point,
this substance has enormous therapeutic potential that needs to be further explored.
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9. PI3K/AKT and Neuropathic Pain

Phosphoinositide 3-kinase (PI3K) is a lipid kinase that modulates cell differentiation,
proliferation, migration, and death by activating the downstream target protein kinase
B, known as AKT [200,201]. Importantly, disorders in the functioning of the PI3K/AKT
pathway have already been demonstrated in many diseases, including cancer, diabetes,
cardiovascular diseases and neurological diseases [202]. Research conducted over the
years shows that PI3K is closely involved in long-term potentiation of synaptic plastic-
ity [203–205], while more recent studies clearly suggest its important role in nociceptive
transmission [206–210]. Evidence indicates that PI3K and AKT are crucial mediators that
lead to the activation of NF-κB, which plays an important role in the production of no-
ciceptive factors (e.g., IL-1β, TNFα) in neuropathic pain [211]. Several pharmacological
studies have indicated that the blockade of PI3K reduces hypersensitivity in animal pain
models of inflammatory and neuropathic pain [206,207,209,212,213]. Intrathecal injection
of PI3K and AKT inhibitors (wortmannin, LY294002, deguelin) started before L5 spinal
nerve ligation reduced mechanical and thermal hypersensitivity in rats [207]. There are
also reports showing that repeated treatment with LY294002 attenuates hypersensitivity in
rats with painful diabetic neuropathy [214]. Surprisingly, after sciatic nerve injury in mice,
it was shown that a single intrathecal administration of a selective PI3K activator, namely,
740 Y-P, decreased mechanical and thermal hypersensitivity on day 7 [90]. Moreover,
single intrathecal administration of 740 Y-P combined with opioids (morphine, buprenor-
phine, oxycodone) relieves thermal, but not mechanical, hypersensitivity [90]. Further
research is required to explain the molecular mechanism of the observed effects and the
above-discussed discrepancies in the literature. In vitro studies have shown that the inhibi-
tion of the LPS-activated PI3K/AKT pathway in microglia diminishes the biosynthesis of
pronociceptive factors [215,216]. Additionally, it was also shown that PI3K influences the
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morphine-induced migration of microglia [217]. Taking into account the available studies
in the literature, it can be said with certainty that the role of the PI3K/AKT pathway in
the central nervous system is ambiguous and appears to be dualistic. For example, after
spinal cord injury, its activation prevents oxidative stress, inflammation and cell death,
while its inhibition prevents the formation of glial scars [218]. The roles and mechanism
of action of the PI3K/Akt pathway in the development of neuropathic pain evoked by
nerve or spinal cord injury and diabetes, and its involvement in opioid treatment effective-
ness, still need to be explained since the literature clearly suggests that this pathway has
therapeutic potential.

10. FISETIN—A MAPK, NF-κB and PI3K Modulator in Neuropathic Pain

Fisetin, a substance with wide therapeutic potential, which includes effects on MAPK,
NF-κB and PI3K, is a naturally occurring flavonoid compound found in various fruits
and vegetables such as strawberries, apples, and onions [219]. Fisetin administration has
been shown to have beneficial effects in preclinical animal models of diseases such as
Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, dementia, schizophrenia,
stroke, traumatic brain injury, and the aging process [220–226]. This substance evokes a vari-
ety of pharmacological effects, such as anti-allergic, cancer-preventive and neuroprotective
actions [227–229]. In 2015, it was shown that fisetin administration after oral drug treatment
relieved thermal hypersensitivity in mice exposed to sciatic nerve injury. Importantly, this
effect was a reversing action (not a prophylactic one) since the administrations started two
weeks following injury, which is when pain-related behavior was observed. In this study,
however, a reduction in mechanical hypersensitivity was not observed [98]. Interestingly,
subsequent studies showed that after the intrathecal administration of fisetin in mice post
sciatic nerve injury, both thermal and mechanical hypersensitivity were significantly re-
duced, and fisetin also improved the analgesic effect of morphine or oxycodone [90]. It was
also confirmed by others that fisetin oral administration can delay diabetic neuropathic
pain-related behavior in mice [99]. Although this chronic administration of fisetin did
not affect the symptoms of hyperglycemia in diabetic mice, it reduced severe oxidative
stress in the spinal cord, DRGs, and sciatic nerve. The analgesic properties of fisetin can be
explained not only by the beneficial effect of this substance on MAPK, NF-κB and PI3K but
also by its influence on the monoaminergic system. The use of a 5HT7 antagonist abolished
the effect caused by fisetin, and the administration of a serotonin precursor enhanced it [98].
Moreover, fisetin reduced the depressive and anxiety symptoms that co-occurred with
neuropathic pain [98]. It was also shown that the blockade of spinal GABAA receptors by
bicuculline completely counteracted fisetin analgesia, so these receptors are probably an
indirect target for this substance [99]. There are also data from studies conducted in a model
of diabetic neuropathy in rats showing that the oral administration of fisetin alleviated
hypersensitivity, which is associated with reduced levels of NF-κB and is probably a conse-
quence of pronociceptive IL-6 and TNFα [100]. Moreover, it has also been determined that
fisetin positively modulates the activity of microglia; in vitro studies have shown that this
substance inhibits the expression of iNOS, and, as a consequence, the production of NO and
IL-1β; the regulatory molecular mechanism of fisetin-induced HO-1 expression operates
through the PI3K/AKT and p38 signaling pathways [94]. The suggested factors important
in nociception affected by fisetin are presented in brief in Scheme 4. Importantly, the latest
data suggest that fisetin may have a positive effect on other states that may result in neuro-
pathic pain development; for example, an in vitro study showed that this substance acts as a
growth inhibitor of human oral squamous cell carcinoma [230]. Additionally, there are also
reports which indicate that fisetin exerts antihyperlipidemic [231] and antidiabetic [232]
properties. Understanding the molecular mechanisms of fisetin is essential to develop new,
safe, and effective strategies for the treatment of neuropathic pain. The improvement in the
effectiveness of opioid treatment after combined administration with fisetin, demonstrated
in experimental studies, opens new possibilities for combined therapy.
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and (C) the influence of fisetin on opioid effectiveness in neuropathic pain model [90]. Abbrevi-
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cal studies conducted with animal neuropathic pain models using selective and nonselec-
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cellular pathways underlying many pathophysiological processes may also improve the 
effectiveness of analgesics that are already in clinical use. In our opinion, neuropathic pain 
therapy should be based on nonselective drugs with a broad spectrum of action, which, 
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stances include minocycline, astaxanthin, fisetin, and peimine, which were considered to 
be effective in pain relief in behavioral studies; their beneficial properties result from their 
wide spectrum of action, among others, on various intracellular pathways. Importantly, 
these substances exert suitable analgesic properties in neuropathy models of various eti-
ologies and are also relatively safe for patients because some are already used in the clinic, 
not to relieve pain, but, for example, in the case of minocycline. in the treatment of bacte-
rial infections, acne, or rheumatoid arthritis. Formulations containing fisetin or astaxan-
thin are also broadly available to buy as dietary supplements with antioxidant properties. 

Scheme 4. (A) The possible mechanisms of fisetin action as indicated by various in vivo ¬ and
in vitro ® studies: ¬ inhibition of MAP kinases by fisetin, which in turn indirectly inhibits NF-
κB, and, as a consequence, the production of pronociceptive cytokines, such as IL-6, IL-1β and
TNFα [100], is lowered; influence on NF-κB activation, which causes a decrease in the synthesis of
pronociceptive factors [97]; ® inhibition of PI3K/AKT, which in turn influence the cAMP-response el-
ement binding protein (CREB) that impacts the expression of Nav1.6 sodium channels, which reduces
hypersensitivity but also decreases the production of ROS, which are confirmed to be responsible
for the maintenance of neuropathic pain [61,96,233]. (B) The influence of fisetin on the activation
of cells important for neuropathic pain development as proposed by in vitro studies [94,234]; and
(C) the influence of fisetin on opioid effectiveness in neuropathic pain model [90]. Abbreviations:
mitogen-activated protein kinases (MAPK); extracellular signal-regulated kinase (ERK); p38 mitogen-
activated protein kinase (p38); c-Jun N-terminal kinase (JNK); nuclear factor kappa B (NF-κB); tumor
necrosis factor α (TNFα); interleukin 1 beta (IL-1β); interleukin 6 (IL-6); reactive oxygen species
(ROS); phosphoinositide 3-kinase (PI3K); protein kinase B (AKT); cAMP response element-binding
protein (CREB).

11. Conclusions

The research on the selected multitarget substances discussed above indicates that
both MAPKs and factors such as NRF2, NF-κB, PI3K and MMP9 may become important
targets for future neuropathic pain therapies. This notion is supported by pharmacological
studies conducted with animal neuropathic pain models using selective and nonselective
pharmacological tools. Further research is clearly needed, as the modulation of intracellular
pathways underlying many pathophysiological processes may also improve the effective-
ness of analgesics that are already in clinical use. In our opinion, neuropathic pain therapy
should be based on nonselective drugs with a broad spectrum of action, which, by partially
inhibiting selected intracellular pathways strongly activated in neuropathy, will be able
to at least partially restore homeostasis. In our opinion, such valuable substances include
minocycline, astaxanthin, fisetin, and peimine, which were considered to be effective in
pain relief in behavioral studies; their beneficial properties result from their wide spectrum
of action, among others, on various intracellular pathways. Importantly, these substances
exert suitable analgesic properties in neuropathy models of various etiologies and are also
relatively safe for patients because some are already used in the clinic, not to relieve pain,
but, for example, in the case of minocycline. in the treatment of bacterial infections, acne,
or rheumatoid arthritis. Formulations containing fisetin or astaxanthin are also broadly
available to buy as dietary supplements with antioxidant properties. It is worth emphasiz-
ing that the results of behavioral tests also suggest their usefulness in therapy combined
with opioid drugs, the effectiveness of which decreases under neuropathic pain. We believe
that future research on these compounds should focus on a detailed understanding of the
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mechanisms of action of these substances, particularly in the context of gender differences
in different phases of neuropathic pain. Moreover, these studies, conducted on various
neuropathy models, should also take into account the ability of these substances to alleviate
neuropathic pain comorbidities (e.g., metabolic, autoimmune, viral or cancer diseases).
Overall, a detailed understanding of the pharmacokinetic profile and the impact of these
compounds on pathophysiological processes may contribute to the development of precise
and effective treatments for neuropathic pain, taking into account the individual condition
of patients.
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