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Abstract: Hypertrophic scars (HSs) develop due to excessive collagen deposition and abnormal
fibroblast proliferation during wound healing, significantly impacting patient quality of life. Three
dosages of GA ointments were administered to rabbit ear HS models to investigate the potential
efficacy and mechanism of gallic acid (GA) on HS. Daily application of ointment was performed
on the matrix group, the GA ointment groups, and the silicone gel group for 28 days. (No drug
treatment was performed on the skin and model groups as a blank group and vehicle group, and
silicone gel ointment was topically administered to the silicone gel group as a positive control group.)
Scar specimens were collected for histopathology analysis, RNA sequencing analysis, real-time
quantitative polymerase chain reaction, and Western blot analysis at the first, second, and fourth
weeks after the treatment. Low-dose and medium-dose GA effectively suppressed HS formation and
markedly decreased fibroblast infiltration levels and scar thickness. Moreover, decreased expression
of TRPC3 mRNA and TGF-β1, p-Smad2/3, and Smad2/3 protein was observed in the low- and
medium-dose GA groups and the silicone gel group. This study provides evidence for the efficacy of
GA in treating HS and sheds light on its potential underlying pharmacological mechanisms.

Keywords: gallic acid (GA); hypertrophic scar (HS); rabbit ear model; TGF-β/Smad; TRPC3

1. Introduction

Hypertrophic scar (HS) is a fibrous skin disease resulting from the abnormal prolifera-
tion of fibroblasts and excessive collagen deposition. It occurs after skin injuries, especially
burns, and can cause severe physical and psychological distress [1,2]. Various medical
treatments, including cryotherapy, laser therapy, drug therapy, and compression therapy,
are available for HS [3–6]. However, these treatments may lead to adverse reactions and the
appearance of new skin damage [7]. As a form of drug therapy, Chinese herbal medicine
treatment has gained attention due to its efficacy, minimal adverse reactions, and economic
convenience, providing a novel approach to HS treatment [8]. With increasing research
on herbal medicine and its ingredients, numerous studies have shown that some herbal
medicine extracts (such as galangin, asiaticoside, and emodin) can treat HS by inhibiting
the proliferation of fibroblasts, promoting fibroblast apoptosis, and reducing collagen
synthesis [9–11].

Gallic acid (GA) is a natural phenolic compound that is widely distributed in various
medicinal plants and has diverse biological and pharmacological activities, including
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antioxidant, anti-inflammatory, antibacterial, anticancer, and antifibrotic properties [12].
Polyphenols, including GA, have demonstrated therapeutic effects in treating chronic
skin diseases, such as psoriasis and vitiligo, and promoting wound healing and anti-
inflammation [13]. GA could inhibit tumor cell proliferation and promote tumor cell
apoptosis without adverse effects on normal cells [14]. Previous studies have demonstrated
that GA can induce apoptosis and necrosis in lung and HS fibroblasts [15,16]. However, its
effect on HS in rabbit ears has yet to be investigated.

Transforming growth factor beta-1 (TGF-β1), a critical cytokine in fibrotic diseases,
plays an essential role in cell growth, differentiation, adhesion, and apoptosis. It also
induces excessive extracellular matrix (ECM) deposition [17,18]. TGF-β1 stimulates the dif-
ferentiation of normal skin fibroblasts into myofibroblasts, which are responsible for a high
degree of collagen deposition and contraction, by upregulating the expression of α-smooth
muscle actin (α-SMA) [19,20]. Numerous studies have verified that TGF-β1 expression
is higher in HS than in normal skin tissue [21]. In the early stages of scarring, fibroblasts
synthesize and produce more TGF-β1, VEGF, collagen I, and collagen III, promoting mi-
crovessel formation and collagen deposition and leading to tissue proliferation [22]. During
HS formation, TGF-β1 binds to and activates its membrane receptor complex (composed of
TGF-βRI and TGFβ-RII). Activated TGF-βRI phosphorylates Smad2/3, thereby promoting
the transformation of fibroblasts into myofibroblasts, leading to abnormal ECM deposi-
tion [23]. TRPC3 (transient receptor potential cation channel subfamily C member 3) is
expressed in various tissues and participates in several physiological functions [24–26]. In
addition, studies have revealed that TRPC3 channels play a crucial role in the pathogenesis
of HS. HS contracture is associated with increased TRPC3 expression, inwards calcium
flow, and nuclear factor kappa B (NF-κB) activation. Additionally, human keloids show
higher TRPC3 expression levels than normal skin [27].

In the present study, three dosages of GA ointment were topically administered to a
rabbit ear scar model to investigate the impact of GA ointment on scar tissue, assess the
therapeutic potential of GA for HS, and elucidate its underlying mechanisms.

2. Results
2.1. Effect of GA Treatment on HS

According to general observations (Figure 1), the wound was epithelialized at the
beginning of the treatment. The epithelialized area was confirmed by macroscopic images
and a statistical analysis based on the degree of wound contraction. In our study, it was
observed that the completion time of wound re-epithelialization after GA and silicone
treatment was earlier than that in the HS and HSM groups (Supplementary Figure S5).
All groups, except for the skin group, had hard, red, or pink and distinctly raised HSs
before drug treatment. After 2–4 weeks of treatment, compared with the model group, the
low-dose and medium-dose GA-treated groups and the silicone gel group showed softer
scars with reduced thickness and area, and the scars gradually approximated the standard
skin color. In contrast, the high-dose GA group showed lightening of the scar color but
hardened textures after four weeks of treatment.

2.2. Effect of GA on the Histological Characteristics of HS

The HE staining results (Figure 2A and Supplementary Figure S1A) showed that
inflammation was attenuated at two and four weeks after treatment with medium-dose
GA and silicone gel, respectively. The model group showed denser and thicker collagen
fibers, abnormal accumulation of collagen fibers, more content, and disorderly arrangement
from Masson staining (Figure 2B and Supplementary Figure S1B). Both the number and
density of collagen fibers were reduced, and the disorganization of the collagen fibers’
arrangement was improved in the medium-dose GA and silicone gel groups compared
to the model group four weeks after treatment. The immunohistochemical staining for
CD31+ blood vessels in different groups is shown in the Supplementary Figure S3. Com-
pared to the HS group, the HSG5 group formed relatively fewer microvessels in 2 weeks
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after the application of GA, and the same trend was also observed in the HSG1 and HSG2
groups. Moreover, as shown in Supplementary Figure S4, the expression of TGF-β1 was
suppressed after the GA treatments on HS.
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Figure 1. Changes of HS in different groups after the treatments. HS, model group; HSM, matrix
group; HSG1, low-dose GA ointment group; HSG2, medium-dose GA ointment group; HSG5,
high-dose GA ointment group; HSS, silicone gel group; Skin, normal skin group, n = 58.

2.3. GA Reduces the SEI Index of HS

To evaluate the effect of GA treatment on the SEI, HE staining was performed,
and the results are shown in Figure 2C,D and Supplementary Figure S1C. The SEI in-
dex of the low-dose GA, medium-dose GA, and silicone gel groups was significantly
reduced after one week of treatment. The SEI index was 2.52 ± 0.11 in the model group,
2.36 ± 0.13 in the matrix group, 2.13 ± 0.20 in the low-dose GA group, 2.10 ± 0.14 in the
medium-dose GA group, 2.35 ± 0.03 in the high-dose GA group, and 1.82 ± 0.10 in the
silicone gel group. After four weeks of treatment, scarring was considerably attenuated in
the low-dose GA group (1.37 ± 0.04), the medium-dose GA group (1.39 ± 0.04), and the
silicone gel group (1.39 ± 0.03) compared with the model group (1.67 ± 0.07), suggesting
that treatment with GA could inhibit the proliferation of HS and reduce the degree of
proliferative augmentation.
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Figure 2. Histological staining, scar elevation index (SEI), and the Vancouver Scar Scale (VSS)
scores of each group after the treatments. HS, model group; HSM, matrix group; HSG1, low-dose
GA ointment group; HSG2, medium-dose GA ointment group; HSG5, high-dose GA ointment
group; HSS, silicone gel group; Skin, normal skin group. (A) HE staining of scar tissue after the
treatments. Magnification = ×400. Bar = 100 px. (B) Masson staining of scar tissue after the treatments.
Magnification = ×400. Bar = 100 px. (C) HE staining for SEI analysis on rabbit’s ear after the
treatments (the marked red boxes in the images were added to label the area on the overview images).
Magnification = ×20. Bar = 500 µm. (D) SEI in different groups. The SEI was decreased in the HSG1
and the HSG2 groups compared to the HSM group in the scar tissues after 4 weeks. (E) VSS scores
of each group before the treatments. (F) VSS scores of each group after one week of the treatments,
n = 58. The VSS was significantly decreased between the group of HSG2 and the group of HSM.
(G) VSS scores of each group after two weeks of the treatments. The VSS scores were significantly
decreased in the HSG1 and the HSG2 groups compared to the HSM group, n = 48. (H) VSS scores of
each group after four weeks of the treatments. The VSS scores were significantly decreased in the
HSG1 and the HSG2 groups compared to the HSM group. A column represents mean ± SD, n = 28.
* p < 0.05, ** p < 0.01, and *** p < 0.001, compared with the HS group. # p < 0.05, and ### p < 0.001,
when the HSG groups were compared with the HSM group. Data were analyzed using one-way
ANOVA with Tukey’s post hoc multiple comparisons test.

2.4. Total VSS Score Shows the Effect of GA on HS

Based on the total VSS score (shown in Figure 2E), no significant difference was
seen in the total VSS score between the groups before treatment. Notable differences
were observed in the medium-dose GA group (10.60 ± 1.22) and silicone gel group
(10.42 ± 1.07) compared to the model group (10.93 ± 1.10) after one week of topical
application (Figure 2F). There were significant differences among the low-dose GA group,
the medium-dose GA group, and the silicone gel group compared with the model group at
two weeks (Figure 2G) and four weeks (Figure 2H) after the topical applications, while the
high-dose GA group showed a significant decrease in VSS scores compared with the model
group at one week and two weeks. Nevertheless, no significant difference or decreasing
trend was observed compared with the model group four weeks after topical application.
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In summary, the color of the scars, the distribution of blood vessels, and the thickness and
texture of the scars gradually improved in the low-dose, medium-dose GA, and silicone
gel groups.

2.5. RNA-Seq Analysis Results

The RNA sequencing analysis revealed that, compared to normal skin tissue, HS
tissues had 3670 upregulated genes and 3484 downregulated genes among 7154 total
differentially expressed genes (Figure 3A). After the drug treatments, 3426 genes were
upregulated and 3608 genes were downregulated, for a total of 7034 differentially expressed
genes (Figure 3B). The three groups had 3897 common differentially expressed genes
(Figure 3C). The ECM-receptor interaction, PI3K-Akt signaling, and calcium signaling
pathways were remarkably enriched in HS tissue compared with normal tissue through
the KEGG enrichment analysis (Figure 3D). The heatmap of gene expression showed that
TGF-β and Smads played important roles in HS formation (Supplementary Figure S2). A
KEGG enrichment analysis of the differentially expressed genes in HS tissue after drug
treatments versus those in nontreated scar tissue (Figure 3E) revealed that drug treatments
significantly affected ECM-receptor interactions and the PI3K-Akt signaling pathway. These
data indicate that scar formation was associated with the accumulation of ECM and the
inflammatory response.
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Figure 3. RNA-Seq analysis of overall transcriptomic changes in different groups. (HS, model
group; HSG2, medium-dose GA ointment group; Skin, normal skin group.) (A) Volcano map of
differential gene expression between the Skin group and HS group. (B) Volcano map of differential
gene expression between HS group and HSG2 group. (Red represents upregulated genes, and blue
represents downregulated genes.) (C) Venn diagram of the number of shared unique differential
genes between groups. (D) KEGG enrichment analysis between the Skin group and HS group.
(E) KEGG enrichment analysis between the HS group and HSG2 group. (The size of the dots in the
graph indicates the number of differential genes annotated in the corresponding pathway, and the
shade of color indicates the level of significance).
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2.6. Effect of GA on the mRNA Expression of Smad2, Smad3, TGF-β1, and TRPC3 in HS

RT-qPCR was performed to verify the mRNA expression of Smad2, Smad3, TGF-β1,
and TRPC3 in each group at one week, two weeks, and four weeks after treatment (Figure 4).
The high-dose GA group showed reduced mRNA expression of Smad2 at two weeks after
treatment. After four weeks of treatment, the high-dose GA group failed to reduce the
mRNA expression of Smad2. Reduced Smad2 mRNA expression was observed in the low-
and medium-dose GA groups and the silicone gel group at two and four weeks of treatment.
The mRNA expression of Smad3 was reduced in the low-dose GA group and the silicone
gel group after two weeks of treatment, and no significant difference was observed in other
groups. In contrast, after four weeks of treatment, Smad3 levels were significantly higher
in the high-dose GA group. In addition, the mRNA expression of TGF-β1 was suppressed
in the low- and medium-dose GA groups, and the silicone gel group after two and four
weeks of treatment. The mRNA expression of TRPC3 was decreased in the medium- and
high-dose GA groups and the silicone gel group after treatment.
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Figure 4. The mRNA expression of Smad2, Smad3, TGF-β1, and TRPC3 in different groups after drug
treatment. Data were analyzed using one-way ANOVA with Tukey’s post hoc multiple comparisons
test. HS, model group; HSM, matrix group; HSG1, low-dose GA ointment group; HSG2, medium-
dose GA ointment group; HSG5, high-dose GA ointment group; HSS, silicone gel group; Skin, normal
skin group. A column represents mean ± SD, n = 4. * p < 0.05, compared with the HS group. The
black solid cycle is the sample from HS group, the black solid square is the sample from HSM group,
the black solid triangle is the sample from HSG1 group, the black solid inverted triangle is the sample
from HSG2 group, the black solid diamond is the sample from HSG5 group, the black hollow cycle is
the sample from HSS group, the black hollow square is the sample from Skin group.

2.7. Effect of GA on p-Smad2/3, Smad2/3 and TGF-β1 Protein Expression in HS

The protein expression levels of p-Smad2/3, Smad2/3, and TGF-β1 were verified by
Western blotting in each group at one week, two weeks, and four weeks after treatment
(Figure 5). No significant changes in the protein expression of p-Smad2/3, Smad2/3, and
TGF-β1 were observed one week after treatment. The protein expression of TGF-β1 and
p-Smad2/3 decreased in the low- and medium-dose GA groups and the silicone gel group
after two weeks of treatment. Additionally, Smad2/3 protein levels were reduced in the
medium-dose GA group. After four weeks of treatment, the low-dose GA group had
reduced the TGF-β1 and p-Smad2/3 protein expression. Meanwhile, at four weeks after
treatment, p-Smad2/3 protein levels showed a reduction in the low-dose, medium-dose,
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high-dose, and silicone gel groups. Smad activation was inhibited in the HSG1 group at 1,
2, and 4 weeks after GA treatment (Figure 5).
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3. Discussion

HS typically develops after surgery, trauma, and burns. Patients experience psycho-
logical stress from clinical issues such as pain, itching, and scar contracture [28]. The annual
sales of anti-scar medication exceed $12 billion, highlighting the importance of optimizing
scar treatments [29,30]. Despite many available therapies for HS, they have yet to meet
the demands of patients. The current treatment options remain insufficient, leaving much
room for improvement [8]. Therefore, developing new methods for the drug treatment of
HS is necessary to address this clinical problem.

The scar model of rabbit ears was used in our study. Masson’s trichrome staining was
employed to identify an increase in fibroblasts and microvessels during the early stage
of hypertrophic scarring. The distribution, thickness, and density of collagen between
H&E and Masson staining were compared. On Day 7 after the operation, there were
noticeable increases in H&E and Masson staining in the HSs vs. the adjacent uninjured skin
(model group). Compared to those in the skin group (control group), collagen fibers were
significantly thicker, denser, and more tangled in the HS group. In contrast, after treatment
with GA, a thinner dermal layer, a significant reduction in collagen deposition, and thinner
collagen fibers with a relatively more organized pattern were found in HS (Figure 2A,B).
On Day 28 after the operation, all groups showed a substantially reduced scar prominence
compared to that on Day 7. On Day 28, significant differences in scar thickness and
histological structure remained between groups, and the HSG2 group showed finer collagen
fibers and reduced density. However, there are some limitations to our study. Masson
trichrome staining provides information about the amount of collagen and localization
of collagen deposition. Compared to Masson trichrome staining, picrosirius red collagen
staining and microscopic evaluation under polarized light could better identify mature and
immature collagen and provide more information about the structure of collagen ECM.
Therefore, we plan to implement picrosirius red collagen staining in future studies.

Gallic acid (GA) is a natural phenolic compound that is widely distributed in various
medicinal plants with diverse biological and pharmacological activities, including antiox-
idant [31,32], anti-inflammatory [33,34], antibacterial, anticancer [35,36], and antifibrotic
properties [37]. Recent studies have shown that GA could be used as a therapeutic agent
for keloids. GA reduced the proliferation, migration, and invasion of keloid fibroblasts and
induced apoptosis by inhibiting the AKT/ERK signaling pathway [1]. HS and keloids are
both skin diseases characterized by pathological scarring and fibrous hyperplasia. However,
they differ in the duration and intensity of inflammation [38]. In pathological scarring, the
mRNA and protein expression of TGF-β1, PI3K, AKT, and mTOR were significantly higher
in fibroblasts than in normal skin tissue [39]. The AKT/ERK signaling pathway could
enhance the phosphorylation of Smad2/3, which, in turn, affects the TGF-β1/Smad signal-
ing pathway, and inhibiting the TGF-β1/Smad pathway could be beneficial for treating
pathological scarring [40].

TGF-β1 is crucial in promoting HS-related angiogenesis, myofibroblast differentiation,
and matrix deposition [41]. The TGF-β1 signal transduction process involves binding the
TGF-β1 ligand to the heteromeric complex of type II and type I receptors, followed by
the phosphorylation of the type II receptor, which activates type I receptors. These type I
receptors then activate downstream molecular signaling, thereby influencing the Smad2/3
signaling pathway (Figure 6) [42]. Smad (small mother against decapentaplegic) proteins
are signal transduction and transcriptional regulators that mediate multiple signaling
pathways [43]. There are eight different Smad proteins, which are mainly classified as
comediator Smad (Co-Smad), receptor-regulated Smad (R-Smad), and inhibitory Smad
(I-Smad) [20]. After being phosphorylated by type I receptors, Smad2 and Smad3 translo-
cate to the nucleus with Smad4 (Co-Smad) to bind to DNA transcription factors. This
regulates the abnormal deposition of ECM, which exacerbates HS [44,45]. Smad7 belongs
to the I-Smad class and can compete with R-Smads and interact with type I receptors.
This prevents the recruitment and phosphorylation of effector Smads and inhibits the
TGF-β/Smad signaling pathway [9]. GA significantly suppressed TGF-β1-stimulated hy-
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pertrophic scar fibroblast (HSF) contraction in a dose- and time-dependent manner [37]. GA
also induced growth inhibition, apoptosis, and necrosis in HSFs in a dose-dependent man-
ner [16,46]. Moreover, GA had high antiproliferative activity and significantly increased the
proportion of scar fibroblasts in the G0/G1 phase [47]. GA might potentially be developed
as a treatment for patients with hypertrophic scars.
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Although GA has been reported to regulate growth inhibition, apoptosis, and necrosis
in HSF, its effects and mechanisms in rabbit ear HS models have not been investigated [46].
To investigate the role of GA in rabbit ear HS models, the therapeutic efficacy of GA was
first evaluated through gross observation, histological evaluation, SEI, and VSS scores. The
results showed that treatments with GA ointment significantly reduced HS. Subsequently,
RNA sequencing technology was utilized to analyze the differential gene expression of
normal rabbit ear tissues, rabbit ear tissues of the HS model, and rabbit ear tissues after GA
treatments. The results demonstrated that the differentially expressed genes were primarily
associated with the ECM signaling pathway, which is closely related to the formation of
HS. TGF-β1, a mediator of ECM production and a stimulator of tissue regeneration and
injury repair, is a critical factor in the pathogenesis of HS [48]. Reducing ECM during
wound healing is one of the strategies to treat HS. Therefore, the roles of TGF-β1 and
its downstream pathways in HS were explored by further RT-qPCR and Western blot
experiments, and it was found that GA could improve HS by inhibiting the expression of
TGF-β1, Smad2/3, and p-Smad2/3 proteins. Immunohistochemical staining for TGF-β1
in different groups was also performed in our study. As shown in Supplementary Figure
S4, TGF-β1 could be suppressed after the GA treatment of HSs. Additionally, RT-qPCR
analysis demonstrated that GA treatment reduced the expression of TRPC3, indicating that
GA may also treat HS by downregulating TRPC3 expression.
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CD31, expressed on vascular endothelial cells, is often used to measure angiogene-
sis [49,50]. HS formation is linked to angiogenesis [51]. Therefore, to further investigate
the ability of GA to influence angiogenic processes during rabbit ear scar tissue formation,
a quantitative comparison of the density of CD31-positive vasculature in scar tissue sec-
tions was performed using immunohistochemical staining. As shown in Supplementary
Figure S3, the HSG5 group formed relatively fewer microvessels than the HS Group 2
weeks after the application of GA, and the same trend was also observed in the HSG1
and HSG2 groups. Moreover, prolonged wound healing usually results in hypertrophic
scarring. In general, the epithelialized area was confirmed by macroscopic images and
statistical analysis, and the time of complete epithelialization after wound modeling was
related to wound healing [52]. As shown in Supplementary Figure S5, compared with
the HS and HSM groups, the HSG and HSS groups significantly decreased the complete
wound-epithelialization time, indicating that GA and silicone gel could accelerate wound
healing while inhibiting scar formation.

This study provides evidence that GA exerts ameliorative effects on skin scar forma-
tion, potentially through modulation of the TGF-β1/Smad pathway (Figure 6). Nonetheless,
HS is a complex condition involving multiple signaling cascades, with the TGF-β1/Smad
and TRPC3 signaling pathways displaying crosstalk with other signaling pathways. Thus,
it is crucial to investigate other possible mechanisms of action of GA on HS in forthcoming
studies and delve deeper into its anti-fibrotic effects.

4. Materials and Methods
4.1. Materials

Different doses of GA ointment (composed of GA, honey, and black vinegar), matrix
ointment (composed of honey and black vinegar), and silicone gel ointment (National
Machinery Shanghai Trading Co., Ltd., Shanghai, China) were provided by the Department
of Dermatology, Shuguang Hospital, affiliated with the Shanghai University of Traditional
Chinese Medicine. Respiratory anesthetic isoflurane was purchased from Suzhou Kunchen
Biotechnology Co., Ltd., Jiangsu, China. Sections of HE and Masson staining reagents
were obtained from Wuhan Servicebio Biotechnology Co., Ltd., Hubei, China. The RNA
primer sequences (synthesized by Shanghai Shanjin Biotechnology Co., Ltd., Shanghai,
China) are shown in Supplementary Table S1. GAPDH (30201ES20) was purchased from
Yeasen Biotechnology Shanghai Co., Ltd., Shanghai, China. TGF-β1 (MA1-34093) was
purchased from ThermoFisher, Waltham, MA, USA. Smad2/3 antibody (ab202445) was
purchased from Abcam, Cambridge, UK, and the p-Smad2/3 (AP1343) was obtained from
ABclonal Technology Co., Ltd., Hubei, China. Secondary antibodies (7074S and A0216) were
obtained from Cell Signaling Technology, Danvers, MA, USA and Beyotime Biotechnology,
Shanghai, China.

4.2. Animals

Fifty New Zealand white male rabbits, 2.5–3.0 kg, were purchased from Chedun
Experimental Animal Breeding Farm Ltd., in Songjiang District, Shanghai, and were
acclimatized for one week before modeling. The animals were housed individually under
standard conditions, and the experimental protocol was approved by the Ethics Committee
of Shanghai University of Traditional Chinese Medicine (No. PZSHUTCM211018023).

4.3. Preparation of Rabbit Ear HS Models

The rabbits were fixed with a rabbit fixator and anesthetized by breathing. A perforator
(KAI Medical) was used to create dermal wounds on the ventral side of the rabbit’s ear with
a diameter of 8 mm and three rows of four wounds each for 12 wounds per ear [9]. The
perforator must cut through the entire skin layer, peel it off without preserving the cartilage
membrane, and press to stop the bleeding. Visible blood vessels should be avoided during
the operation. After the wound was exposed and pressure was applied to stop bleeding, a
local iodophor (Jiangxi Caoshanhu Disinfection Products Co., Ltd., Nanchang, China) was
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promptly given disinfection. Free access to food and water was provided, and the wound
was cleaned continuously for 21 days [53]. The scar was entirely epithelialized when the
wound healed independently, and the rabbit ear HS model was established. Any wounds
with infection, necrosis, and unseen scarring were excluded from the study. The flowchart
of the experiment schedule is shown in the Supplementary Figure S6.

4.4. Experimental Design and Treatment

The experiment was divided into seven groups: the model group, the matrix group,
the low-dose GA ointment group (2.23%), the medium-dose GA ointment group (4.46%),
the high-dose GA ointment group (11.15%), the silicone gel group, and the skin group
(normal skin group, no treatment was performed throughout the experimental cycle). After
epithelialization, a pharmacological intervention will be given at 0.1 mL (0.4*0.4*3.14*0.2)
of ointment per wound. Meanwhile, weekly scar scoring was performed, and photographs
were taken to record the development process of scars (based on the Vancouver Scar Scale
rating form before drug treatment, weekly photographs of the scar site were taken, and the
dressing was changed daily). For each experimental group, samples were collected one,
two, and four weeks after treatment. One part was sent for pathological sectioning, and
one was stored at −80 ◦C for protein and gene expression detection.

4.5. Histological Examination

Scar tissue was removed, fixed in 4% paraformaldehyde, and embedded in paraf-
fin. Subsequently, sections were stained with hematoxylin and eosin (HE), and Mas-
son’s trichrome stain was dehydrated, sealed, and observed under a light microscope
(OLYMPUS BX41).

4.6. Scar Elevation Index and Vancouver Scar Scale Score Evaluation

The scar elevation index (SEI) was utilized to determine the degree of scar proliferation.
SEI is defined as the height of the scar in relation to the normal skin perpendicular to the
ear surface, measured from the top point of the scar/skin epithelium to the surface of the
ear cartilage [54]. Measurements were made using Image-Pro Plus 6.0 software, and the SEI
was measured for each wound. The Vancouver Scar Scale (VSS) scores were determined by
three experimentalists simultaneously, and the scores were mean values.

4.7. RNA Sequencing Analysis

Samples of normal rabbit ear tissue (Skin group), rabbit ear of HS model (HS group),
and rabbit ear tissue of GA treatment for HS (HSG2 group) were assayed for RNA quality
and purity by Shanghai Personal Biotechnology Co., Shanghai, China, for transcriptome
sequencing after passing the quality and purity of RNA. The primer sequence information
is shown in Supplementary Table S1. The cDNA first and second strands were synthesized
with six-base random primers and reverse transcriptase using purified mRNA from total
RNA as a template. After the cDNA was converted to double-stranded DNA purified to
construct the library, it was quantified using the Agilent Bioanalyzer 2100 system for high-
sensitivity DNA analysis. After library construction, paired-end sequencing was performed
on the libraries based on the Illumina HiSeq sequencing platform. Differentially expressed
genes were identified by an absolute foldchange >1.2 or <0.83. KEGG pathways were
enriched for differentially expressed genes with p-values less than 0.05, using ClusterProfiler
(3.4.4) software.

4.8. Real-Time Quantitative Polymerase Chain Reaction (RT-qPCR)

The samples were lysed by adding a lysis solution (Yeasen Biotechnology Shanghai
Co., Ltd.) to the tissue grinder. Total RNA was extracted based on the instructions, and
the reverse transcription reaction was performed at 42 ◦C for 15 min and 95 ◦C for 3 min
(Tiangen Biochemical Technology Co., Beijing, China). The samples were quantified by
an ABI 7500 Fast real-time fluorescence quantitative PCR instrument based on 40 cycles
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of initial denaturation at 95 ◦C for 5 min and then 10 s at 95 ◦C and 30 s at 60 ◦C, all
standardized with internal reference β-actin, and each template was repeated four times
under the same conditions.

4.9. Western Blot

The scar tissue was homogenized with lysate for Western blot detection. Each pro-
tein sample was added to 20 times the volume of RIPA (Beyotime Biotechnology) lysate
containing 1× phosphatase inhibitor (Beyotime Biotechnology) and 1× protease inhibitor
(Beyotime Biotechnology), fully lysed, and centrifuged at 13,200 rpm for 5 min, and the
supernatant was taken. Each component solution was added to the wells of a 96-well
plate and placed at 37 ◦C for 30 min, the OD value was measured at 562 nm, and the
protein concentration of each sample was determined based on the standard curve. The
samples were separated by 8% SDS gel (Yeasen Biotechnology Shanghai Co., Ltd.), passed
onto PVDF membrane, milk powder closed and recovered, washed, and the membranes
were incubated with primary antibodies (GAPDH, TGF-β1, Smad2/3, and p-Smad2/3)
overnight at 4 ◦C. Secondary antibodies were dissolved in a secondary antibody diluent
based on the manufacturer’s instructions, incubated for two hours, washed with TBST,
and developed in a Bio-Rad imager. GAPDH protein was used as an internal reference
control, and then the protein bands were analyzed by Image J software. The detected
protein grayscale values were normalized to determine the protein expression changes.

4.10. Statistical Analysis

All reported values were presented as mean ± SD. Data were analyzed using one-
way analysis of variance (ANOVA) by GraphPad Prism 7 software, and the data were
subsequently analyzed using Tukey’s post hoc multiple comparisons test. A p < 0.05 was
considered statistically significant.

5. Conclusions

This study provided evidence that GA effectively improved the morphology and histo-
logical structure of HS tissues in rabbit ear models, potentially through the downregulation
of the TGF-β/Smad and TRPC3 signaling pathways, thereby reducing ECM deposition and
eliciting anti-scarring effects. The findings indicate that GA holds potential as an effective
therapeutic agent for HS.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/ph16111514/s1. Supplementary Figure S1. Histological staining
of all groups after the treatments. (HS: Model group, HSM: Matrix group, HSG1: Low-dose GA
ointment group, HSG2: Medium-dose GA ointment group, HSG5: High-dose GA ointment group,
HSS: Silicone gel group, Skin: Normal skin group). Supplementary Figure S2. Gene expression
between the skin, HS and HSG2 groups. Supplementary Figure S3. Immunohistochemical staining
for CD31+ blood vessels in different groups. Black arrow: microvascular vessel; Magnification = 200;
Bar = 100 µm. Significant difference between HS group and other groups (* p < 0.05, ** p < 0.01,
n = 3); Significant difference between HSM group and other groups (# p < 0.05, ## p < 0.01, n = 3). Data
was analyzed using one-way ANOVA with post-hoc Tukey’s multiple comparisons test. (HS: Model
group, HSM: Matrix group, HSG1: Low-dose GA ointment group, HSG2: Medium-dose GA ointment
group, HSG5: High-dose GA ointment group, HSS: Silicone gel group, Skin: Normal skin group.)
Supplementary Figure S4. Immunohistochemical staining for TGF-β1 in different groups. Significant
difference between HS group and other groups (* p < 0.05, ** p < 0.01, n = 3); Significant difference
between HSM group and other groups (# p < 0.05, ## p < 0.01, n = 3). Data was analyzed using
one-way ANOVA with post-hoc Tukey’s multiple comparisons test. (HS: Model group, HSM: Matrix
group, HSG1: Low-dose GA ointment group, HSG2: Medium-dose GA ointment group, HSG5:
High-dose GA ointment group, HSS: Silicone gel group, Skin: Normal skin group.) Supplementary
Figure S5. HSG significantly decreased complete wound-epithelialization time. Significant difference
between HS group and other groups (* p < 0.05, ** p < 0.01, n = 9); Significant difference between HSM
group and other groups (# p < 0.05, ## p < 0.01, n = 9). Data was analyzed using one-way analysis of

https://www.mdpi.com/article/10.3390/ph16111514/s1
https://www.mdpi.com/article/10.3390/ph16111514/s1
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variance ANOVA with post-hoc Tukey’s multiple comparisons test. (HS: Model group, HSM: Matrix
group, HSG1: Low-dose GA ointment group, HSG2: Medium-dose GA ointment group, HSG5:
High-dose GA ointment group, HSS: Silicone gel group, Skin: Normal skin group.) Supplementary
Figure S6. The experimental schedule. Supplementary Table S1. Primer sequence information.
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