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Molecular imaging has emerged as a powerful tool for clinical diagnosis. Several
imaging modalities, including positron emission tomography (PET), single photon emission
computed tomography (SPECT) and optical bioluminescence/fluorescence imaging, rely on
the administration of molecular probes to acquire imaging signals. To be considered suitable
for clinical applications, an ideal molecular imaging probe should demonstrate exceptional
affinity, selectivity, stability and ability to be economically produced [1]. As it involves
multi-disciplinary fields, developing imaging probes requires the collaborative efforts of
experts in chemistry, biology, pharmaceuticals, radiochemistry and clinics. Recently, the
advancement of medical knowledge and innovative chemical tools has driven the progress
and new development of imaging probes. In this Special Issue, we collect four research
papers and one review article describing inspiring chemical designs on imaging probes to
enhance imaging quality or extend their utilities.

Bifunctional chelators (BFCs) serve as stable linkages between radionuclides and
biovectors. The intelligent selection of a BFC is capable of labeling different radionuclides,
which facilitates the simultaneous development of diagnostic and therapeutic radiopharma-
ceuticals on the same biovectors [2–4]. Murce et al. (contribution 1) reported the synthesis
and radiolabeling of 3p-C-NETA-ePSMA-16 with diagnostic radionuclides 111In, Al18F and
therapeutic radionuclides 177Lu, 213Bi to evaluate them as PSMA-targeting agents for radio-
theranostics. Radiolabeling processes using the above radionuclides were efficient. The
resulting two imaging probes, [18F]AlF-3p-C-NETA-ePSMA-16 and [111In]In-3p-C-NETA-
ePSMA-16, both exhibited targeting specificity toward PSMA-positive tumors. Because of
the rapid clearance of probes, short half-life radionuclides, such as 213Bi, were suggested
for further therapeutic agent development based on 3p-C-NETA-ePSMA-16.

The use of click chemistry to develop imaging probes has emerged as a recent
trend [5–7]. A bioorthogonal click reaction involving the condensation between trans-
cyclooctenes (TCO) and tetrazine (Tz) in the inverse electron demand Diels–Alder (IEDDA)
reaction is frequently used as a pre-targeting strategy [8–10]. Beaufrez et al. (contribution 2)
employed a sultone ring-opening method to prepare hydrophilic [18F]fluorosulfotetrazine
as a prosthetic agent, which can be further labeled with other biovectors via an IEDDA
reaction. The new [18F]F-labeling agent exhibited fast clearance and no non-specific uptake
in normal tissues, showing its potential for in vivo pre-targeting applications.

The fibroblast activation protein (FAP) is a “pan-tumoral” biotarget for molecular
imaging and the treatment of various cancers [11]. Typical FAP-targeted ligands contain
a 2-cyanopyrrolidine moiety, a glycine linker, and a quinolinyl group [12,13]. Based on
these scaffolds, Lin’s group (contributions 3 and 4) reported two new series of FAP-targeted
imaging probes in their in vivo studies. They found that the [68Ga]Ga-labeled pyridine-
based FAP-targeted tracers revealed higher tumor-to-background ratios but lower tumor
uptake compared to the standard probe. On the other hand, the pyrrolidinylboronic
acid-based probes displayed low-to-medium tumor uptakes, though the replacement of
the glycine linker with D-alanine enhanced tumor uptake. This research provides an in-
depth structure–activity relationship (SAR) study for the development of FAP-targeted
imaging probes.

A nanobody is the smallest antibody fragment comprising a single monomeric variable
antigen-binding domain [14,15]. Bocancia-Mateescu et al. (contribution 5) reviewed recent
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developments in nanobody discovery, production and current challenges in applications for
the diagnosis of cardiovascular diseases (CVDs). The authors also highlight the potential of
nanobodies in the treatment of CVDs, including their ability to target specific biomarkers,
act as labeling molecules, or assist in the delivery of drugs to specific targets. This review
article provides a comprehensive overview of the current research on nanobodies and their
potential applications in the field of CVDs, making it a valuable resource for researchers,
clinicians and students interested in this topic.

In conclusion, this Special Issue underscores diverse and innovative approaches in
developing imaging probes, ranging from bifunctional chelators for radiopharmaceuticals
to click chemistry and nanobodies for targeted diagnostics and therapy. These advance-
ments hold great promise for enhancing the field of molecular imaging and its applications
in clinical diagnosis and treatment.
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