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Abstract: Immunotherapy targeting the programmed death-ligand 1 (PD-L1)/programmed cell
death protein 1 (PD-1) pathway has shown remarkable efficacy against various cancers, but the
overall response rate (ORR) is still low. PD-L1 expression in tumors may predict treatment response
to immunotherapy. Indeed, ongoing clinical studies utilize a few PD-L1 radiotracers to assess PD-
L1 expression as a predictive biomarker for immunotherapy. Here, we present a novel positron
emission tomography (PET) radiotracer called [68Ga]BMSH, which is derived from a small molecule
inhibitor specifically targeting the binding site of PD-L1. The inhibitor was modified to optimize
its in vivo pharmacokinetic properties and enable chelation of 68Ga. In vitro evaluation revealed
[68Ga]BMSH possessed a strong binding affinity, high specificity, and rapid internalization in PD-L1
overexpressing cells. Biodistribution studies showed that PD-L1 overexpressing tumors had an
uptake of [68Ga]BMSH at 4.22 ± 0.65%ID/g in mice, while the number was 2.23 ± 0.41%ID/g in
PD-L1 low-expressing tumors. Micro-PET/CT imaging of tumor-bearing mice further confirmed that,
compared to [18F]FDG, [68Ga]BMSH can specifically identify tumors with varying levels of PD-L1
expression. Our findings suggest that the [68Ga]BMSH is a PD-L1 radioligand with ideal imaging
properties, and its further application in the clinical screening of PD-L1 overexpressing tumors may
improve ORR for immunotherapy.

Keywords: [68Ga]BMSH; immunotherapy; programmed death-ligand 1; positron emission-computed
tomography

1. Introduction

Immunotherapy has emerged as a groundbreaking approach to cancer treatment in
recent years. Immune checkpoint blockade by targeting the programmed death-ligand
1 (PD-L1)/programmed cell death protein 1 (PD-1) pathway has demonstrated remarkable
effectiveness in treating different types of cancer, such as melanoma, non-small cell lung
cancer, renal cell carcinoma, and bladder cancer [1–7]. However, only a small proportion,
less than 30%, of patients are responders, though these patients usually have durable
clinical responses from targeting the PD-L1/PD-1 pathway [8–10]. Studies have shown that
PD-L1 expression in tumor tissues is associated with the effectiveness of anti-PD-1/PD-L1
immunotherapy [11,12]. Patients with PD-L1 positive tumors who receive monoclonal
antibodies against PD-L1 during immunotherapy can show substantial clinical benefit [13].
Therefore, the precise detection of PD-L1 expression in tumors plays a significant role in
guiding clinical treatment decisions.
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Conventional methods, such as immunohistochemistry (IHC) and immunofluores-
cence (IF), for detecting PD-L1 expression have notable limitations [14,15]. These methods
depend on tissue sections, thus offering information solely from specific sampled regions
and failing to capture the PD-L1 expression profiles throughout the entire tumor. Ad-
ditionally, they are incapable of capturing dynamic changes in PD-L1 expression and
providing limited quantitative measurements. PET is an advanced molecular imaging
technology with high sensitivity, target specificity, and in vivo 3D imaging capabilities,
which can visualize the target expression status under physiological conditions in real
time [16–18]. PET imaging agents with high specificity can be synthesized by attaching
radiotracers to monoclonal antibodies, peptides, or small molecule inhibitors that specifi-
cally target PD-L1. Subsequent PET imaging analysis enables non-invasive, real-time, and
quantitative detection of PD-L1 expression in tumor tissues of patients. Recent reports
have described PET targeting probes for PD-L1, including antibody-based probes [19–23],
peptide-based probes [24–27], and small molecule inhibitors [28–30]. These probes have
been utilized to assess the expression status of PD-L1 in patients with various types of solid
tumors [19,27,31,32]. However, radiolabeled monoclonal antibodies (mAbs) as molecular
probes have a large molecular weight and a long biological half-life, typically necessitating
several days to acquire high-contrast images. The use of long half-life radionuclide for
labeling mAbs typically results in heightened radiation exposure in patients. Peptide-based
imaging agents exhibit lower target specificity, and their molecular properties pose chal-
lenges for chemical modifications, thus complicating the regulation of their biodistribution
in vivo and pharmacokinetic performance.

With advancements in the study of immune checkpoint molecules, small molecule
inhibitors targeting the PD-L1 binding site have been further developed [33–36]. Small
molecule inhibitors offer significant advantages, such as lower molecular weight, ease
of modification, better penetration into solid tumors, rapid diffusion in the tumor micro-
environment, and uniform distribution in the entire tumor. Lately, several reports have
demonstrated that small molecules containing biarylmethyl aryl ether scaffold show high
affinity for PD-L1 [28,37,38]. The PET tracer [18F]LP-F, derived from small molecule in-
hibitors that target PD-L1, is capable of effectively identify tumors with varying expression
levels within the body [29]. However, its utilization is impeded by the significant lipophilic-
ity of the biarylmethyl aryl ether scaffold. This attribute diminishes the metabolic clearance
rate of [18F]LP-F, leading to heightened drug accumulation in multiple organs, including the
heart, lungs, liver, kidneys, and gastrointestinal tract. In this study, hydrophilic functional
groups, biarylmethyl aryl ether scaffold (BMS-1001) linked with 1,4,7-triazacyclononane-
1,4,7-triacetic acid (NOTA), were introduced to decrease drug uptake by organs such as
the lungs, liver, and gastrointestinal tract (Figure 1), aiming to improve the PD-L1 imaging
capability of PET probes derived from small molecule inhibitors. The characteristics of
in vitro, biodistributed, and micro-PET image results of the PET radiotracer [68Ga]BMSH
were investigated.
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2. Results
2.1. Chemical and Radiochemical Properties

We designed and synthesized the precursor, NOTA-BMSH, using solid resin and
standard Fmoc solid-phase synthesis (Scheme 1). The key intermediate compound 1,
compound 6, and the labeling precursor were obtained at >95% chemical purity and
identified using mass spectrometry (Supplementary Materials, Figures S1–S3). [68Ga]BMSH
was successfully radiolabeled via complexation of 68Ga by NOTA chelator according to
Scheme 1. The radioactive product, [68Ga]BMSH, was obtained with a non-decay corrected
radiochemical yield of 60.5% ± 7.0% (n > 10). Its radiochemical purity was >98% with
a retention time of 12.6 min when analyzed using radio-HPLC (Figure 1). The specific
activity was determined to be 2–8 GBq/µmol (n > 10) based on radioactivity measurement.
The total time of radiosynthesis was approximately 20 min, including the radiolabeling
and purification processes.
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Scheme 1. Synthesis of the NOTA-BMSH and [68Ga]BMSH, reagents, and conditions: (a) Fmoc-
Asp(OtBu) -OH; DIPEA; DCM; 20% piperidine/DMF; (b) Fmoc-Glu(OtBu) -OH; DIC; HOBt; DMF; 
20% piperidine/DMF; (c) Fmoc-Glu(2-ACETAMIDO-2-DEOXY-BETA-D-GLUCOSAMINE) -OH; 
DIC; HOBt; DMF; 20% piperidine/DMF; (d) Fmoc-PEG2-OH; DIC; HOBt; DMF; 20% piperi-
dine/DMF; (e) NOTA; DIC; HOBt; DMF; 20% piperidine/DMF; (f) 1% TFA/DCM; (g) HATU; DIPEA 
DMF; (h) TFA; (i) 68GaCl3; NaOAc; 55 °C; 10 min. 

2.2. Characterization of [68Ga]BMSH 
The stability of [68Ga]BMSH in PBS (37 °C, 2 h), human serum (37 °C, 2 h), and mouse 

blood (in vivo, 1 h) are shown in Figure 2. In vitro and in vivo stability experiments re-
vealed no significant [68Ga]BMSH metabolites were observed on the HPLC chromato-
gram, indicating the stability of [68Ga]BMSH in vivo and in vitro within the testing inter-
val. The log D value of [68Ga]BMSH was determined to be −2.02 ± 0.09, indicating its high 
hydrophilicity. 

Scheme 1. Synthesis of the NOTA-BMSH and [68Ga]BMSH, reagents, and conditions: (a) Fmoc-
Asp(OtBu)-OH; DIPEA; DCM; 20% piperidine/DMF; (b) Fmoc-Glu(OtBu)-OH; DIC; HOBt; DMF;
20% piperidine/DMF; (c) Fmoc-Glu(2-ACETAMIDO-2-DEOXY-BETA-D-GLUCOSAMINE) -OH; DIC;
HOBt; DMF; 20% piperidine/DMF; (d) Fmoc-PEG2-OH; DIC; HOBt; DMF; 20% piperidine/DMF;
(e) NOTA; DIC; HOBt; DMF; 20% piperidine/DMF; (f) 1% TFA/DCM; (g) HATU; DIPEA DMF;
(h) TFA; (i) 68GaCl3; NaOAc; 55 ◦C; 10 min.
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2.2. Characterization of [68Ga]BMSH

The stability of [68Ga]BMSH in PBS (37 ◦C, 2 h), human serum (37 ◦C, 2 h), and mouse
blood (in vivo, 1 h) are shown in Figure 2. In vitro and in vivo stability experiments re-
vealed no significant [68Ga]BMSH metabolites were observed on the HPLC chromatogram,
indicating the stability of [68Ga]BMSH in vivo and in vitro within the testing interval.
The log D value of [68Ga]BMSH was determined to be −2.02 ± 0.09, indicating its high
hydrophilicity.
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serum after incubation at 37 ◦C for 120 min and in mouse blood at 60 min p.i. The quality control
radioactive chromatography of [68Ga]BMSH, as well as the UV chromatography of NOTA-BMSH.

2.3. In Vitro Evaluation of [68Ga]BMSH

Cell uptake studies were conducted to verify the specific binding ability of [68Ga]BMSH
to PDL1-expressing tumor cells. The accumulation of [68Ga]BMSH in A549-hPDL1 (PDL1-
expressing) cells quickly reached 0.67 ± 0.08 ID%/1 mio cells at 5 min, and remained stable
at 0.65 ± 0.06 ID%/1 mio cells at 120 min. The maximum uptake value was determined to
be 0.74 ± 0.07 ID%/1 mio cells as shown in Figure 3A. After blockade by NOTA-BMSH, the
uptake of [68Ga]BMSH in A549-hPDL1 cells obviously decreased to 0.17 ± 0.01 ID%/1 mio
cells at 60 min. For A549 (PD-L1 negative) cells, the uptake of [68Ga]BMSH was at a
low level. The uptake value was determined to be 0.21 ± 0.02 ID%/1 mio cells at 60 min,
indicating its high specificity for PD-L1 (Figure 3B). The half maximal inhibitory con-
centration (IC50) value of NOTA-BMSH to the A549-hPDL1 cells was measured to be
448.9 nM by competitive cell-binding experiments (Figure 3C). Internalization assays
in A549-hPDL1 cells demonstrated a modest uptake of [68Ga]BMSH after 60 min incu-
bation with 51.5 ± 2.1% (internalized/total bound activity) (Figure 3D). Efflux experi-
ments demonstrated that [68Ga]BMSH exhibited a slightly faster cellular efflux rate in vitro
(Figure S4), showing retention of 16.2% of the originally accumulated radioactivity after
180 min, in A549-hPDL1 cells.

2.4. Biodistribution of [68Ga]BMSH

Receptor-specific uptake was determined using nude mice bearing either PD-L1-
positive A549-hPDL1 cells or the negative control tumor, A549. The biodistribution studies
of [68Ga]BMSH after 30, 60, and 120 min of injection are summarized in Table 1. At 30,
60, and 120 min after injection, the A549-hPDL1 tumor uptake values of the [68Ga]BMSH
probe were 4.61± 0.16, 4.40± 0.36, and 4.22± 0.65%ID/g, respectively. These observations
demonstrated rapid uptake and excellent retention of [68Ga]BMSH in the A549-hPDL1
tumor. Although other tissues exhibited relatively high uptake values of the [68Ga]BMSH
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at 30 min post-injection, their uptake notably declined as time elapsed. Using the lung as
an illustrative case, the uptake value stood at 8.38 ± 0.54%ID/g at 30 min post-injection,
progressively diminishing to 3.01 ± 0.53%ID/g at 120 min post-injection. Meanwhile, the
ratio of drug uptake between the tumor and the muscle increased from 3.49 ± 0.21 to
5.78 ± 0.60. In addition, results from the negative control study revealed that the uptake of
[68Ga]BMSH in A549-hPDL1 tumors was 1.9 times that in A549 tumors (4.22 ± 0.65%ID/g
vs. 2.23 ± 0.41% ID/g, at 2 h post-injection, p < 0.01), while the biodistribution in the
normal organs of A549-hPDL1 and A549 tumor-bearing mice was similar.
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Table 1. Biodistribution of [68Ga]BMSH in different mice organs at 30, 60, and 120 min pi. Values are
expressed as means ± SD (% ID/g) (n = 3).

Organ 30 min 60 min 120 min

Bone 1.60 ± 0.33 1.38 ± 0.20 0.88 ± 0.19
Muscle 1.39 ± 0.13 1.09 ± 0.12 0.73 ± 0.27
Lung 8.38 ± 0.54 7.16 ± 1.06 3.01 ± 0.53
Brain 0.32 ± 0.03 0.25 ± 0.02 0.19 ± 0.02
Heart 3.70 ± 0.08 3.10 ± 0.47 2.00 ± 0.33
Liver 3.73 ± 0.25 3.76 ± 0.22 3.08 ± 0.35

Kidney 6.42 ± 1.34 6.12 ± 0.23 3.94± 0.21
Spleen 2.37 ± 0.18 1.84 ± 0.05 1.31 ± 0.28

Gall bladder 1.97 ± 0.96 1.10 ± 0.18 1.33 ± 0.43
Stomach 2.86 ± 0.83 2.30 ± 0.51 1.26 ± 0.10
Intestine 1.71 ± 0.03 1.66 ± 0.33 1.71 ± 0.36

Blood 16.21 ±3.02 11.49 ± 1.67 7.80 ± 1.14
A549-hPDL1 tumor 4.61 ± 0.16 4.40 ± 0.36 4.22 ± 0.65

A549 tumor - - 2.23 ± 0.41
A549-hPDL1 T/M 3.49 ± 0.21 4.32 ± 0.84 5.78 ± 0.60
A549-hPDL1 T/L 0.58 ± 0.05 0.65 ± 0.07 1.26 ± 0.03
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2.5. Micro-PET Imaging and Immunohistochemical Staining

To further evaluate the capability of [68Ga]BMSH to target PD-L1 in vivo, dynamic
micro-PET scans in A549-hPDL1 tumor-bearing mice were performed. Typical micro-
PET/CT images (Transversal and MIP images) and time-activity curves of [68Ga]BMSH
uptake were obtained, as shown in Figure 4. The images demonstrated the rapid uptake of
[68Ga]BMSH by tumors, lungs, livers, and kidneys, with an extended retention time ob-
served within the tumor region. Simultaneously, there was swift clearance of [68Ga]BMSH
from the lungs and kidneys, which was consistent with the biodistribution study. Notably,
[68Ga]BMSH uptake in A549-hPDL1 tumors peaked at 10 min and remained stable until
120 min. At 120 min, the tumor/muscle and the tumor/lung ratio were 7.88 and 1.49,
respectively (Figure 4B), whose contrast was high enough for PD-L1 imaging.
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To further verify the diagnosis of PD-L1 expression in vivo, a comparison of tumor
uptake and blocking experiments of [68Ga]BMSH and [18F]FDG were performed with mice
bearing A549-hPDL1 or A549 tumors (Figure 5). The 2-h static measurement revealed a
notably higher uptake of [68Ga]BMSH in A549-hPDL1 tumors compared to A549 tumors
(p < 0.05) (Figure 5A,C). The blocking study in mice bearing the A549-hPDL1 tumor showed
a remarkable decrease in the uptake by the tumor and liver. In contrast, the commonly
employed clinical imaging tracer [18F]FDG exhibited an elevated uptake in both tumor
types, along with a notably high uptake in muscle tissue at 60 min post-injection (Figure 5B,
A549-hPDL1 tumor/A549 tumor = 1.08). This underscores the insufficiency of [18F]FDG for
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accurately analyzing PD-L1 expression within the body. The IHC results further revealed
that the tumor developed in the A549-hPDL1 tumors had a higher expression of PD-L1
than A549 tumors (Figure 5D).
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Figure 5. (A) Representative MIP images after intravenous injection of [68Ga]BMSH at 120 min of
A549-hPDL1 xenografts (A, left) and A549 xenografts (A, middle), [68Ga]BMSH together with the
competitor (A, right), MIP images of [18F]FDG in A549-hPDL1 (B, left) and A549 (B, right) at 60 min.
The tumors are delineated in white arrows; (C) uptake or block value of A549-hPDL1, A549 tumor at
120 min (****, p < 0.0001); (D) IHC staining results of A549-hPDL1 and A549 tumor tissues.

2.6. Internal Dose Assessment

The internal radiation dose was estimated based on the biodistribution of [68Ga]BMSH
after in vivo injection in nude mice bearing A549-hPDL1 tumor. The organs were estimated
to receive low doses of [68Ga]BMSH (Table S1). The effective internal radiation dose of
[68Ga]BMSH was calculated to be 8.74 µSv/MBq for men (Table S1), which was below the
single-study FDA limit for research subjects.

3. Discussion

Studies have shown that PD-L1 expression in tumor tissues is associated with the
effectiveness of anti-PD-1/PD-L1 immunotherapy. The PET tracer [18F]LP-F, derived from
a biarylmethyl aryl ether scaffold that targets PD-L1, is capable of effectively differentiating
tumors with varying expression levels within the body. However, its utilization is impeded
by the significant lipophilicity of the biarylmethyl aryl ether scaffold. The carbohydration
has been proven to improve general pharmacokinetics, which could significantly increase
the kidney clearance and reduce hepatobiliary excretion [39]. Previous studies postulate
that introducing a PEG linker can increase the metabolic stability and in vivo half-life of
the products [40,41]. The introduction of hydrophilic linkers such as PEG and amino acids
such as Asp and Glu to the radiotracer [68Ga]BMSH could increase the hydrophilicity and
reduce the lipophilicity of [68Ga]BMSH, which promotes the rapid renal metabolism of
[68Ga]BMSH.
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In this study, we have reported the successful synthesis as well as the in vitro and
in vivo characterization of a new 68Ga-labelled PD-L1 tracer and compared it to the clin-
ically used probe, [18F]FDG. [68Ga]BMSH showed high in vitro and in vivo stability as
proved by the radio-HPLC after incubation in PBS, human serum, and mouse blood. The
significant difference (p < 0.05) of the cellular uptake between the A549-hPDL1 and A549
cells demonstrated that [68Ga]BMSH could specifically accumulate in high PD-L1 expres-
sion cells. The high uptake of [68Ga]BMSH at 5 min in A549-hPDL1 cells demonstrated
that [68Ga]BMSH could enter cells rapidly. Additionally, the non-radioactive probe NOTA-
BMSH could significantly inhibit the uptake of [68Ga]BMSH in A549-hPDL1 tumor cells,
further indicating the specificity of [68Ga]BMSH to PD-L1. The half-inhibitory concentration
(IC50) of NOTA-BMSH was 448.9 nM, inferior to that of BMS-1001 (2.25 nM), indicating a lit-
tle weaker affinity of NOTA-BMSH. Differences in affinity exhibited were due to structural
changes resulting from the introduction of Asp, Glu, and NOTA. In addition, the relatively
high internalization of [68Ga]BMSH in A549-hPDL1 cells suggests a potential for extended
retention in tumor tissues. Subsequent PET imaging further demonstrated the sustained
high uptake of [68Ga]BMSH in A549-hPDL1 tumor tissue after 120 min administration.

Ex vivo biodistribution studies of [68Ga]BMSH revealed a high uptake (4.22± 0.65%ID/g)
in PD-L1-positive A549-hPDL1 tumors with a high tumor-to-muscle ratio (5.78± 0.60) after
120 min administration. The uptake in non-target tissues was rather low (<2%ID/g), except
for in the lung, liver, kidney and blood, which exhibited moderate (3.01 ± 0.53%ID/g),
(3.08 ± 0.53%ID/g), (3.94 ± 0.21%ID/g), and high uptake (7.80 ± 1.14), respectively. It
is worth highlighting that despite the higher lung uptake observed 30 min post-injection
(8.38 ± 0.54%ID/g), there is a notable decrease in lung uptake over time, reaching a value
of 3.01 ± 0.53%ID/g at 120 min. This value is even lower than the tumor uptake value of
4.22 ± 0.65%ID/g. According to the difference between [68Ga]BMSH in lung and tumor
retention time, it is expected to be used in the follow-up clinical translational research for
dynamic imaging of lung cancer.

Micro-PET imaging results of A549-hPDL1 and A549 xenografts also demonstrated
that [68Ga]BMSH can specifically bind to the tumor and remained in the tumor for a longer
period of time, which has significant advantages over [18F]FDG. Moreover, the accumula-
tion of [68Ga]BMSH in A549-hPDL1 tumors could be blocked by co-injection of additional
unlabeled inhibitors, indicating that it was a PD-L1-specific uptake. [68Ga]BMSH’s internal
radiation doses in humans are also deemed safe for clinical application. In short, we clearly
demonstrated the feasibility of PET imaging in evaluating PD-L1 expression in xenograft
mice tumor models using [68Ga]BMSH as a new radiotracer.

4. Materials and Methods
4.1. Reagents and Instruments

All reagents used in the experiment were commercially purchased and utilized without
additional purification, unless specified otherwise. The HPLC system employed was the
Agilent 1260 Infinity II (CA, USA), which was equipped with a UV-detector set at 254 nm
and C-18 columns. The radiation value of the cell experiment and biological distribution
experiment was measured using a γ-counter (Hidex, Turku, Finland). Small animal imaging
was conducted using the Madiclab PSA146 PET/CT/FMT instrument (Madic, Linyi, China).
Radioactivity was measured utilizing a Capintec CAPRAC-R dose calibrator (NJ, USA).

[68Ga]Gallium derived from a prototype 40-mCi 68Ge/68Ga generator (Tehran, Iran)
and [18F]FDG were produced from the company of Guangzhou Atomic High-Tech Medical
Technology Co., Ltd. (Guangzhou, China) Sep-Pak C18-Light cartridges were purchased
from Waters Associates.

4.2. General Procedure for the Synthesis of Resin-Bound Compound 1

Compound 1 was synthesized using a solid-phase platform. Briefly, 1.00 g of CTC resin
(1% divinylbenzene) was contained in a disposable fritted polypropylene column (20 mL).
The resin was swollen in dichloromethane (DCM), shaken for 24 h at room temperature,
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and subsequently drained. Afterwards, the resin was treated with a DCM solution con-
taining a 3-fold excess of Fmoc-Asp(OtBu)-OH and N,N-Diisopropylethylamine (DIPEA),
and shaken for 3 h at room temperature. The remaining Fmoc group was removed using a
20% piperidine in N,N-dimethylformamide (DMF) solution, followed by filtration. The
resin was then washed successively with DMF (3 × 5 min), MeOH (2 × 5 min), and DCM
(1 × 5 min). After the DCM washing, the beads were allowed to air-dry for 15 min. Subse-
quently, a solution of a 3-fold excess of Fmoc-Glu(OtBu)-OH and N,N′-diisopropylcarbodiimide
(DIC) in DMF, with 1-hydroxybenzotriazole (HOBt), was added to the deprotected resin
beads and shaken for 1.5 h at room temperature. The excess reagent was drained, fol-
lowed by a wash with 20% piperidine/DMF, and the beads were then washed according
to the standard procedure. Using the same operating procedures, Fmoc-Glu derivatives
[Fmoc-Glu(2-ACETAMIDO-2-DEOXY-BETA-D-GLUCOSAMINE) -OH] and Fmoc-NH-
PEG2-COOH were loaded onto the CTC resin to complete the condensation reaction. The
chelator conjugation was performed through adding NOTA, HOBt, and DIC in DMF and
allowing the reaction to proceed for 1.5 h. The solution was decanted, and the beads were
subjected to the standard washing protocol. Subsequently, the beads were treated with a
solution of 1% trifluoroacetic acid (TFA) in DCM to cleave them. The resulting mixture
was filtered, and the filtrate was concentrated under vacuum to obtain compound 1. The
LC-MS calculation for compound 1 (C56H97N9O22) yielded a theoretical mass of 1248.43,
while the actual observed mass was found to be 1249.5 [M+H]+.

4.3. General Procedure for the Synthesis of Compound 6

Compound 2 (Boc-EDA) and compound 3 (BMS1001) were added to a mixture of
HATU/DIPEA in DMF for reaction at room temperature, followed by a TFA solution to
remove the Boc group and obtain compound 4. Subsequently, the results were reacted
with a solution of compound 5 (Fmoc-NH-PEG2-COOH), HATU, and DIPEA in DMF. A
solution of DEA in THF was used to remove the Fmoc group to afford compound 6. LC-MS
calcd for C43H51N5O9 781.91; found, 782.9 [M+H]+.

4.4. Synthesis of NOTA-BMSH

Compound 1 and compound 6 were added to a mixture of 2-(7-Azabenzotriazol-1-
yl)-N,N,N′,N′-tetramethyluronium hexafluorophosphate (HATU)/DIPEA in DMF, and
tert-butyl was removed to obtain the NOTA-BMSH. LC-MS calcd for C83H114N14O30
1787.89; found, 895.3 [M/2+H]+.

The crude product was precipitated from the concentrated solution by the addition of
an excess of chilled diethyl ether. The solvent was then removed, and the solid product was
triturated three times with diethyl ether. All the crude product was purified by reverse-
phase high-performance liquid chromatography (RP-HPLC) carried out on Phenomenex
C-18 columns (10 mm × 250 mm, 5 µm), using a linear gradient starting from 90% A (0.1%
TFA in water) and 10% B (0.1% TFA in acetonitrile) for 2 min, gradually decreasing to
20% A at 15 min at a flow rate of 3 mL/min.

4.5. Radiochemical Synthesis of [68Ga]BMSH

The 68Ga labeling process involved elution of a 68Ge/68Ga generator in fractions using
4 mL of 0.25 M HCl. The NOTA-BMSH aqueous solution (50 µg in 50 µL of deionized
water) was then buffered with 0.25 M sodium acetate (1 mL), followed by the addition
of 4 mL of 68Ga hydrochloric acid solution. Subsequently, the mixture was incubated
at 55 ◦C for 10 min to fully complete the radiolabeling reaction. After the reaction, the
mixture was cooled in an ice bath and diluted with 5 mL of water. The diluted mixture
was loaded onto an activated C18 cartridge and underwent sequential washing with
30 mL of water. The desired radiolabeled compound was eluted using a 1 mL mixture of
ethanol and water (1:1, v/v). The eluent was then filtered through a sterile 0.2 µm filter
membrane and further diluted with saline for subsequent studies. The radiochemical purity
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of [68Ga]BMSH was assessed by utilizing an analytical HPLC column (Phenomenex C18)
under the aforementioned analytic conditions.

4.6. Partition Coefficient

[68Ga]BMSH (37 kBq) was added to a mixture comprising 5.0 mL of phosphate-
buffered saline (PBS) with a pH of 7.4 and 5.0 mL of 1-octanol in a 15 mL centrifuge
tube. The resulting mixture underwent vigorous vortexing for 5 min and was subsequently
centrifuged at 10,000 rpm for 5 min. Samples of 100 µL were extracted from each phase, and
the radioactivity was quantified using a γ-counter. The partition coefficient was calculated
as Log10D = Log10 (counts in 1-octanol/counts in PBS) (n = 3).

4.7. In Vitro Serum Stability and In Vivo Stability

[68Ga]BMSH (3.7 MBq) was added into normal human serum (0.2 mL) and incubated
for 2 h at 37 ◦C. Plasma protein was precipitated with 0.4 mL acetonitrile and centrifuged
(10,000 rpm, 5 min). The radiochemical purities of [68Ga]BMSH in filtrates were assayed by
analytic HPLC under analytic conditions as described above.

BALB/c-Nude mice were injected intravenously with [68Ga]BMSH (0.185 GBq/kg).
The mice were sacrificed 60 min after injection, and the mouse blood samples (0.4 mL)
were collected. An equal volume of acetonitrile was added to the blood and centrifuged at
10,000 rpm for 5 min; the supernatant was filtered through a 0.45-mm syringe filter. The
blood supernatant sample (200 µL) was then injected onto analytic HPLC under analytic
conditions as described above.

4.8. Cell Lines and Tumor Models

Stably PD-L1-transfected A549-hPDL1 cells (acquired using lentiviral infection) and
A549 cells (purchased from the Institute of Biochemistry and Cell Biology, Shanghai, China)
were used for the cell-based experiments. A549-hPDL1 cells and A549 cells were cultured
in RPMI-1640 medium (Gibco, Carlsbad, CA, USA); both medium were supplemented with
15% fetal bovine serum (Gibco) and antibiotics (100 mg/mL streptomycin and 100 mg/mL
penicillin; Gibco) at 37 ◦C in a humidified incubator with 5% CO2.

For biodistribution and micro-PET imaging studies of [68Ga]BMSH and [18F]FDG,
male BALB/c nude mice were implanted subcutaneously with 1–5 × 106 A549-hPDL1 cells
and A549 cells behind right armpit. Mice were imaged or used in biodistribution studies
when the tumor xenografts reached 5–10 mm in diameter.

4.9. In Vitro Cell Study

A549-hPDL1 cells and A549 cells were grown in flasks to 80–90% confluence and were
used for cell uptake studies. Sets of four 12-well plates containing 1 × 105 cells/well were
incubated with [68Ga]BMSH (1.85 kBq) for 5, 30, 60, and 120 min at 37 ◦C. After removing
the medium, the cells were washed twice with ice-cold PBS, pH 7.4. The adherent cells
were then washed twice with glycine and lysed with 1 N NaOH at 37 ◦C for 10 min. The
combined washes and lysate were measured with a γ-counter.

Subsequently, the blocking study was conducted in A549-hPDL1 and A549 cells. The
cells were incubated for 60 min at 37 ◦C with [68Ga]BMSH (1.85 kBq), with or without the
pretreatment of NOTA-BMSH, (10 µg/well). After removing the medium, the cells were
washed twice with ice-cold PBS. The cells were then washed twice with glycine and lysed
with 1 M NaOH at 37 ◦C for 10 min. The combined washes and lysate were measured with
a γ-counter. The result was expressed as %ID/1 mio cells.

Half-inhibitory concentration (IC50) of NOTA-BMSH to A549-hPDL1 cells were mea-
sured by simultaneous exposure to unlabeled (10−5 M to 10−11 M) and radiolabeled
compound for 60 min.
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4.10. Tissue Biodistribution Studies

The mice (A549-hPDL1 and A549, n = 3 in each group) were euthanized 0.5 h, 1 h,
2 h pi of [68Ga]BMSH (148–222 kBq), the organs and tumors were removed, weighed,
and radioactivity was counted using a γ-counter. The radioactivity in each organ was
normalized as the percentage of injected dose per gram of tissue (%ID/g).

4.11. Micro-PET Scanner Imaging

Dynamic micro-PET imaging studies were conducted in tumor-bearing nude mice
(A549-hPDL1 and A549, n = 3 in each group) using the Madiclab PSA146 PET/CT/FMT in-
strument (Linyi, China). The images were reconstructed using a three-dimensional ordered-
subset expectation maximum (OSEM) algorithm and were converted to the percentage of
injected dose per gram of tissue (%ID/g) images. Tumor-bearing mice were intravenously
injected with [68Ga]BMSH (7.4 MBq/mouse) and [18F]FDG (5.55 MBq/mouse), respectively.
For the blocking experiment, the A549-hPDL1 tumor-bearing mice were co-injected with
NOTA-BMSH (100 µg/mouse) and [68Ga]BMSH. For data analysis, the regions of inter-
est (ROIs) were manually drawn over the tumor and major organs on decay-corrected
whole-body coronal images using PMOD software (version 4.3, PMOD Technologies Ltd.,
Zurich, Switzerland).

4.12. Immunohistochemical Staining

Tumor tissues of A549-hPDL1 and A549 tumor-bearing mice obtained by sacrificing
the mice were immunohistochemically stained after preparation of paraffin-embedded
sections using 4% paraformaldehyde. The sections were incubated with the PDL1-alpha
primary antibody (diluted 1:200, Affinity) and then with the goat anti-mouse secondary
antibody (diluted 1:200, Servicebio). The secondary antibody was a molecule formed by
combining horseradish peroxidase (HRP) and goat anti-mouse IgG. The sections were then
reacted with DAB staining solution after combining the primary and secondary antibodies.
DAB produced brown precipitation upon HRP catalysis, which amplified the signal and
developed color. The immunohistochemical images were finally obtained after a series of
routine processing.

4.13. Internal Radiation Dose of [68Ga]BMSH

Internal radiation dose was estimated based on the biodistribution of [68Ga]BMSH
for in vivo injection nude female mice bearing A549–hPDL1 tumor. The radiation dose
estimates were calculated for human organs, based on an extrapolation of the animal data
to humans using OLINDA (v.1.0 (2003)/EXM software.

4.14. Statistical Analysis

Quantitative data were reported as mean ± standard deviation (SD), and statistical
differences between groups were assessed using Student’s t-test conducted with Origin 9.1
software. A p-value of less than 0.05 was considered statistically significant.

5. Conclusions

In conclusion, the investigated small molecule peptide compound, [68Ga]BMSH, la-
beled with 68Ga, underwent comprehensive in vitro and in vivo evaluations, demonstrating
promising outcomes for tumor imaging of PD-L1 expression in murine subjects. In com-
parison to [18F]FDG, [68Ga]BMSH exhibited the ability to selectively identify tumors with
varying levels of PD-L1 expression. In summary, these findings underscore the substantial
potential of [68Ga]BMSH in detecting PD-L1 expression and suggest further prospects for
its clinical translation in the future.
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