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Abstract: Self-emulsifying drug delivery systems (SEDDSs) are lipid-based systems that are superior
to other lipid-based oral drug delivery systems in terms of providing drug protection against the
gastrointestinal (GI) environment, inhibition of drug efflux as mediated by P-glycoprotein, enhanced
lymphatic drug uptake, improved control over plasma concentration profiles of drugs, enhanced sta-
bility, and drug loading efficiency. Interest in dermal spontaneous emulsions has increased, given that
systems have been reported to deliver drugs across mucus membranes, as well as the outermost layer
of the skin into the underlying layers. The background and development of a double spontaneous
emulsion incorporating four anti-tubercular drugs, clofazimine (CFZ), isoniazid (INH), pyrazinamide
(PZY), and rifampicin (RIF), are described here. Our methods involved examination of oil misci-
bility, the construction of pseudoternary phase diagrams, the determination of self-emulsification
performance and the emulsion stability index of primary emulsions (PEs), solubility, and isothermal
micro calorimetry compatibility and examination of emulsions via microscopy. Overall, the potential
of self-double-emulsifying drug delivery systems (SDEDDSs) as a dermal drug delivery vehicle
is now demonstrated. The key to success here is the conduct of preformulation studies to enable
the development of dermal SDEDDSs. To our knowledge, this work represents the first successful
example of the production of SDEDDSs capable of incorporating four individual drugs.

Keywords: clofazimine; isoniazid; lipid-based drug delivery; multiple emulsion; pseudoternary
phase diagram; pyrazinamide; rifampicin; self-double-emulsifying drug delivery system; self-emulsifying
drug delivery system; skin

1. Introduction

Lipid-based drug delivery systems are under intensive examination for improving
the oral bioavailability of lipophilic drugs [1,2]. Self-emulsifying drug delivery systems
(SEDDSs) are superior to other lipid-based systems by providing protection against the
gastrointestinal (GI) environment, inhibition of drug efflux mediated by P-glycoprotein,
increased lymphatic drug uptake, improved control of plasma drug concentration profiles,
improved stability, and enhanced drug loading efficiency [3,4]. SEDDS are an isotropic
mixture of synthetic and/or natural oils used in combination with a surfactant and co-
surfactant that can spontaneously transform into an emulsion when introduced with gentle
agitation into aqueous media [1,4]. The original conceptual basis of the manufacture of
SEDDSs was via introduction of an isotropic mixture of oil and surface active agents into
GI fluids under mild agitation, as achieved by the peristaltic movements of the GI tract,
in order to establish self-emulsification [1,4]. SEDDSs have also been shown to penetrate
barriers such as the mucus gel layer of the GI tract, and the outermost protective skin
barrier [2,5,6].

The mucus gel layer of the GI tract comprises water (90–95%), glycoproteins, and
additional minor components such as DNA, lipids, and electrolytes [5]. These components
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must be considered when developing formulations that have to cross this barrier [5]. Mucus
glycoproteins comprise an entangled visco-elastic network that protects the underlying
GI epithelium against xenobiotics and microorganisms [5]. Thus, this barrier will hinder
delivery of nanosized drug delivery systems, leading to the reduced oral bioavailability of
the incorporated drugs [5]. However, SEDDSs that incorporate a hydrophilic polyethylene
glycol (PEG) surface layer (referred to as a PEGylated surface) are able to cross this mucus
barrier [5]. Moreover, SEDDSs with a droplet size <50 nm are able to diffuse easily through
the mucus network; this layer generally prohibits the entry of substances and organisms of
sizes ranging between 100–200 nm [5]. Also, SEDDSs with proteolytic enzymes anchored on
the surface can potentially increase mucus permeability [7]. Hence, given the hydrophilic
nature of the mucus layer of the GI tract, it is noteworthy that SEDDSs are able to cross
this barrier. SEDDSs also have the capacity to deliver drugs through the lipophilic barrier
provided by the outermost skin layer, that is, the stratum corneum (SC) [6]. The capacity
of a drug delivery vehicle to cross such divergent biological barriers is thus worthy of
further investigation.

Compared to conventional drug administration routes, the dermal route is considered
safe and non-invasive, and is especially useful for delivering drugs of poor aqueous
solubility [8]. Two important questions arise in relation to formulation of SEDDSs: (i) can
the mechanism of spontaneous emulsification be defined? (ii) is it possible to modulate
the spontaneous emulsification properties of these lipid-based formulations? [9]. Notably,
utilization of these emulsions as vehicles for the simultaneous delivery of multiple drugs
remains a slowly growing field [10]. The simultaneous delivery of multiple drugs poses
several challenges, including drug–drug interactions, and the need to select components of
the emulsion that are able to dissolve and incorporate the drugs as well as the excipients [10].
Therefore, although SEDDSs are valuable topical/transdermal drug delivery systems, there
do remain certain limitations [4,6]. Nevertheless, the further investigation of self-double-
emulsifying drug delivery systems (SDEDDSs) is required in order to develop dermal
emulsions as multidrug delivery vehicles [11].

2. Results and Discussion
2.1. Oil Immiscibility Studies

All experiments were carried out in triplicate, and the results are expressed in Figure 1
as mean ± SD (n = 3) values for the different oils tested. No external oil phase mixed with
beeswax or linseed oil displayed clear separation. Further, no separation was detected be-
tween shea butter and any internal oil phase. Therefore, Transcutol®:PEG (9:1) was selected
as the only suitable internal oil phase. Clear separation between Transcutol®:PEG (9:1) and
natural oils was detected in the following order: evening primrose oil (EPO) > olive oil
(OLV) > avocado oil (AVO) > palm oil (PALM) > safflower oil (SAFF).
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These results can be explained by the polar natures of Transcutol® and PEG due to
their relatively high dielectric constants and hydrogen bonding [2,12]. Transcutol® also
known as diethylene glycol monoethyl ether, is a liquid well known to the cosmetic industry
due to its favorable solubility properties that improve the solubilization of lipophilic and
hydrophilic drugs [13]. Moreover, Transcutol® is frequently included as a co-surfactant and
skin penetration enhancer [13]. The addition of Transcutol® to a dermal formulation with
an aqueous component will influence the ionization equilibrium of the incorporated drugs,
should they be capable of undergoing ionization [12]. This solvent effect occurs when a
liquid with a dielectric constant lower than that of water is added to an aqueous solution of
a drug. The consequence of solvating drugs with a solvent of a lower dielectric constant
suppresses the extent of ionization and enhances ion pair formation at the expense of
forming solvent-separated ion pairs [12]. Therefore, the larger amount of neutral, unionized
drug and improved formation of ion pairs induced by the addition of Transcutol® will
increase the quantity of un-ionized drug able to cross the skin barrier [12].

It is reported that inclusion of both water and Transcutol® in dermal formulations is
advantageous, as the absence of water decreases the thermodynamic driving force needed
to enable penetration of drug into the skin [12]. The addition of water permits a drug to
precipitate from solution, and therefore enhances the driving force required to establish
dermal flux [12]. This is especially true for lipophilic drugs, since lipophilic drugs may tend
to remain in a lipophilic vehicle or create a reservoir effect where the drug remains in the
lipophilic SC instead of entering the underlying hydrophilic layers of the skin [4,6]. Hence,
it can be argued that it would be better to include one of the natural oils as the internal oil
phase so as to enable Transcutol® to fulfil the role of the external oil phase. Clear phase
separation of water-in-oil-in-oil (W/O/O) emulsions will potentially be exhibited due to
the hydrophilic nature of Transcutol®–PEG mixtures. However, because addition of water
and the formation of binary mixtures of Transcutol® with water favor dermal drug delivery,
compared to Transcutol® alone it would be inappropriate to include the Transcutol®–PEG
mixture as the external oil phase and separate water and Transcutol® with an internal oil
phase. This may prevent the SDEDDSs from releasing the incorporated drugs, despite
exhibiting desirable SDEDDSs properties [12]. Moreover, Transcutol® is considered a well-
tolerated topical excipient with the ability to solubilize both hydrophilic and lipophilic
drugs, which may be highly beneficial when considering the various lipophilicity profiles
of model drugs [12].

2.2. Evaluation of the Pseudoternary Phase Diagram to Find Potential Primary Emulsions

A large self-emulsification area was observed, which may signify appropriate excipi-
ent combinations. As indicated in Figure 2, four checkpoint formulations were selected
as potential primary emulsions (PEs). Checkpoint formulations were selected based on
the concept of avoiding regions with poor dermal drug delivery properties. The concen-
tration of the surfactant phase was limited to a ratio of no more than 5 compared to other
components of the triplot, because increased surfactant concentrations are known to cause
dermal irritation [6]. Moreover, reversed micelle occurrence was avoided by omitting
oil ratios > 9 [6]. Lastly, water-rich areas known for micelle formation were avoided by
selecting checkpoint formulations of ratios less than 9 in terms of water content. It was
consequently decided to select checkpoint formulations with the highest internal oil phase
and the highest water content possible due to the capacity of Transcutol® to solubilize
both lipophilic and hydrophilic drugs [12]. Furthermore, water is also a crucial component
needed to optimize dermal drug delivery facilitated by partnering water and Transcutol®,
and the inclusion of hydrophilic drugs such as isoniazid (INH) and pyrazinamide (PZY)
can benefit from the presence of a greater aqueous component [12].

As indicated in Figure 2, four checkpoint formulations were selected (PE 1, PE 2,
PE 3 and PE 4). Next, the PEs were evaluated by being subjected to self-emulsification
performance testing and determination of the emulsion stability index (ESI).
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2.3. Evaluation of Primary Emulsions
2.3.1. Self-Emulsification Performance

Rapid emulsification is highly favorable when developing oral SEDDSs or SDEDDSs,
as spontaneous emulsification is a rate-limiting step preceding successful drug absorp-
tion [14]. However, drug diffusion through the highly lipophilic SC marks a rate-limiting
step during dermal drug delivery [4,6]. Therefore, slower rates of spontaneous emulsifi-
cation are desired when designing dermal SEDDSs or SDEDDSs, since formulations with
elongated self-emulsification rates can predict prolonged contact between the skin and
the applied formulations due to the presence of occlusive formulation characteristics [4,6].
Therefore, only formulations that received C or D grading were considered. Fortunately,
PE 1, PE 2 and PE 3 received D grading with self-emulsification times of 3 min, 4 min 30 s,
and 5 min 10 s, respectively, and were consequently deemed fit for further investigation.
However, PE 4 was identified as an E-grade emulsion due to large oil droplet formation,
despite a self-emulsification time of 5 min 50 s, only 40 s longer than depicted by PE 3.

2.3.2. Emulsion Stability Index

The PEs were visually inspected after removal from a water bath set at a temperature
of 68 ◦C for a period of 3 h [15]. No phase separation was observed for PE 1, PE 2,
or PE 3, which indicated an ESI of 100%. Emulsion instability was found in PE 4 (ESI
of 80%), as visible creaming occurred. For this reason, PE 4 was excluded from future
characterization experiments.

The poor robustness shown by sudden short exposure to a high temperature may be
associated with an increase in the surfactant concentration. Interestingly, an elevation of
the surfactant content can reduce the size of the droplets until the surfactant concentration
reaches a concentration at which the size of the droplets increases, as established by
the aggregates produced from excess surfactant included [16]. The sudden increase in
temperature exposure accelerated this instability process, indicating that PE 4 is not suitable
for further consideration.
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2.4. Construction of Pseudoternary Phase Diagrams for Self-Double-Emulsifying Drug
Delivery Systems

Figures 3–7 indicate the self-double-emulsification areas observed for different combi-
nations of the selected excipients. Pseudoternary phase diagram construction is necessary
to confirm if spontaneous emulsification is achievable, and especially to establish the ease
and degree of self-emulsification made possible by refined excipient selection during prefor-
mulation decision making. Excellent self-emulsification was observed during the addition
of natural oils to the fixed mixture of water and Transcutol®:PEG together with surfactant.
It may seem to be unusual to use the fixed combination of the internal oil phase and the
surfactant phase as a single component of the triplot instead of plotting the water and
the internal phase together, while plotting the surfactant phase separately. However, the
use of decreased surfactant and internal oil phase concentrations are imperative, as the
propensity for self-emulsification is intensified with limited surfactant phase content. De-
creased surfactant concentrations imply a reduced risk of skin irritation, especially during
prolonged use, as well as lowered production costs [4,6]. Moreover, careful attention must
be paid to the Transcutol®–PEG content of SDEDDSs, as Transcutol® should be included
in moderate amounts compared to water, due to its high affinity for water that limits the
dermal diffusion if it is not accompanied by sufficient water concentrations [12].
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Figure 3. Pseudoternary phase diagrams of water, avocado oil, and fixed proportions of the surfactant
and internal oil phases. In (a) the internal oil and surfactant phases are combined in a ratio of 9:2; in
(b) the internal oil and surfactant phases are blended in an 8:3 ratio; and in (c) the internal oil and
surfactant phases are included as a 7:4 ratio.

Excellent self-emulsification was exhibited during the construction of the pseudoternary
phase diagrams of the tested SDEDDSs, as seen in Figures 3–7. Limited variation could be
related to the addition of different external oil phases, since the spontaneous emulsification
behavior were closely similar However, clear differences can be seen when the region
of self-emulsification is compared for different Transcutol®:PEG:surfactant phase ratios.
This phenomenon is attributed to the instability of SDEDDSs due to increased surfactant
concentrations [17]. It should be noted that Transcutol® can also be employed as a co-
surfactant [18]. Therefore, if the ratio of Transcutol®:PEG:surfactant phase is not optimized,
Transcutol® can enhance the effect of the surfactant phase and thus further contribute to the
emulsion instability. The gray areas indicated in the 7:4 ratio (internal oil phase:surfactant
phase) in the pseudoternary phase diagrams signify that self-emulsification was observed,
but the consistency of the SDEDDSs changed to high viscosity, eliciting poor formulation
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properties such as creaming and excipient precipitation. Again, this is a clear indication that
the use of increased concentrations of the surfactant phase are not favorable. Interestingly,
this can be related to the reduced difference in the ratio of the internal oil phase compared
to the surfactant phase, represented by the 8:3 and 7:4 ratios (internal oil phase to surfactant
phase). Therefore, it was decided to maintain an internal oil-phase-to-surfactant-phase
ratio of 9:2.
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Figure 5. Pseudoternary phase diagrams of water, olive oil, and fixed ratios of the selected surfactant
and internal oil phases. In (a) the internal oil and surfactant phases comprise a ratio of 9:2; in (b) the
internal oil and surfactant phases consist of an 8:3 ratio; and in (c) the internal oil and surfactant
phases are blended in a 7:4 ratio.
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internal oil phases. In (a) the internal oil and surfactant phases are combined in a ratio of 9:2; in
(b) the internal oil and surfactant phases are blended in an 8:3 ratio; and in (c) the internal oil and
surfactant phases are included as a 7:4 ratio.
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2.5. Solubility Studies

Solubility studies are crucial for determining the amount of excipients needed to best
solubilize different drug combinations, while maintaining concentrations close to saturation
to enhance the driving force needed to achieve dermal diffusion [4,6,19]. The solubility
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of antitubercular drugs was determined for the following solvents: AVO-, OLV-, EPO-,
PALM-, SAFF, and PE, comprising a 9:9:2 ratio (internal oil phase:water phase:surfactant
phase), as displayed in Figures 8–11. The results are expressed as mean ± SD (n = 3).
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As indicated, the lipophilic drugs, CFZ and RIF, displayed a higher solubility in
natural oils compared to the more hydrophilic drugs, INH and PZY. Moreover, INH
and PZY exhibited increased solubility in the PE. As expected, the aqueous solubility
of individual drugs indicated in Table 1, increased when solubilized in the PE. This is
attributed to the addition of Transcutol® and the surfactant phase to the water phase. This
addition improved the aqueous solubility of all drugs, since Transcutol® can solubilize
both lipophilic and hydrophilic compounds [12]. Similarly, the inclusion of surfactants
is also known to improve the solubility of drugs included in emulsions [20]. Clearly, the
PE will be effective in solubilizing INH and PZY. However, an external oil phase must be
selected to optimize the solubility of both CFZ and RIF.

Table 1. Physicochemical properties of the selected anti-tubercular drugs [6,19,21–31].

Drug Log P Molecular
Weight (Da)

Aqueous
Solubility

Elimination
Half-Life Metabolized BCS

Classification

CFZ 7.66 473.40 <1 mg/mL 70 days Hepatic Class II

INH 0.64 137.14 125 mg/mL 45–110 min 1

2–4.5 h 2 Hepatic Class I/III 3

PZY −1.88 123.11 15 mg/mL 3–5 h Hepatic Class III
RIF 3.80 822.90 1.51 mg/mL 3–4 h Hepatic Class II

1 rapid metabolizers. 2 slow metabolizers. 3 INH is considered highly water soluble; however, data that reflect its
oral absorption and permeability are inconclusive. Therefore, we suggest that INH can be regarded as somewhere
between BCS Class I and III.

PALM induced the highest solubilization of CFZ, whereas RIF had the highest sol-
ubility in AVO. However, as CFZ causes dose-dependent skin discoloration, the aim is
to reduce the concentration of CFZ when it is used together with PZY. It has been found
that the dose of CFZ can be substantially reduced from 25 mg/kg to 6.25 mg/kg when
administered orally together with PZY due to the synergistic activity achieved when CFZ
and PZY are used in combination [27]. Hence, AVO would be the first choice, as adequate
solubility of CFZ would be possible if the CFZ was included in reduced concentrations,
while providing a vehicle capable to fully solubilizing RIF. Therefore, AVO would be the
ideal external oil phase if CFZ, INH, PZY, and RIF, or CFZ, PZY, and RIF were to be included
in a SDEDDS. Nonetheless, if it is decided to include CFZ, INH, and RIF, then PALM or
SAFF can also be considered, as increased doses of CFZ will have to be included in the ab-
sence of PZY. On the other hand, PALM would be best suited for inclusion of CFZ together
with PZY and INH. However, when selecting an external oil phase, the skin penetration
enhancement properties of the oil should be considered, as this can greatly affect dermal
drug delivery [4,6,11]. In addition, the results obtained during the immiscibility studies
should be considered, as a higher degree of immiscibility presents a greater opportunity
to successfully formulate SDEDDSs [2,11]. Therefore, for the purpose of this work, AVO
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was selected as the external oil phase when formulating a SDEDDSs comprising the four
antitubercular drugs for microscope examination, due to its favorable solubility properties
and the reliable skin penetration enhancement characteristics [6].

2.6. Isothermal Micro Calorimetry Compatibility Studies

Isothermal microcalorimetric studies indicated that differences existed between the
slopes and y-intercepts of the measured and theoretical (no interaction) heat flows of
certain samples tested during compatibility studies. Additionally, the absolute values of
the interactions integral to these samples were also greater than zero. Therefore, potential
interactions were observed for the following combinations: OLV and PE (−38.01 J/g);
AVO and PE (2.64 J/g); EPO and PE (−29.18 J/g); PALM and PE (26.20 J/g); SAFF and
PE (85.90 J/g); PE and PZY (−26.54 J/g); PE and CFZ (36.36 J/g); PE and RIF (39.15 J/g);
PE and INH (36.61 J/g); CFZ and INH (2252 kJ/g); as well as INH and RIF (822.89 J/g).
However, potential interactions between PE and selected external oil phases were expected
because the external oil phases were included due to the clear immiscibility between the
internal oil phase and external oil phases during the oil immiscibility studies. Therefore,
this expected so-called incompatibility is only due to the inability of the oils to mix, and is
considered insignificant, as these excipients were intentionally included as a result of their
immiscibility with the internal oil phase in order to enable production of double emulsions.

Remarkably, all of the model drugs exhibited potential incompatibility with the PE.
Nonetheless, this may be explained by the increased solubility of the drugs observed in
the PE compared to the aqueous solubility reported in the literature. The PE comprises
Span®83, Transcutol®, Tween®60 and water, excipients that are frequently included in
dermal formulations due to their favorable safety, solubilizing, and emulsion-stabilizing
properties [4,6,12]. Therefore, this is deemed a physical incompatibility rather than a chemi-
cal incompatibility; therefore, it is still possible to use these specific excipient combinations,
as physical incompatibilities do not influence formulation stability [6].

In terms of drug–drug interactions, it is noted that synergism is obtained when CFZ
is used in combination with the first-line antitubercular agents INH and RIF [28]. This
combination is frequently administered to tuberculosis (TB) patients. It has been well
documented that RIF shows significant instability in the presence of dissolved INH in an
acidic environment [29]. Hence, the emphasis shifts from incompatibility between drugs
to the importance of formulation. Selected controlled-release formulations can retain RIF
while releasing INH so as to avoid deleterious drug–drug interactions which may lead to
reduced drug absorption and decreased therapeutic efficacy [29]. However, as the pH of
the skin is normally between 5.4 and 5.9 [4], this is not considered to be sufficiently acidic
to exclude the use of a RIF and INH combination in a SDEDDS.

2.7. Microscope Examination

Evaluation of the PEs by microscopic examination revealed that the PE ratio of 9:9:2
(internal oil phase:water phase:surfactant phase) was the only PE that exhibited droplet
formation. This supports the decision to exclusively use this ratio, and only vary the
external oil phase according to the antitubercular drugs included in the SDEDDSs. The
microscopic image was captured without any drugs present, as shown in Figure 12.

PE 1 (9:9:2) was subjected to droplet size analysis and polydispersity index (PDI)
determination. The results are expressed as mean ± SD (n = 3). The droplet size was
measured as an average of 173.90 ± 2,30 nm and a PDI value of 0.236 ± 0,11. As shown in
Figure 12, the droplet size distribution can be considered homogenous. The accuracy of
this ratio is supported by literature comments indicating that the ideal emulsion should
contain equal parts water and oil, while being stabilized by appropriate surfactant(s) [30].
However, the presence of PEG as part of the internal oil phase together with Span®83 and
Tween®60 included as surfactants may also contribute to the ability of the PE to remain
stable, since PEG can be used as a surface-active agent as well as a solvent [11,31]. Next,
PE with a ratio of 9:9:2 was prepared, and AVO was used as the external oil phase due



Pharmaceuticals 2023, 16, 1348 11 of 21

to the favorable solubility properties exhibited by both lipophilic drugs in this vehicle. A
checkpoint formulation including a high concentration of the internal oil phase to provide
sufficient solubilization of INH and PZY while at the same time providing a moderate
amount of the external oil phase, so as to ensure saturated concentrations of the lipophilic
components, was selected (Figure 13). This decision is based on the understanding that
lipophilic components tend to form a reservoir in the SC or remain in the lipid component
of the formulations if the driving force of diffusivity across the SC is not enhanced by
formulation techniques such as oversaturation [4,6,11,19].
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Figure 13. Pseudoternary phase diagram utilized to select a checkpoint formulation (9:9:5) for
SDEDDS development.

The checkpoint formulation, namely 9:9:5 (water phase to internal oil and surfactant
phase (9:2) to outer oil phase) was prepared. Preparation was commenced by mixing
internal oil phase components (Transcutol®:PEG ratio of 9:1) by means of gentle stirring
until fully combined. At the same time, the surfactant phase was separately prepared by
gently stirring Span®60 and Tween®83 in a ratio of 1:1 until completely blended. Next,
surfactant phase and the internal oil phase were combined (9:2 ratio of internal oil phase to
surfactant phase) while being subjected to mild stirring for a duration of 30 min. Thereafter,
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a predetermined quantity of water, a ratio of 9 in this case, was added in small increments
while applying steady agitation. After subjecting this mixture to homogenization for 4 min,
in order to generate a PE, the pre-determined quantity of five parts external oil phase was
added in a dropwise fashion while gently stirring. After continuous stirring, the mixture
was removed from the stirring plate and subjected to sonication until the desired droplet
size was achieved. Drugs were included at a concentration of 2% each. Hence, overall
composition of SDEDDS can be summarized as follows: 8% drugs (2% of each drug),
36% water, 20% AVO, 29.5% internal oil phase, and 6.5% surfactant phase.

The checkpoint SDEDDS was characterized by measuring droplet size and PDI. The
results are expressed as mean ± SD (n = 3). Average droplet size was revealed to be
92.46 ± 5.52 nm, and the PDI value found to be 0.391 ± 0.05. Therefore, the selected PE
and SDEDDS were visually examined via transmission electron microscopy (TEM) for the
purpose of gaining a reliable visual representation of the droplets that fell into the nano
size range. As the highlight of this study, the TEM observation revealed clear small droplet
formation inside larger smooth-surfaced droplets, signifying the successful development
of a SDEDDS designed to simultaneously contain four drugs. Moreover, the mechanism of
spontaneous emulsification was captured as indicated in Figure 14.
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As indicated in Figure 14, clear formation of a small droplet(s) within a larger droplet
was achieved. Interestingly, a membrane structure is established by the surfactant phase (A),
and then water is engulfed by the surfactant phase, to be captured as small droplets inside
the internal oil phase (B and C). However, when considering the scale bar of 100 nm on the
TEM image, it is evident that the average droplet size measured during characterization
experiments only measured the larger droplets harboring the smaller droplets (D). Hence,
this may be considered a novel contribution to the development of dermal SDEDDS, since
nano-sized droplets are known to cross the SC with ease compared to larger-sized droplets.
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The opportunities of delivering fixed-dose drug combinations via dermal application when
included in SDEDDSs instead of SEDDSs can be considered when studying the TEM images
of the PE (SEDDS) compared to SDEDDS, displayed in Figure 15a,b.
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As seen in Figure 15a,b, SEDDS is presented as the (a) PE included in (b) SDEDDS.
The most noticeable difference is in droplet size, since (a) rendered an average droplet size
of 173.90 nm and (b) depicted an average droplet size of 92.46 nm. Interestingly, PDI values
signify that (a) is more homogenous compared to (b). However, upon visual examination,
(b) seems to be a sample of increased homogeneity compared to (a). This can be attributed
to the observation made previously that only large droplets of SDEDDS were measured
during droplet size determination due to the incorporation of smaller droplets inside the
larger droplets. However, in terms of drug delivery, the TEM images indicate multiple
phases presented by SDEDDSs compared to SEDDSs are able to incorporate more than
one drug. This is due to the different phases established by water and two immiscible
oils than can solubilize polar and non-polar drugs in the same vehicle with potential
sustained release characteristics. This aspect requires further examination. TEM images
were captured in the absence of drugs, since the red discoloration caused by both CFZ
and RIF limits the contrast required for identification of SEDDS and SDEDDS, respectively.
Therefore, the importance of preformulation studies during the development of SDEDDSs
is emphasized and can be considered the key to success. This is indeed a novel development.
To the knowledge of the authors, this represents the first nano-SDEDDS (N-SDEDDS) or
W/O/O self-nano-emulsifying drug delivery system (SNEDDS) capable of incorporating
four individual drugs that possess strikingly different physicochemical properties.

3. Materials and Methods
3.1. Materials

Combinations of CFZ, INH, PZY, and RIF were utilized as model drugs. CFZ, INH,
and RIF were kind gifts from Prof Wilna Liebenberg, head of the Solid-State Pharmaceutical
Innovation and Nanotechnology (SPIN) research group at the North-West University
(Potchefstroom, South Africa). PZY, Transcutol®, Span®83, and Tween®60 were purchased
from Merck (Darmstadt, Germany). AVO, beeswax, EPO, linseed oil, OLV, PALM, SAFF,
and shea butter were bought from Nautica Organics Trading (Durban, South Africa). PEG
was obtained from DB Fine Chemicals (Sandton, South Africa). Distilled water was acquired
through a Rephile Bioscience Ltd. system (Boston, MA, USA).
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3.2. Methods for Drug and Excipient Selection
Considering Drug Selection

Antitubercular drugs were selected on the basis of their physicochemical properties
and Biopharmaceutical Classification System (BCS) ranking, as indicated in Table 1, to
demonstrate the capacity of SDEDDSs to incorporate multiple drugs of different physico-
chemical natures.

From Table 1, the lipophilicity of drugs may be classified as CFZ >>> RIF >> INH >> PZY.
These physicochemical properties were considered in order to obtain an exceptional dermal
drug delivery capacity for the SDEDDSs, as the optimal lipophilicity of drugs destined
for dermal drug delivery is established at a Log P value of 1–3 and a molecular weight
<500 Da [32–34]. None of the selected drugs has a Log P value that falls within the pre-
scribed range for desirable dermal drug delivery. Fortunately, though, INH and PZY have
acceptable molecular weights. CFZ, on the other hand, presents a compliable molecular
weight. However, this drug is highly lipophilic, as can be concluded by its Log P value of
7.66 and elimination half-life of 70 days. Lastly, the molecular weight of RIF drastically
exceeds the prescribed molecular weight, and thus renders it unsuitable for dermal drug
delivery. Nevertheless, a recent publication indicated that drugs with a molecular weight
that does not exceed 1000 Da can be considered acceptable for dermal drug delivery [35].
Consequently, lipophilicity is considered the determining factor that prohibits the delivery
of dermal drugs, instead of the molecular weight of the drugs chosen for this study [35,36].

Developing a topical dosage form containing four drugs to aid in cutaneous tuberculo-
sis (CTB) disease is challenging but necessary due to the daunting nature of Mycobacterium
tuberculosis [19]. Hence, the requirements for an effective tuberculosis regimen comprise
simultaneous administration of various bactericidal and sterilizing anti-tubercular agents
that are administered for a sufficient period for the purpose of sustaining anti-microbial
effectiveness, while preventing mutations of Mycobacterium tuberculosis that might lead
to drug resistance [19,37]. Hence, drug combinations are the norm for anti-tubercular
treatment regimens [37]. The first-line anti-tubercular drugs utilized during this study
included INH, PZY, and RIF [19]. However, resistance against first-line agents is drastically
increasing, and there is a need for new anti-tubercular drug combinations as well as new
drug entities to assist in the fight against TB [37,38].

CFZ, a riminophenazine antibiotic, is listed by the World Health Organization as
a Category B agent for treatment of multidrug-resistant TB (MDR-TB) and extensively
drug-resistant TB (XDR-TB) [39]. A meta-analysis study discovered that the overall pooled
proportion of treatment success was 61.96% after providing CFZ treatment, compared to a
global success rate of 54% for MDR-TB patients and a limited 30% success for XDR-TB pa-
tients [39–41]. Additionally, a prospective, randomized, multicenter study concluded that
MDR-TB patients treated with the shorter regimen including CFZ had a comparable suc-
cessful outcome rate when compared to patients treated with the standard regimen [39,42].
Moreover, synergistic effects were observed when utilizing CFZ in combination with first-
line anti-tubercular agents in both planktonic and biofilm-forming cultures [43]. Therefore,
potential improvements in therapeutic efficacy may be achieved by adding CFZ to stan-
dard, readily available anti-tubercular treatment regimens [43]. Thus, CFZ is a worthwhile
candidate to consider for treatment of CTB, since CTB is currently treated with first-line
anti-tubercular agents [43]. However, SDEDDSs developed during this study can also aid
in treatment of non-tuberculosis mycobacteria (NTM) skin infections, since NTM is known
for its intrinsic, inducible, and adaptive resistance mechanisms [44]. Therefore, treatment
periods of 2–4 months are required for NTM skin and soft tissue infections accompanied
by co-administration of multiple antibiotics [44]. CFZ is recommended for treatment of
Mybobacterium fortuitum and Mycobacterium abscessus complex together with other agents
such as amikacin, trimethoprim–sulfamethoxazole, linezolid, tetracyclines, quinolones,
and gepotidacin (for Mycobacterium fortuitum complex) and tigecycline, clarithromycin,
omadacycline, and thiostrepton (for Mycobacterium abcessus complex) [44]. Unfortunately,
the co-administration of antibiotics can lead to challenges such as drug interactions, drug-
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related adverse reactions, and high medication costs that have the potential to compromise
treatment options as well as patient compliance [44]. However, SDEDDS can be a valu-
able tool during the development of individualized therapy for conditions such as NTM
skin infections and CTB, since multiple drugs as well as different drug combinations can
be added to SDEDDSs that are easy to manufacture and upscale if excipient selection is
performed correctly [19].

3.3. Preformulation Studies
3.3.1. Oil Immiscibility Studies

It was decided to formulate a W/O/O emulsion for the purpose of providing a
water phase to optimally solubilize the hydrophilic drugs, and oil phases capable of
ensuring effective solubilization of the lipophilic drugs. Ideally, the external oil phase
should possess additional skin penetration enhancement properties to facilitate dermal
drug delivery [45]. However, the art of creating an oil-in-oil (O/O) emulsion lies in the
mixing of two immiscible lipophilic components to maintain the separation of an internal
and external oil phase [2,46]. Therefore, it would be best to employ a ‘lipophilic oil’ as well
as a more ’hydrophilic oil’ into a single SDEDDS. Thus, the hydrophilic–lipophilic balance
(HLB) values of oils were studied to find oils or excipient mixtures with low and elevated
HLB values in order to create and maintain internal and external oil phase separation.

Beeswax (HLB value of 4 or 12), linseed oil (HLB value of 3.23) and Transcutol®:PEG
(9:1 ratio), with a combined HLB value of 4.46, were analyzed to find an internal oil
phase [47–49]. Shea butter, AVO, OLV, EPO, and PALM were considered as potential
external oil phases. Immiscibility experiments were performed by weighing 10 g of a
potential internal oil phase and adding it to 10 g of a tested external oil phase [2]. Next, the
oil mixtures were subjected to vortexing for 10 min [2]. Thereafter, the vortexed mixtures
were poured into separatory funnels and left for 30 min in order to evaluate the degree
of separation of the different oil phases [2]. This would enable the determination of the
immiscibility percentage in terms of weight differences [2].

3.3.2. Hydrophilic–Lipophilic Balance Consideration

Choosing the correct surface active agent(s) is essential in order to stabilize the emul-
sions once formulated [50]. The HLB system allows theoretical quantification of the ability
of a surfactant and co-surfactant combination to stabilize an emulsion [50–52]. When
considering the formulation of multiple emulsions such as SDEDDSs, the inclusion of
at least two surface active agents is required to stabilize the formation of both primary
and secondary emulsions that as a whole present a multiple emulsion [53]. In the case
of W/O/O emulsions, one surface active agent should have a low HLB value to stabilize
the formation of a PE at the water-in-oil (W/O) interface, and a second surface active
agent with an enhanced HLB value should provide stabilization of the secondary emulsion
formation [53]. If surface active agents are selected correctly, the stabilization established
by these excipients form the building blocks needed by SDEDDSs to provide protection
of the incorporated drugs, the ability to include several drugs due to different emulsion
compartments, and to enable sustained release from multi-emulsions [53]. Therefore, the
selection of surface active agents for multiple emulsions cannot be based solely on the same
concept applied for simplified emulsions. For the latter, a non-ionic, lipid-soluble surfactant
with an HLB value ranging between 3–8 will tend to deliver O/O emulsions. A non-ionic
surfactant that is preferentially water-soluble, has an HLB value around 8–16, and will tend
to stabilize O/W emulsions [54]. Therefore, for the purpose of this study, Span®83 (HLB
value of 3.7) and Tween®60 (HLB value of 15) were selected as surfactant and co-surfactant,
respectively [55,56]. A fixed ratio of Span®83:Tween®60 (1:1) was maintained throughout
the experiments, as this ratio has demonstrated greater stabilization of SEDDSs compared
to higher ratios that increase the emulsion range but reduce stability, as indicated by drug
precipitation [6,57].
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3.3.3. Construction of a Pseudoternary Phase Diagram to Find Potential Primary Emulsions

A water titration method was utilized to construct a pseudoternary phase diagram
wherein Transcutol®:PEG (9:1), water and the surfactant phase (Span®83:Tween®60; 1:1)
were combined in different ratios to display a triplot. This then is able to indicate the most
appropriate combination of additives required to form successful SDEDDSs, as one can
establish the self-emulsifying areas and also validate the most effective concentrations and
ratios of the included composites. No drugs were used, as it was necessary to establish
excipient behavior without the influence of any drugs. The surfactant phase and water were
mixed in fixed ratios (10:0, 9:1, 8:2, 7:3, 6:4, 5:5, 4:6, 3:7, 2:8, 1:9, 0:10), while Transcutol®:PEG
(9:1) was added in a dropwise manner as a variable component at an ambient temperature.
The concentration at which the turbidity of the mixtures is first observed was plotted
as the endpoint, employing Triplot software version 4.1.2 [6,58]. Thus, the area of self-
emulsification was established as required to find potential PEs.

3.3.4. Evaluation of Primary Emulsions

The PEs selected from the pseudoternary phase diagram were subsequently prepared
by adding known quantities of the internal oil phase (Transcutol®:PG; 9:1) to established
quantities of the water and surfactant phases. The mixtures were then subjected to ho-
mogenization with a Heidolph DIAX600 homogenizer (Schwabach, Germany) for 4 min
at 9500 rpm, while being kept at room temperature [2,59]. The PEs were evaluated after a
waiting period of 24 h at an ambient temperature in terms of emulsion stability index and
self-emulsification performance in order to eliminate poor excipient combinations from
further experimentation.

3.3.5. Self-Emulsification Performance

Complete emulsification and emulsification time can be defined as the time required
to obtain a macroscopically homogeneous emulsion [60]. To obtain self-emulsification
times, PEs were assessed using a Type II Distek 2500 dissolution apparatus (2501049, North
Brunswick, NJ, USA). A sample (1 mL) was collected from individual PE formulations and
diluted with 100 mL distilled water and maintained at a fixed temperature of 32 ± 0.5 ◦C
with a paddle rotation speed set at 50 rpm to provide gentle agitation. The time it takes for
PEs to form a homogeneous mixture upon dilution was noted and classified according to
the following grading system [61]:

• Grade A: Fast-forming emulsion (within 1 min) with a clear or bluish color;
• Grade B: Fast-forming (within 1 min) and somewhat less clear emulsion with a bluish-

white color;
• Grade C: Fine murky emulsion that forms within 2 min;
• Grade D: Dull, grayish-white emulsion that displays a slightly oily appearance, which

indicates slow emulsification (longer than 2 min);
• Grade E: A formulation demonstrating either poor or minimal emulsification with

large oil droplets existing on the surface.

Emulsions graded as C or grade D were deemed favorable for dermal drug delivery [4].
For this reason, all emulsions that received a grade other than grade C or D were deemed
unsuitable for further investigation.

3.3.6. Emulsion Stability Index (ESI)

The PEs (10 mL) were placed in a water bath set at a temperature of 68 ◦C for a period
of 3 h prior to evaluation [2]. After the 3 h waiting period, the PEs were inspected to
determine the variance between the separated layer compared to the initial total volume of
the emulsion placed in the water bath [2]. This provides a clear indication of the capacity
of an emulsion to retain stability once it has been exposed to increased temperatures for a
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short time. The volume of the separated layer was compared with the total volume of the
initial emulsion to calculate the ESI using the following equation:

ESI = 1 −
(

Volume o f separated layer
Total volume o f emulsions

)
× 100% (1)

3.3.7. Construction of Pseudoternary Phase Diagrams for Self-Double-Emulsifying Drug
Delivery Systems

The water titration method was again utilized to construct pseudoternary phase
diagrams. Drugs were again excluded during pseudoternary phase diagram construction
to be able to observe excipient response without the complication of variables introduced
by drug inclusion. The internal oil phase was mixed together with the surfactant phase
(i.e., PE 1, PE 2 and PE 3, respectively) and water in fixed proportions (9:1, 8:2, 7:3, 6:4,
5:5, 4:6, 3:7, 2:8 and 1:9), while individual external oil phases were added dropwise as the
variable component at an ambient temperature. The concentration at which the turbidity
of the mixtures is observed was plotted as the endpoint, employing Triplot software
version 4.1.2 [6,58,62,63].

3.3.8. Solubility Studies

An excess amount of individual antitubercular drugs was added to 5 mL of the differ-
ent vehicles considered during this study. Samples were then vortexed for approximately
2 min. Solubility studies were performed by placing samples in the circular axis (54 rpm)
of a rotating solubility bath set at 32 ◦C (±0.5 ◦C) for a period of 48 h [6]. The samples
were then centrifuged at 3000 rpm for 15 min, followed by the removal of the supernatant
from each sample [6]. The supernatant was filtered through a 0.45 µm Millipore® filter and
diluted with methanol [6]. A validated high-performance liquid chromatographic method
was employed to analyze all samples [6].

3.3.9. Isothermal Micro Calorimetry Compatibility Studies

The compatibility of excipients and drugs was investigated using a previously pub-
lished method [64]. A 2277 Thermal Activity Monitor, TAM III (TA Instruments, New
Castle, DE, USA), equipped with an oil bath with a stability of ±100 µK over 24 h was
used. The temperature was maintained at 40 ◦C and 100 mg samples were tested. The
heat flow for each individual component was measured to generate a theoretical response
(i.e., baseline), which was accompanied by a comparison of the theoretical response with the
calometric output to determine compatibility. If the theoretical response drastically differed
from the detected calometric output, interactions between excipients were suspected.

3.3.10. Microscope Examination

All visual examinations of either the PEs or the SDEDDSs were conducted utilizing an
Olympus microscope (Tokyo, Japan). TEM measurements were performed on a TECNAI
G2 (ACI) instrument operated at an accelerating voltage of 200 kV (Hillsboro, OR, United
States of America) [65,66].

3.3.11. Droplet Size and Size Distribution

Droplet size and size distribution were assessed by means of dynamic light scatter-
ing performed using a Malvern Zetasizer Nano® ZS (Worcestershire, UK) at 25 ◦C [6].
All samples were analyzed in triplicate.

4. Conclusions

Future in vitro drug release and permeation studies should be conducted in order to
establish the release of the drugs from SDEDDSs. Additionally, nanotoxicology studies
should also be performed for the purpose of establishing the extent as well as the safety of
the permeation achieved by N-SDEDDSs [67]. However, the final SDEDDS presented an
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average droplet size of 92.46 nm and a PDI value of 0.391 which is considered exceptionally
small on the basis of literature data [68–70]. Therefore, dermal drug delivery can be consid-
ered very likely due to the small droplet size of the SDEDDS [68–70]. This study has clearly
demonstrated the potential of SDEDDSs as a dermal drug delivery vehicle by including
four model drugs in a single SDEDDS. This was challenging, since the model drugs possess
very different physicochemical properties, with individual aqueous solubilities ranging
from sparingly soluble to a solubility of 125 mg/mL. Moreover, the selected drugs varied
in terms of their BCS classification, namely Class I, II, and III. However, the development
of the SDEDDS described here was based on findings from the preformulation studies.
Therefore, this work signifies an important step in conducting thorough preformulation
experiments that provide a foundation for the formulation and subsequent characterization
of SDEDDSs tailored to accommodate selected drugs while being adapted for dermal
drug delivery. Furthermore, this paper indicates the importance of carefully constructing
drug delivery systems from start to finish—preformulation studies represent the key to
success for development of dermal SDEDDSs. To the authors’ knowledge, this represents
the first published study indicating that SDEDDSs can incorporate four individual drugs
successfully into a single dosage form.
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