
Citation: He, B.; Yang, Q. Recent

Development of LDL-Based

Nanoparticles for Cancer Therapy.

Pharmaceuticals 2023, 16, 18.

https://doi.org/10.3390/

ph16010018

Academic Editor: Silviya Petrova

Zustiak

Received: 21 November 2022

Revised: 19 December 2022

Accepted: 19 December 2022

Published: 23 December 2022

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

pharmaceuticals

Review

Recent Development of LDL-Based Nanoparticles for
Cancer Therapy
Binghong He and Qiong Yang *

Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal
University, Beijing 100875, China
* Correspondence: yangqiong@bnu.edu.cn

Abstract: Low-density lipoprotein (LDL), a natural lipoprotein transporting cholesterol in the circula-
tory system, has been a possible drug carrier for targeted delivery. LDL can bind to the LDL receptor
(LDLR) with its outside apolipoprotein B-100 and then enter the cell via LDLR-mediated endocytosis.
This targeting function inspires researchers to modify LDL to deliver different therapeutic drugs.
Drugs can be loaded in the surficial phospholipids, hydrophobic core, or apolipoprotein for the
structure of LDL. In addition, LDL-like synthetic nanoparticles carrying therapeutic drugs are also
under investigation for the scarcity of natural LDL. In addition to being a carrier, LDL can also be a
targeting molecule, decorated to the surface of synthetic nanoparticles loaded with cytotoxic com-
pounds. This review summarizes the properties of LDL and the different kinds of LDL-based delivery
nanoparticles, their loading strategies, and the achievements of the recent anti-tumor advancement.
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1. Introduction

In recent years, cancer has become a major public health problem worldwide, and
the latest cancer statistics showed that cancer is the second leading cause of death in the
United States [1]. Chemotherapy is one type of cancer treatment under investigation to
improve mortality [2–4]. Although chemotherapy kills fast-growing cancer cells, the fast-
growing and dividing healthy cells will also be affected [5]. Nanoparticles (NPs) carrying
cytotoxic agents to cancer cells help lessen the toxicity of chemotherapy and provide a
new strategy for targeted cancer therapy [6,7]. Traditional NPs are enriched in the tumor
through the high permeability and retention effect (EPR effect) with their sizes, for instance,
polymers, micelles, microspheres, liposomes, and so on [8–10]. Some of them have been
approved by the FDA and clinical studies show that the utilization of these therapeutic
particles significantly prevents the spread of liver cancer [9], gastric cancer [10] and breast
cancer [11], and so on. However, most of these targeted NPs are passive NPs that would
not actively target cancer cells. Active targeted NPs that can specifically target specific
cancer cells with particular ligands or proteins might effectively increase the enrichment of
NPs and reduce side effects [12].

Low-density lipoprotein (LDL) is one kind of nanoscale molecule that could be an
actively targeted NP [13]. LDL is the cholesterol transporter in the body to deliver choles-
terol to the cells expressing the LDL receptor (LDLR) [14]. LDLR is overexpressed on
the hyperproliferative cells, especially cancer cells such as liver cancers, glioma cancers,
and lung cancers [15–18]. LDLR would recognize the apolipoprotein B-100 (ApoB-100)
on the LDL and then form the LDL-LDLR complex to start the endocytosis. ApoB-100 is
the apolipoprotein on the LDL that confirms the targeting characteristic of this nanoscale
molecule [19]. As an endogenous molecule, LDL would not trigger an immune response
and reduce unnecessary stress for the body.
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2. LDL and LDL Receptors

LDL is a spherical nanoscale molecule with a diameter of 18–25 nm [20], whose
outer layer is a hydrophilic phospholipid monolayer, accompanied by ApoB-100 and free
cholesterol, and the inner layer is a hydrophobic core composed of esterified cholesterol
and triacylglycerol (Figure 1). The component of LDL is approximately 50% cholesterol,
25% protein, 20% phospholipids, and 5% triacylglycerol. ApoB-100 on the surface of LDL
recognizes and binds to LDLR during endocytosis [21].

Figure 1. Schematic diagram of LDL structure. LDL is composed of phospholipid monolayers,
cholesterols, triglycerides, and ApoB-100.

LDLR, a transmembrane glycoprotein consisting of 4536 amino acid residues, is one
of the largest monomeric proteins [17]. LDLR is a widely expressed protein that absorbs
approximately 70% of circulating LDLs via LDLR-mediated endocytosis [16]. During the
endocytosis, the apoB-100 on the LDL would recognize the LDLR, and then LDL and LDLR
form a complex. The complex enters the cell through the pits of the clathrin envelopes and
is surrounded into a coated vesicle. Facilitated with the low pH environment of endosome
and lysosome, LDL is digested to cholesterol and triglyceride while the LDLR returns to
the cell membrane to restart another endocytosis [22].

LDLs, as the crucial source of exogenous cholesterol, play a crucial role in providing
cholesterol for cell proliferation. LDLR is highly expressed in malignant tumors such as
gastric cancer [23], liver cancer [24], breast cancer [25], and leukemia [26], indicating that
the intake of LDL might accelerate oncogenic processes. Caruso et al. found that, in rapidly
proliferating tumor cells, the metabolic rate of LDLR significantly accelerated [27]. Given
this function, Krieger et al. combined cytotoxic drugs with LDL to form LDL-based NPs
and observed more accumulation of NPs in LDLR overexpressing tumor cells [28]. The
intake of LDL-based NPs is dependent on the LDLR-mediated endocytosis, and the release
of drugs is facilitated with lysosome (Figure 2). The targeting function of LDL-based NPs
relies on the LDLR expression level but not the EPR effect; therefore, LDL-based NPs are
suitable for malignancy including leukemia and solid tumor cells.

Figure 2. Schematic diagram of cellular uptake of LDL-based NPs loaded with drugs by LDLR-
mediated endocytosis.
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3. Categories of LDL-Based NPs

The affinity of ApoB-100 with LDLR results in the combination of LDL and LDLR,
which facilitates the uptake of LDL. Thus, LDL particles containing apoB-100 can be
developed as an active targeted carrier to transport therapeutic drugs. Another modification
to utilize the LDL and LDLR interaction is to use the whole LDL as a wizard decorated
on the surface of the NPs to target LDLR overexpressed cells. Therapeutic agents can be
added to its comparatively large-load hydrophobic core, apolipoprotein, and monolayer
phospholipid when LDL is used as carrier [29]. Because of the limited sources of native
LDL, Nikanjam and collaborators used phosphatidylcholine, cholesterol oleic acid, ApoB-
100 protein, or other synthetic peptides to develop synthesized LDL-like nanoparticles [16].
From then on, synthesized LDL-drugs nanoparticles are developed to deliver therapeutic
drugs in vitro and in vivo. Here, we classify LDL-based drug-loaded particles into three
types according to their source and function:

Native LDL-drug nanoparticles (nLDL-drugs) refer to nanoparticles composed of
natural LDLs and cytotoxic drugs. Synthesized LDL-drug nanoparticles (sLDL-drugs)
refer to nanoparticles that own the basic structure of LDL, coming from de novo synthe-
sized LDL-like nanoparticles with therapeutic drugs loaded. LDL decorated targeting
nanoparticles (LDL-NPs) refer to artificial nanoparticles formed by coupling native LDLs
to the outer layer of the synthetic inorganic NPs carried therapeutic drugs.

We summarize the reconstruction methods of LDL-based nanoparticles and their
recent achievements, which will provide the newest investigations of the LDL-based
targeted delivery. LDL-based NPs owns the following advantages.

Firstly, LDL-based NPs are highly biologically safe. As a biological molecule, LDL has
biocompatibility and good biodegradability. LDL will be degraded into recyclable units,
including cholesterol, fatty acids, and amino acids in the lysosome.

Secondly, LDL-carriers can effectively avoid triggering the immune system, ensuring
that the delivered drugs reach the target cells before the clearance.

Thirdly, LDL enhances the targeting function of anticancer drugs through LDLR-
mediated endocytosis. The LDLR and LDL would form a complex and then enter cells
through the clathrin internalization pathway. About 30–40% of LDL is cleared every day,
and two-thirds of them are absorbed by receptor-mediated endocytosis.

Fourthly, LDL has a long circulation time (2–4 days), which can maintain the drug
concentration in the body and prolong the residence of the drugs.

3.1. Native LDL-Drug Particles (nLDL-Drugs)

Commercial LDLs are mainly derived from native LDLs isolated from human or animal
plasma. The native LDLs own the advantages of stable structure, immunogenicity-reduction,
and superior targeting function. Usually, there are three strategies to form nLDL-drugs due to
the structure of LDL, including phospholipid monolayer loading, protein loading, and core
loading. The hydrophobic lipid core and amphiphilic phospholipids of LDLs can load with a
mass of lipophilic and amphiphilic drugs, and the amino acid residues of ApoB-100 can be
covalently bound to diagnostic ligands or therapeutic agents [30] (Table 1).

Table 1. Advantages and disadvantages of different modification strategies.

Strategy Advantage Disadvantages

Phospholipid monolayer loading
1. Simple operation
2. Larger drug load

1. Drug Amphiphile
2. Easy leakage

Apolipoprotein loading 1. Simple operation 1. ApoB-100 inactivation
2. Less drug load

Core loading
1. Large drug load
2. Less damage to the shell

1. Cumbersome operation
2. Drug hydrophobicity
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Phospholipid monolayer loading This modification of the phosphate monolayer
of LDL mainly relies on relatively weak interactions such as van der Waals forces or
other non-covalent bonds. Usually, therapeutic drugs are inserted into the phospholipid
monolayer [26] (Figure 3a). Because of the amphiphilic characteristic of the phospholipid,
it is easier for therapeutic drugs with the amphiphilic structure to be inserted, while non-
amphiphilic drugs require more steps to insert into the phospholipid. The nLDL-drugs
from this way are relatively simple, uniform, and high-integrity.

Figure 3. The modification strategy of nLDL-drugs particles. (a) drugs are inserted in the phospho-
lipid monolayer; (b) drugs are loaded to the hydrophobic core.

Apolipoprotein loading This method involves the covalent binding of diagnostic or
therapeutic drugs to ApoB-100. Lysine, arginine, tyrosine, and cysteine residues are used
to couple amino acids on apolipoprotein residue [31], of which the lysine side chain is
connected. To date, this method mainly delivers a contrast agent to monitor the biodistri-
bution in the human body for its limited loading capacity. Meanwhile, the inactivation of
ApoB-100 for extensive covalent modification [32] should be considered.

Core loading This method mainly refers to the reconstruction of therapeutic drugs
on the core of LDL (Figure 3b). After the replacement of the non-polar core is achieved
by freeze-drying or organic extraction [8], a drug/cholesterol mixture or drug-cholesterol
conjugate [33] is used to form the reconstruction of the hydrophobic core. This method
maintains the structure of phospholipids and apolipoprotein and ensures the binding
activity of ApoB-100. Both hydrophilic and hydrophobic drugs could be delivered in this
way. At the same time, sustained release and bioavailability are guaranteed.

3.2. Synthesized LDL-Drug Particles (sLDL-Drugs)

The sLDL-drugs are mainly obtained by the solvent evaporation method [16] or the
solvent emulsification method [34]. In addition, sLDL-drugs are usually composed of a
purified lipid emulsion with LDLR recognition functions and therapeutic drugs. Antitumor
drugs are encapsulated in a hydrophobic core (Figure 4a) [16,35] with mixed alcohol oleic
acid. The outer layer is a single-layer shell composed of hydrophilic phospholipids, where
the ApoB-100 is embedded. Sometimes, special proteins or polypeptides would replace
the apoB-100 to bind to the LDLR binding domain (Figure 4b) [16]. Compared with nLDL-
drugs, the sLDL-drugs obtained by this method are more structurally stable and overcome
leakage during transportation.

3.3. LDL Decorated LDLR Targeting Nanoparticles NPs (LDL-NPs)

Because of the good biocompatibility and biodegradability property of chitosan (CS)
and silica nanoparticles (SLN), CS or SLN-based LDL-containing targeting nanoparticles
have been constantly developed [36]. In LDL-modified NPs, LDL serves as the targeting
molecule in therapy (Figure 5). Due to the large loading capacity of CS and SLN, multiple
active pharmaceutical ingredients can be encapsulated in a single NP, thereby achieving
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synergistic therapy. LDL and synthetic nanoparticles are mainly combined with electrostatic
interactions in this way.

Figure 4. The modification strategy of sLDL-drugs. (a) targeting function is provided by ApoB-100;
(b) targeting function is provided by biomimetic peptide.

Figure 5. Model diagram of LDL-NPs. The NP core is loaded with small molecule drugs, and the
LDL is attached to the outer layer of the NP as a targeting molecule.

4. Application of LDL-Based NPs in Cancer Therapy
4.1. nLDL-Drugs

Using natural LDL as a carrier to deliver therapeutic drugs has successfully inhib-
ited the proliferation of melanoma, liver cancer, lung cancer, and so on [22,23]. There
are several nLDL-drugs under investigation, and they made progress in cancer therapy
(Table 2). Krieger et al. first designed r [25-HC-oleate] LDL to effectively reduce the activ-
ity of 3-hydroxy-3-methylglutaryl coenzyme A reductase in human fibroblasts, proving
that constitutive LDL could selectively transport hydrophobic compounds to cells with
LDLR [28]. Then, Masquelier et al. obtained an antitumor drug composed of a lipophilic
derivation of doxorubicin (DNR) and LDL, termed DNR-LDL via lyophilization [26]. By
investigating the in vivo fate of the complex, it was found that the DNR-LDL was quite
similar to native LDL, and the high LDLR activity of the cancer cells resulted in the ac-
cumulation of DNR-LDL. Samadi-Baboli et al. confirmed that LDL-based nanoparticles
were dependent on LDLR-mediated endocytosis, and the potency of lipophilic cytotoxic
drugs against tumors was improved when combined with LDL [37]. Lo et al. prepared
LDL-Doxorubicin (LDL-DOX) and injected it to liver cancer-bearing mice. It is found that
LDL-DOX could selectively accumulate in the cancer cells, indicating that cancer cells had
elevated expression of LDLR and more intake of LDL [38].

In addition, to widely incorporate cytotoxic drugs into LDL, LDL could also carry
low-toxicity docosahexaenoic acid (DHA), an omega-3 polyunsaturated fatty acid, to
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improve cardiovascular health and prevent cancer. Reynolds et al. constructed LDL-DHA
nanoparticles and found that the effective therapeutic dose of LDL-DHA on cancer cells
does not influence normal cells, which may rely on the active lipid peroxidation and
selective induction of reactive oxygen for cancer cells [8]. Yang et al. further evaluated
the LDL-DHA on human liver cancer stem cells (CSC) and found that CSCs had a lower
survival rate than normal cancer cells for the different LDLR expression [39], verifying LDL
as a suitable delivery platform for drug-resistant cancer stem cells. Wen et al. achieved
significant disease burden reduction by using synthetic LDL-DHA for liver cancer in
situ [17]. Malik et al. combined LDL-DHA with pulsed-focused ultrasound technology to
deliver LDL-DHA locally to the brain, and highly concentrated LDL-DHA in the treatment
area was observed [40].

Table 2. nLDL-drugs and applications.

Category Drugs Indications Reference

DNR-LDL Doxorubicin Leukemia cells [26]
m-LDL Cytotoxic compound 25 Lung fibroblasts [41]

OL-NME-LDL Elliptinium-oleate B16 melanoma [37]
Paclitaxel-LDL Paclitaxel Leukemia cells [26]

LDL-DOX Doxorubicin HepG2 cells [42]
LDL-DOX Doxorubicin R-HepG2 cells [38]

r-Pc-LDL-FA Tetra-t-butyl-silicon phthalocyanine KB cells, HT-1080 cells, and HepG2 cells [30]
Hyp-LDL Hypericin U87-MG cells [43]
LDL-DHA Docosahexaenoic acid Hepatoma cells (H4IIE) [15]
LDL-DNA Docosahexaenoic acid Fibroblasts [44]
CaP@LDL STAT3-decoyodns HepG2 and PLC/PRF/5 cells [45]
DOX-LDL Doxorubicin A549 cells [18]
LDL-DHA Docosahexaenoic acid HuH-7 and HepG2 cells [39]
LDL-DHA Docosahexaenoic acid TIB-75 cells [8]

4.2. sLDL-Drugs

Since LDL source is scarce, synthetic LDL-like particles gradually become prevalent
in reconstructed LDL-based NPs. The research on the combination of synthetic LDL
(sLDL) and their different therapeutic preparations develop rapidly and achieve superior
therapeutic effects (Table 3).

Baillie et al. prepared sLDL by combining lipid microemulsion with amphiphilic
peptides containing apolipoprotein B receptor domain. This sLDL was taken up via
LDLR-mediated endocytosis and could support the proliferation of U937 in culture [46].
Nikanjam et al. synthesized a new nanoparticle composed of an LDL-like shell with
Paclitaxel oleate (PO) loaded, which was termed nLDL-PO, and demonstrated that only
6 h was needed for nLDL-PO to deliver Paclitaxel (PTX) to glioma cells via LDLR-mediated
endocytosis [17]. Kim et al. developed biocompatible anti-cancer paclitaxel therapeutic
solid lipid nanoparticles (PtSLNs) by containing paclitaxel in the core and modifying
PEG on the surface to connect the tumor-targeting ligand [47]. As excepted, PtSLNs
demonstrated a better targeting effect than the clinically free Taxol. Su et al. prepared sLDL
to encapsulate paclitaxel-alpha linolenic acid (PALA) for tumor therapy. PTX-loaded nano-
drug PALA-sLDL had a suitable size (approximately 66 nm) and high loading efficiency,
and a good tumor growth inhibitory effect in U87 MG mice [48]. Qian et al. connected
the lipid binding motif of apoB-100 to one end of PEG and introduced folate acid (FA) as
a tumor-targeting moiety to the other end of PEG, constructing targeted folate receptor
(FR) LDL bionic nanoparticles [34]. The uptake of these nanoparticles in FR-overexpressing
tumor cells (HeLa cells) was much higher than that of FR-deficient tumor cells (A549 cells),
at the same time producing a very significant anti-tumor efficiency in M109 tumor-bearing
mice. Similar folic acid functionalized LDL biomimetic particles achieved co-delivery of
anticancer drugs and superparamagnetic nanocrystals in MCF cells [25].
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Table 3. sLDL-drugs and applications.

Category Drugs Indications Reference

nLDL-PO Paclitaxel oleate GBM cells [17]
siRNA-PEG/SLN siRNA PC3 cells [49]
Targeted PtSLNs Paclitaxel NCI-H1975, NCI-H1650, NCI-H520, PC9 [47]

FA-mpLNPs Iron oxide nanocrystals MCF-7 [25]
PALA-sLDL Paclitaxel-alpha linolenic acid U87 MG, HepG2 [48]
FPLM NPs Paclitaxel HeLa, A549 [34]

AODN Pro-doxorubicin 4T1 [35]
Lf-mNLC Curcumin BCECs [50]

4.3. LDL-NPs

LDL-modified NPs are prepared using chitosan (CS) or solid lipid nanoparticles
(SLN) as the carriers and LDL molecules as targeting ligands. This nanoparticle has a
better targeting capacity to LDLR overexpressed cells and higher loading ability (Table 4).
Currently, LDL-NPs are applied in the treatment of liver and breast cancer. Zhang et al.
first synthesized N-succinyl-chitosan (NSC) as the center part of NPs and then loaded
osthole to obtain Ost/LDL-NSC-NPs. Excellent proliferation inhibition could be observed
when applying these NPs to HepG2 cells [36]. Based on this, Zhu et al. used LDL-SCS-NPs
to deliver siRNA and doxorubicin to liver cancers, providing a novel and effective way
for the co-delivery of genes and chemotherapeutic drugs [51]. Ao et al. developed the
SLN-based docetaxel (DTX) and thalidomide (TDD) co-delivery system and found that
these NPs had strong targeting properties [52]. Ye et al. used SLN-based LDL-containing
NPs to co-deliver sorafenib (Sor) and doxorubicin (Dox). Obvious tumor inhibition was
observed in vitro and in vivo [53]. Wang et al. developed co-drug lipid nanoparticles
LD-SDN to transport sorafenib and dihydroartemisinin to liver cancer cells, revealing
excellent apoptosis induction [24].

Yang et al. developed a binary copolymer system based on N-succinyl chitosan lipoic
acid micelles to co-deliver the siRNA and paclitaxel [54] to inhibit the growth of breast
cancer cells in vitro and in vivo. Zhu et al. prepared PTX and siRNA co-loading drug
siRNA-PTX/LDL-NSC-SS-UA and made significant progress in overcoming multidrug
resistance [55]. Pan et al. used the SLN-designed and synthesized indocyanine green
multifunctional platform (LDL/SLN) to target breast cancer cells, which provided new
ideas for the development of photothermal therapy for breast cancer [56].

Table 4. LDL-NPs and applications.

Category Drugs Indications Reference

Ost/LDL-NSC-NPs Osthole HepG2 cells [36]
Dox-siRNA/LDL-SCS-NPs Dox siRNA HepG2, H22 [51]

PTX-siRNA/LDL-NSC-LA micelles MDR1 siRNA and paclitaxel MCF-7 cells [54]
LDL/SLN/DTX/TDD Docetaxel (DTX), Thalidomide (TDD) HepG2 cells [52]

LDL/SLN/Adr Adriamycin Colorectal cancer [57]
LDL-SLN/Sor/Dox Sorafenib, Doxorubicin HepG2 cells [53]

LD-SDN Sorafenib, Dihydroartemisinin HepG2 cells [24]
LDL/SLN/ICG Sorafenib, Dihydroartemisinin MCF-7 cells [56]

Nowadays, more and more studies are focused on bionic nanoparticles. Compared
with the modification of nLDL-drugs particles, LDL-NPs can further save costs, improve
plasticity, and provide more modification methods and materials. These biomimetic ma-
terials have larger particle sizes and more target candidates to interact with cancer cells.
Although the nLDL-drugs have been investigated for a long time, and the experimental
protocols are experienced, there are still some challenges to uniformity and integrity. There-
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fore, more and more investigation of sLDL-drugs and LDL-NPs is prevalent. Here, we
compare the advantages and disadvantages of these three particles (Table 5).

Table 5. Comparison of LDL-based NPs.

Strategy Advantages Disadvantages

nLDL-drugs

1. Biocompatibility, biodegradability
2. Targeting
3. Long half-life

1. Scarce raw materials and high cost [18]
2. Poor stability, harsh storage conditions [8]

sLDL-drugs

1. Low cost
2. High loading capacity
3. Targeting peptides to further improve targeting

1. Complex process requirements [17]
2. Not very targeting capacity [58]

LDL-NPs

1. Low cost
2. Simple protocol
3. Diversity targeting moiety

1. Large size [24]
2. Exogenous material [56]

5. Conclusions and Future Prospects

LDL has the characteristics of small size, amphiphilic molecular surface, receptor-
mediated internalization, and long circulation time. With these functions, therapeutic
drugs can be combined with LDL to target LDLR-overexpressed tumor cells. As an ideal
carrier and effective ligand for targeted therapy, LDL-based drug-loaded nanoparticles
further promote the development of targeted delivery and expand the application of LDL
in cancer therapy. Most targeting NPs are designed for solid tumors but not hematological
malignancies. This is because hematological oncology is different from solid ones in that
leukemia cells might be all around the body, while solid tumor cells usually locate in a
particular tissue. LDL-based NPs depend on LDLR-endocytosis to effectively target cancer
cells and thus can be utilized in leukemia and solid tumors. By comparing the degradation
efficiency of monocyte 125I-LDL isolated from healthy individuals and leukemia patients,
Viitols et al. found that primary leukemia cells had a higher degradation rate of 125I-
LDL [59]. Then, Zhou et al. found that the intake of sLDL was inversely proportional to
the degree of cell differentiation by using synthetic LDL particles to target leukemia cell
lines and CML patient stem/progenitor cells [60]. Hence, LDL could be a potential drug
delivery carrier for leukemia disease.

Although the research on LDL-based NPs has made many achievements, there are
still limitations to clinical advancement. The limits are the sources of LDL, the complex
processing requirements, and the trigger of atherosclerosis in the body. sLDL-drugs and
LDL-NPs are derived from non-plasma-separated LDL, overcoming the problem of resource
limitations. In addition, they still restore the targeting characteristics of LDL and keep the
simple and controllable synthesis process. Due to the larger particle diameter, the loading
capacity also increases. Meanwhile, LDL-based targeting NPs not only target solid tumors
but also hematological malignancy. More importantly, these NPs have stronger targeting
function to cancer stem cells or drug-resistant cells for these cells overexpressing LDLR. In
short, LDL-based nanoparticles have good application prospects in cancer-targeted therapy.
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