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Abstract

:

Systemic sclerosis and systemic lupus erythematosus represent two distinct autoimmune diseases belonging to the group of connective tissue disorders. Despite the great progress in the basic science, this progress has not been translated to the development of novel therapeutic approaches that can radically change the face of these diseases. The discovery of JAK kinases, which are tyrosine kinases coupled with cytokine receptors, may open a new chapter in the treatment of so far untreatable diseases. Small synthetic compounds that can block Janus kinases and interact directly with cytokine signalling may provide therapeutic potential in these diseases. In this review, we discuss the therapeutic potential of Jak kinases in light of the cytokine network that JAK kinases are able to interact with. We also provide the theoretical background for the rationale of blocking cytokines with specific JAK inhibitors.
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1. Introduction


Connective tissue diseases are a group of chronic diseases with an autoimmune background. Recent advances in genetics, pathology, and clinical immunology have started to explain the potential mechanisms responsible for the initiation and propagation of these diseases [1,2]. Unfortunately, with a few exceptions, this progress has not translated to the development of new disease-specific drugs that can interact with these key immunological disease-critical mechanisms. In fact, the result of treatment is still based on non-specific immunosuppression realized mainly via steroid and cytotoxic drug administration [3,4]. The result of this immunosuppression is the reduction of the central and peripheral activity of the dysregulated immune system. Among the many not fully elucidated mechanisms leading to the restoration of the proper function of the immune system, cytokine activity is believed to play an important role [5]. Cytokines are soluble intercellular crosstalk transmitters, which are responsible for modulating immune system functioning. However, in the setting of immune dysregulation, cytokines become the executive arm of autoimmunity directly responsible for maintaining the autoimmune response. This is especially true for inflammatory arthropathies, where the role of some proinflammatory cytokines is well established. At the end of the last century, the understanding of the role of some proinflammatory cytokines, e.g., TNFα, IL-1, IL-6, or IL-17, translated to the development of high-affinity molecular antibodies blocking these cytokines’ function and halting disease progression.



At that time, almost all the scientific papers on rheumatoid arthritis started with the sentence “TNF is a key cytokine in RA development”, suggesting that we had finally found the ‘holy grail’ and that we would be able to successfully treat all inflammatory conditions [6,7,8]. With the progression of research, it became clear that blocking only one cytokine is not enough to stop an autoimmune response and that the plethora of cytokines, chemokines, and intercellular signals cannot be stopped with only one drug. Moreover, despite several similarities in the clinical pictures, rheumatic conditions differ between each other in terms of their pathophysiological background and mechanisms of inflammatory response. Therefore, one effective drug in a given rheumatic disease does not work in all others and vice versa. That was the strong impulse for the identification of disease specific mediators and the invention of the drugs capable of inhibiting them. Indeed, the progress in understanding the pathophysiological background of some rheumatic diseases translated to the development of anti-cytokine drugs that proved to be efficacious in the treatment of many (but not all) aspects of inflammation. These drugs, commonly referred to as biological disease modifying drugs (bDMARDs) or more commonly as biologics, revolutionized the treatment of inflammatory arthritides. The mode of action of biologics is based mainly on blocking the inflammatory cytokines; however, other mechanisms have been successfully used, such as depleting the population of antibody producing B-cells and interfering in the co-stimulation of immunocompetent cells. Unfortunately, blocking one cytokine with specific biologics is sometimes clinically infective; in addition, the treatments can lose their efficacy over time due to immunogenicity or the activation of the other signalling pathways, thereby bypassing the cytokine already blocked.



Despite the therapeutic efficacy of biological DMARDs, it has become evident that treatment with bDMARDs has several limitations; thus, not all patients may benefit from such a treatment. Moreover, biologics are large proteins that are difficult to synthetize, and the parenteral route of administration is often an obstacle for patients. Treatment with biologics can produce adverse drug reactions such as tuberculosis, heart failure, neuropathies, and others [9,10,11].



In the early 1990s, the discovery of a family of intracellular tyrosine kinases attached to several cytokine receptors resulted in the further discovery of the pathway that transmits signals from a cytokine to the nucleus. The fact that the role of this discovery was not completely understood explains the term initially used to characterize them—“just another kinase”.



The discovery of the immune pathway that orchestrates the immune mechanism translated to the quest for new therapeutic approaches. Among several mechanisms that transmit cytokine signals to the nucleus, the JAK/STAT pathway is of special interest, as it is responsible for transmitting signals from many cytokines within the same signaling pathway.



Recently, a new class of low-weight compounds capable of blocking several cytokines was developed and tested in chronic conditions including rheumatoid arthritis, psoriatic arthritis, and haematological diseases. These drugs are commonly referred to as JAK kinase inhibitors or (Jakinibs). To understand the role of these specific cytokines we must be aware that these low molecular weight proteins or glycoproteins may orchestrate not only the peripheral immune system but also act in the central phase of the immune response when antigen or autoantigen recognition takes place. During the recognition of an antigen presented by antigen presenting cells to a naïve T cell, a plethora of cytokines acting as co-stimulatory signals is released. Moreover, the activated immunocompetent cells can synthesize and release other cytokines that regulate the survival, development, and function of other immune and non-immune cells. Cytokines signal via a wide variety of receptor structures categorized into several receptor superfamilies. After their interaction with the extracellular domain of the receptor, they can activate long chains of transmission molecules to activate specific genes in the nucleus.




2. Cytokine Signalling Pathways


The essential role in transmitting cytokine signals is played by protein kinases attached to the intracellular part of the receptors. Cytokine signalling and the regulation of their activity is realized via the interaction between cytokines, chemokines, and growth factors commonly referred to as ligands and the extracellular domain of the given receptor. Several types of receptors are involved in this process and are usually categorized into receptor subfamilies. Among them we may distinguish the TNF receptor subfamily, the IL-1 subfamily receptors, and the IL-17 and Janus kinase-associated receptors. The TNF receptor subfamily signal via TNFR and transmit their signal by further utilizing transmission molecules such as TRADD, TRAF2, and RIP1, resulting in the activation of NF-κB and MAPK signalling and the subsequent gene activation and expression of pro-inflammatory cytokines, such as interleukin 6 and 8 (IL-6 and IL-8) [12,13]. IL-1 subfamily receptors transmit signals from the IL-1 family (IL-1, IL-33, and IL-36) to the nucleus through the use of MyD88 and IRAK adaptor proteins [14,15]. The other important proinflammatory signals are transmitted via IL-17. Upon interaction with its receptors, IL-17 activates multiple signalling cascades resulting in the activation of the NF-κB, C/EBPβ, C/EBPδ, and MAPK pathways [16]. However, considering the number of cytokine signals that are transmitted, the Janus kinases associated with cytokine specific receptors play an important role by interacting with more than 50 cytokines belonging to the class I and class II superfamily cytokines [17].



As the JAK kinases can be easily blocked with small synthetic compounds, JAK kinases are a promising target to halt cytokine signalling and restore immune balance. This hypothesis was successfully tested, and several JAK inhibitors were introduced to common clinical practices demonstrating their safety and efficacy in the treatment of several hematologic conditions and inflammatory arthropathies (rheumatoid arthritis, psoriatic arthritis, and spondyloarthropathies) [18]. Taking into account the many similarities between inflammatory arthropathies and connective tissue diseases, it would be reasonable to establish whether there is a role for JAK kinase inhibitors in the treatment of connective tissue diseases (CTDs) [19,20]. This finding may be especially important considering the lack of accepted therapies for treating connective tissue diseases. Since inflammation, orchestrated by a network of pro- and anti-inflammatory cytokines, plays an unequivocal role in the development of several CTDs, new therapeutic strategies targeting the inflammatory and signalling pathways may offer promising opportunities.




3. Structure and Function of JAK/STAT Pathway


JAKs belong to the family of tyrosine kinases. Currently, four JAKs have been identified: JAK1, JAK2, JAK 3, and TYK2. The structure of JAK is composed of seven homologous regions (JH1-JH7) forming four structural domains (FERM, SH2, Pseudokinase, and Kinase domains). The JH1 and JH2 regions are located at the C terminal end of an enzyme-encoding kinase and a pseudokinase, respectively. In contrast to JH1, the JH2 homology region is characterized by dual kinase activity and regulates catalytic kinase activity, simply limiting the ligand-independent catalytic activity of the kinase domain.



The remaining four regions do not have catalytic activity and serve as a harbour to the cytoplasmatic tails of receptors. They build two domains: FERM, where F stands for F4.1 protein, E for ezrin, R for radixin, and M for moesin (JH5-JH7), and the SH2 domain (Src homology-2), such as (JH3-JH4). The activation (phosphorylation) process starts with the binding of the cytokine to its receptors followed by the dimerization of the receptor subunits that place receptor-associated kinases in close proximity to each other and thereby facilitate their mutual activation. When activated, JAK kinases further transmit signals to the intracellular space by activating the transcription factors known as STATs. These translocate to the nucleus to modulate the promoter region of specific genes and orchestrate transcription [21]. The four JAKs work together to form homo or heterodimers that partially explain their signalling specificity. When activated, JAKs transmit their signal and activate STAT proteins. At the current level of knowledge, seven STATs have been identified: STAT1, STAT2, STAT3, STAT4, STAT5a, STAT5b1, and STAT6 [22]. STAT consists of an N terminal domain, a coiled tail domain, an SRC-homology 2 domain, a DNA-binding domain, a linker domain, a phosphotyrosyl tail, and a transactivation domain located at the C terminus [23,24]. Each of the STAT’s domains play a unique role. The N terminal, a conserved domain, is responsible for the STAT’s phosphorylation. The DNA-binding domain, usually located between amino acids residue 400- and 500-, forms a complex of DNA and STAT proteins, while the SH2 domain’s function is to interact with other proteins. Finally, the C-terminal domain plays a role as an activation centre for the whole STAT molecule [25]. The role of the JAK/STAT system is crucial for the proper functioning of the immune system. Several cytokines and growth factors signal in this way. JAK-associated receptors are classically categorized as class I and class II receptor families. The typical structure of the receptor consists of one to four receptor chains. They form the extracellular cytokine R homology domain (CHD) and cytokine-binding domain. The difference between class I and class II receptors is the presence of two disulphide bridges linking the cysteines in the two chains of class I receptors [26]. However, the most important difference is the expression of a highly conservated Trp- Ser-Xaa-Trp-Ser WSXWS motif in the class I molecule, which is absent in the receptors of type II cytokines [27,28]. Class I receptors transmit signals from four cytokines families and hormone-like ligands. IL-2, IL-4, IL-7, IL-9, IL-15, and IL-21 transmit their signals via gamma chain receptors (γc) [29]. The beta family receptor is responsible for transmitting signals from GM-CSF, IL-3, and IL-5 [30]. The third class of receptor is built with the gp 130 protein (or its homologue) and transmits signals from IL- 6, IL-11, IL-31, IL-35, and IL-27 [31]. The last member of the Class I receptor subfamily interacts with IL-12 and IL-23, which are heterodimeric cytokines that share a common p40 subunit [32]. Class I receptors are also used by hormone-like cytokines such as erythropoietin, growth hormones, leptin, or thrombopoietin [33]. Contrary to this, class II receptors are responsible for transmitting signals from interferons and the IL-10 cytokine family (IL-10, IL-19, IL-20, IL-22, IL-24, and IL-26) [34].



The classical pathway by which cytokines transmit their signals is based on the JAK/STAT pathway. However, signals from activated JAK may utilize some by-pass pathways. In detail, JAK kinase is a direct activator of the PI3K/AKT signalling pathway and JAK, when phosphorylated, activates PI3K [25].



The activity of the JAK/STAT pathway is negatively regulated by several mechanisms aimed at limiting cytokine signalling and thus reducing the cytokine response. This process is mediated via the activation of specific regulatory sentences in the nucleus to express regulatory factors such as the suppressor of cytokine signalling (SOCS), the protein of activated STAT (PIAS), and protein tyrosine phosphatase (PTP) [35]. The SOCS family consists of eight members: cytokine-inducible SH2-containing protein (CIS) and SOCS1, SOCS2, SOCS3, SOCS4, SOCS5, SOCS6, and SOCS7. They contribute to the regulation of the immune response. CIS and SOCS1-3 negatively regulate cytokine signalling via the JAK/STAT pathway, while SOCS4-7 inhibits growth factor-mediated signalling [17]. The primary target of SOCS1-3 activity is a JAK molecule. SOCS molecules can interact with the JAK catalytic centre (SOCS1), directly inhibit receptor subunit (SCOCS3), or compete with the STAT molecule to form a receptor complex [36].



Unlike SOCS, PIAS proteins are expressed constitutively. Their role is to regulate the intensity of apoptosis, cell survival, and tissue renewal. The main mode of action of the four known PIAS proteins (PIAS1-4) is to control gene expression, which appears to be performed through the controlling activity of several transcriptional regulators [37].




4. Connective Tissue Diseases—The Role of Cytokine Network


	
Systemic sclerosis






Systemic sclerosis (SSc) is a connective tissue disease characterized by massive skin fibrosis vasculopathy and internal organs’ involvement leading to terminal organ dysfunction. Although skin and internal organ fibrosis is a hallmark of SSc, these changes are secondary to an aberrant innate and adaptive immune system activation and uncontrolled cytokine release [38,39]. The pathophysiological and immune-mediated mechanism leading to the onset and progression of the disease are not fully elucidated. Apart from the role of the known and established fibrosis-driving factors such as TGF-β, PDGF, ET-1, and IGF1 and the chemokines MCP-1/CCL2, MIP-1α/CCL3, MIP-1β/CCL4, and IL-8/CXCL8 [40], some studies suggest the role of the Th2 immune response and the subsequent release of Th2-dependent cytokines such as IL-4, IL-5, and IL-13, which are known to control fibrotic processes [41]. Additionally, similar to systemic lupus erythematosus and other connective tissue diseases, patients with SSc showed an overexpression of IFNα, suggesting a direct pathogenetic role in the disease’s development [42]. Importantly, the IFN signature can be detected at very early stages of the disease (many years before a formal diagnosis can be established), suggesting that IFN upregulation is an early event and may contribute significantly to the disease pathogenesis [43].



The next main players in the field of SSc pathogenesis are the IL-6 and IL-6 cytokine family. IL-6 has an established role in the pathogenesis of SSc as it is responsible for vasculopathy and driving the fibrotic processes. It correlates with disease activity and the extent of skin thickening [44,45,46].Thus, this correlation was the pathophysiological background for the clinical trials aimed to block IL-6 activity. Although promising, the results of the studies completed thus far have not achieved their primary endpoints [47,48,49].



The role of the IL-6 cytokine family was recently substantiated in several studies on other IL-6 family members. In line with this, de Almaiida et al. reported elevated serum levels of soluble oncostatin M receptor (sOSMR) and sgp130 in patients with systemic sclerosis that correlated with the presence of digital ulcers and negatively correlated with oesophagus dysfunction [50]. Moreover, as recently shown by Marden et al., OSM signalling may play an important role during vessel degeneration and fibrosis in patients with SSc [51]. The next member of the IL-6 family, IL-31, is synthesized by activated Th2 cells and is widely expressed by many other cells including macrophages, keratinocytes, and fibroblasts [52]. As a strong regulator of Th2 function, Il-31 may perpetuate the fibrotic process [53] and be responsible for the predominance of the Th2 response observed in SSc patients [54]. Scanty data exist regarding the role of another strong proinflammatory cytokine, namely, IL-12. Although the role of this cytokine seems to be of lesser importance in systemic sclerosis, a member of the IL-12 subfamily, IL-35, identified almost 25 years ago, has recently attracted high interest. So far, the role of IL-35 in the pathogenesis of systemic sclerosis is a matter of academic dispute. Recently, it was shown that IL-35 was elevated in SSc patients, where it mainly acts as an anti-inflammatory cytokine reducing CD4 T cell differentiation and facilitating Treg induction [55]. In contrast, other studies suggest the proinflammatory activity of IL-35 and its role as a potent profibrotic factor [56]. Even more conflicting data exist regarding the role of two other members of the IL-12 subfamily, namely, IL-23 and IL-27. In laboratory studies, IL-23 has been proven to be a potent inducer of collagen type I in dermal fibroblasts, while IL-27 showed only a moderate effect [57].



The role of the typical Th2-dependent cytokines IL-4 and IL-13 in SSc may be partially explained through the context of a strong profibrotic effect that these cytokines drive. Interleukin-4 and IL-13 are overexpressed in the skin and serum of SSc patients, and they directly stimulate collagen synthesis in fibroblasts and drive Th cell polarization toward a Th2 response with strong profibrotic effects [53,58,59]. Less is known about the role of anti-inflammatory cytokines belonging to the IL-10 superfamily. Utilizing the Scl-cGVHD model, an animal model for human SSc, it was shown that IL-10–producing Bregs were able to suppress skin fibrosis [60]. Moreover, in patients with SSc, IL-10–producing Bregs have been found to be reduced and correlated with disease activity, but not with SSc-specific antibodies [61,62,63]. There are scanty data on the role of the other IL-10 family cytokines in the development of systemic sclerosis. The studies completed to date have shown the reduced expression of IL-20 or dysregulated IL-23 signalling as potential mechanisms for uncontrolled collagen deposition in skin and internal organs, suggesting the antifibrotic potential of these anti-inflammatory cytokines [64,65]; however, the precise role of IL-20 and IL-23 is poorly understood Figure 1.



Systemic sclerosis is characterized by the activation of IL-12 cytokine family that exert a mainly profibrotic effect. Different types of receptors signalling via the JAK/STAT pathway may be potentially modulated by the inhibition of receptor-attached JAK. IL-4, IL-5, and IL-13 cytokines belonging to the γ chain receptor subfamily exert a profibrotic effect that may be blocked via JAK-1 and JAK-3 inhibitors, resulting in the reduced polarisation of Th cells toward a profibrotic Th2 response. Similarly, the IL-12 cytokines, IL-23 and IL-27, are characterized by a significant profibrotic effect. The role of the last member of the Il-12 family, IL-35, is characterized by dual pro-fibrotic and anti-fibrotic activity. Therefore, the net effect depends on which signalling pathway is predominantly blocked. JAKis can block signalling via the IFN receptor that translates to a reduction in the IFN signature (and a potential therapeutic effect). IL-10 cytokine family members exert both anti-fibrotic (IL-10) as well as strong profibrotic effects (IL-31). In line with this, the inhibition of the IL-10 family’s signalling may exaggerate the pro-fibrotic effect when the IL-10 signalling is blocked. IL-6 family cytokines, especially IL-6 and IL-31, are recognized as strong profibrotic agents. Blocking JAK coupled with the IL-6 type receptor may result in a direct therapeutic effect.




5. Do JAKi Offer Therapeutic Potential in SSc?


Despite the enormous progress in genetic, clinical, and experimental immunology, systemic sclerosis is still a condition where no disease specific treatments exist. As a result, its treatment is directed toward the protection of vitally important internal organs’ function using untargeted immunosuppression.



With the emerging role of cytokines and interferons driving the inflammation and fibrotic processes in SSc patients, it would be reasonable to test whether JAK inhibitors show any therapeutic potential for this disease. This may be especially worthwhile for IFNs, as the upregulation of IFN-α is central to the pathogenesis of the disease. SSc patients are expected to benefit from therapies that neutralize IFN-α, reduce its production, or block its downstream effects [66]. This might be achieved by blocking JAK kinases (JAK1 and Tyk2) attached to IFNR. The hypothesis on the usefulness of JAK inhibitors is currently undergoing testing in three clinical trials from China (Baricitinib- NCT05300932), France (Ruxolitinib-NCT04206644), and the USA (Tofacitinib- NCT03274076). The completed study from the USA did not show the superiority of Tofacitinib versus a placebo towards skin improvement (measured as a change in mRSS), nor an improvement in CRISS (Combined Response Index Systemic sclerosis). This is in contrast to previously published data, where in small observational studies Tofacitinib contributed to the reduction of skin thickness in SSc patients measured both clinically [67] as well as with ultrasound [68]. Obviously, it is too early to draw final conclusions. Considering that non-selective Jakinibs may block both proinflammatory and profibrotic cytokines as well as exert a negative impact on those showing anti-inflammatory and antifibrotic potential, it would be reasonable to test the other inhibitors’ activity towards this condition.




6. Systemic Lupus Erythematosus


Systemic lupus erythematosus (SLE) is a connective tissue disease that serves as a prototype for other autoimmune diseases. SLE is characterized by the activation of the immune system by multiple self-nuclear antigens, leading to antibody formation and subsequent antigen–antibody complex formation (immune complexes—ICs) [69]. This is the first step in the inflammatory response of the immune system [70]. These processes are augmented by ineffective apoptosis [71] and the defective clearance of apoptotic cells, leading to the release of self-antigens that may be easily recognized by the host immune system [72]. With a defect in the function of the innate immunity, characterized by reduced phagocytosis [73], there is an accumulation of plasmacytoid dendritic cells (pDCs) in the inflamed tissues, as well as the improper functioning of the complement system [74,75]. SLE is an autoimmune disease where all the components of the immune system may be affected. Moreover, parallel to the defective functioning of the innate immune system, there is dysfunction in adaptive immunity characterized by the increased activity of B cells, defects in the removal of auto-reacting B cells [76], and the hyperactivated phenotype of T cells can increase the generation of autoAbs [77,78]. This process is orchestrated by a plethora of cytokines released by immunocompetent cells [79,80]. Therefore, the targeting of specific cytokines may be a promising option to restore the proper function of the immune system. Considering the therapeutic success of BAFF and interferon targeting as the approved therapeutic modalities in SLE, it is reasonable to halt the signalling of other cytokines in the hope that it would restore the functioning of the immune system [79,81]. This approach can be reached by the use of JAK inhibitors as they target many proinflammatory cytokines including interferons [82].



With multiple organs’ involvement and potential damage to all the vitally important organs (brain, kidneys, lungs, skin, the hematopoietic system, joints, vessels, etc.), the clinical picture of the disease is complicated. This may be explained by the complexity of several immune mechanisms involved in the disease. Glucocorticoids and conventional immunosuppressants are the cornerstone of therapy, but their targets are non-specific, and the severe side effects can limit their usage in a substantial portion of patients; therefore, more effective, safe, and targeted therapies are needed.




7. Interferons in the Pathogenesis of SLE


The interferon Type I is now recognized as one of the key cytokines orchestrating the autoimmune processes in SLE, and they bridge the innate and acquired autoimmune response commonly observed in the course of the disease. Since the first observation of elevated levels of IFN in SLE in 1979, hundreds of subsequent studies have confirmed the role of this cytokine and linked it with the expression of thousands of IFN-related genes [83]. The presence of this phenomena is commonly referred to as an interferon signature; however, this is not restricted to SLE, as it may be observed in other autoimmune diseases [84,85,86]. Recently, Haynes et al. described a set of 93 genes whose expression seems to be linked to SLE, thus helping to distinguish SLE from the other INF-related diseases, other autoimmune diseases, neoplasms, and infections [87]. IFNs are synthesized in response to the activation of plasmacytoid dendritic cells (pDC CD11c-CD123high). The pDC represent only 1% of all cells but they seem to play a crucial role in SLE development as they express TLR7 and TLR9 in their exosomes [88]. In the context of SLE, TLR7 and TLR9 play an essential role as they can detect cell-derived single stranded RNA as well as unmethylated CpG dsDNA [89,90]. pDCs are characterized by the constitutive expression of the transcription factor IRF7, which enables them to synthesize a large amount of IFN type I in response to RNA and DNA nucleic acids [91].



Although the term interferon signature is commonly used in the context of IFN type I-related gene expression, the other interferons [92], namely type II and III, play a role in the pathogenesis of SLE [93,94]. Moreover, these specific types of interferons are linked to the various forms of lupus presentation, making the disease’s presentation complex and its treatment challenging [95].



In detail, type I interferon activity is linked to haematological disease presentation (anaemia, leukopenia, and thrombocytopaenia), mucocutaneous presentation, and the development of lupus nephropathy [96,97]. In contrast, type III interferons are responsible for the formation of antiphospholipid antibodies [94]. Less is known about the role of IFN type II in this regard. The activity of IFN II is not related to any specific disease presentation. However, IFN gamma is a unique interferon, as it is mainly synthesized by Th1 and NK cells, and its role should be recognized in the context of the activation of the immune system, which sometimes precedes the development of clinically overt disease as recently demonstrated by Liu et al. [98]. The authors identified 143 differentially expressed genes (DEGs) in patients with SLE naive for treatment. Most of the identified genes were upregulated and responsible for the activation of the immune system [98].



Therefore, the role of specific interferons should be discussed in the light of their mutual interactions rather than the activity of one specific cytokine.




8. Interleukin-6 in Lupus


IL-6 has been found to be elevated in SLE patients and correlated with disease activity [99]. This might be a theoretical argument for IL-6 inhibition as a therapeutic approach in SLE patients, using biologics to target IL-6 or its receptor or the administration of JAK inhibitors to target JAK molecules attached to the IL-6 receptor. The levels of IL-6 in sera, joint fluid, urine, and cerebrospinal fluid in patients with SLE are high [100,101,102]. However, at the moment, the role of IL-6 inhibition in SLE is a matter of controversy, as no clinically important therapeutic effects have been observed with IL-6 inhibition [103]. So, it is possible that the therapeutic effect of JAK inhibitors is not mediated by the inhibition of IL-6 signalling.




9. IL-2: The Role in Lupus Development


Inerleukin-2 (IL-2), a pleiotropic cytokine belonging to the wide family of γ-chain cytokines, and it is released mostly by conventional T cells upon stimulation [104]. It is a crucial factor for T cells’ survival and development as well as for the polarisation of T cells toward Treg [105]. The role of IL-2 should be recognized in terms of autoimmunity caused by IL-2 deficiency [106]. Therefore, halting IL-2 signalling with JAK inhibitors may aggravate the disease course. However, this may not be true as the action of JAK inhibitors, as it may be indirect and depend on inhibition of other cytokines negatively influencing IL-2 levels. That may be especially true for IL-23, a cytokine that signals via the JAK/STAT system, which has been shown to suppress IL-2 levels [107]. On the other hand, IL-2 signalling could promote IFNγ production [108] and the enhanced expression of IL-12 receptors [109]. So, at the moment, the role of IL-2 as a target for JAK inhibitors is still controversial and more studies are required to clarify the role of IL-2 signalling and its activity in lupus management.




10. IL-12 and IL-23 in Lupus


Two cytokines, IL-12 and IL-23, belonging to the IL-12 family, recently attracted high attention as possible causative factors in the development of SLE. This is largely due to the fact that both cytokines represent a group of strong proinflammatory cytokines and their role has been already established in several autoimmune and inflammatory disorders [110].



Although both cytokines have similar structures and share a common receptor subunit p40 (together with p35 and p19 for IL-12 and IL-23, respectively), the role of these cytokines in the differentiation of naïve T cells is different. While IL-12 exerts a strong effect on naïve T cells to promote differentiation toward Th1, IL-23 is responsible for Th polarisation toward a Th17 response [111]. Both cytokines utilize the JAK/STAT pathway to signal with the subsequent activation of STAT1, STAT3, STAT4, and STAT5; however, the activation of the heterodimer JAK2/TYK 2 predominantly translates to the phosphorylation of STAT 4 for IL-12 and STAT3 for IL-23 [112,113,114,115].



The Th1 response driven by IL-12 translates to the activation of natural killer cells (NK), cytotoxic pathways, and the production of IFN by dendritic cells [116,117].



Patients with SLE are characterised by high levels of IL-12 and IL-12-related cytokines with the component p40, and this has been found to correlate positively with disease activity and negatively with serum complement concentration [118,119].



The importance of IL-12 signalling was recently established in a clinical trial with ustekinumab, a monoclonal antibody targeting the p40 subunit shared by IL-12 and IL-23 [120]. In the study, the patients randomized to ustekinumab showed an improvement in disease activity as measured with the SLEDAI scale, an improvement in skin status, and a reduction of swollen and tender joints count. This study confirmed the importance of IL-12/IL-23 axis in the development of SLE; however, due to the relatively small group sizes it should be interpreted cautiously.




11. IL-10 and IL-10 Cytokine Family in SLE


IL-10 is typically an anti-inflammatory cytokine; thus, it is surprising that the other cytokines belonging to this family sharing a similar cytokine structure and receptor exert quite different properties and are recognized as a factor driving inflammation. Structurally, the IL-10 family is further divided into three subfamilies [121]. The first one encompasses IL-10 itself, the second group (IL-20 subfamily) consists of IL-19, IL-20, IL-22, IL-24, and IL-26, while the third contains type III interferons.



IL-10 exerts a potent anti-inflammatory effect, targeting monocytes and macrophages and blocking the release of inflammatory cytokines [122]. Acting directly on antigen-presenting cells, it reduces the expression of MHC class II molecules as well as costimulatory molecules. Furthermore, it blocks Th cells’ polarisation toward Th1 response by inhibiting IL-12 and IL-23 signalling [123]. So, considering these properties, application of JAK inhibitors, attenuating IL-10 signalling may shift the balance toward a proinflammatory response.



Data from clinical studies and animal models suggested that IL-20 may play a pathogenic role in the development of lupus nephritis [124]. In one study, the expression of IL-20 and its receptors have been shown to be upregulated in SLE mice compared to control animals [125]. Renal IL-20 overexpression was also observed in lupus patients. These observations suggest the direct role of IL-20 in the development of SLE.



Even more pronounced pathogenic effects were observed with regard to IL-22, which was found to be elevated in the sera of SLE patients and correlated with disease activity [126], although not all studies confirmed this result [127].



The next member of the IL- 20 family, IL-26, is mainly synthesized by Th1 and Th17 memory cells. The role of IL-26 is largely unknown; however, scanty data suggest that elevated levels of Il-26 observed in SLE patients may contribute to the activity of the disease. Recently, IL-26 has been proposed as a potential marker of SLE activity [128] Figure 2.



Type I interferons play a crucial role in the development of SLE; thus, the inhibition of JAK attached to an IFN receptor may explain the therapeutic effects of JAKis. IL-2, a cytokine belonging to the γ chain receptor family, is responsible for Treg development; therefore, it exerts an anti-inflammatory effect that may be blocked by IL-23. Typical proinflammatory cytokines of the IL-12 family are responsible for the polarisation of Th cells toward Th1 and Th17. As the direct peripheral role of these cytokines is unknown, the inhibition of this pathway is probably indirect (blocking inflammatory Th1 and Th17 response). The IL-10 family receptor transmits both anti-inflammatory (IL10) and pro-inflammatory signals (IL-20, IL-22 and IL-26). Therefore, JAKi administration may exert a therapeutic effect when predominantly proinflammatory cytokines are inhibited.




12. Jakinibs for Systemic Lupus


A plethora of cytokines are involved in the pathogenesis of SLE, acting directly on effector cells or creating a proinflammatory milieu. This impedes our understanding of the role of one specific cytokine, and it is not possible to predict the clinical effect when one specific cytokine is blocked. Moreover, with respect to JAK inhibitors, the application of the drug may potentially block several pathways that may not necessarily contribute to the restoration of immune imbalance. In addition, the fact is that one especially non-specific Jakinib can block several forms of cytokine signalling. These limitations should be kept in mind when JAK inhibitors are used for the treatment of SLE. On the other hand, one inhibitor could block several proinflammatory pathways and simply switch off the signalling from multiple cytokines. That was the hypothesis when testing the role of JAKi in real world clinical practice. Firstly, considering the many similarities between RA and SLE, it is plausible that the inhibition of JAK may at least halt SLE-related synovitis. Indeed, a non-specific JAK inhibitor, Tofacitinib, has been shown to halt the signalling of the JAK/STAT pathway, resulting in the reduction of IL-17 and IFNγ and the proliferation of CD4+ T cells, with the subsequent suppression of IL-6 production by RASFs and IL-8 synthesis by CD14+ cells and decreased structural cartilage damage [129]. Direct testing of the JAKi role in SLE started with the study with MRL/lpr lupus-prone mice. In this study, treatment with Tofacitinib reduced disease activity (nephritis, mucocutaneous presentation, and autoantibody synthesis). Moreover, treatment with Tofacitinib contributed to the reduction of proinflammatory cytokines and interferon expression. Tofacitinib could also restore endothelium damage and dysfunction [130]. Parallel to this, several case reports and small observational studies indicated the potential of Tofacitinib to reduce disease activity [131,132,133,134,135,136,137,138]. These promising results were recently substantiated in patients with SLE treated with Tofacitinib. As it was shown in an ex vivo model with CD4 T cells from patients with SLE, pre-treatment with tofacitinib resulted in the restoration (inhibition) of distorted Th cells’ function via enhancing the expression of TGFβRI. It is plausible that the inhibition of IL-6-signalling realized by the inhibition of a Jak kinase attached to an IL-6 receptor may play a role in this process.



A recently published, randomized, double blind, and placebo-controlled trial of Tofacitinib (5 mg twice a day) in patients with SLE JAK inhibitors showed a satisfactorily safety profile, improved lipid profile disturbances, decreased IFN type I signature, and restored endothelial function. However, the Authors failed to show any statistically significant changes in reduction of diseases activity, as it was clearly stated that the study was not aimed to test the drug’s efficacy [139].



Administration of a more specific Jakinib, Baricitinib, may bring even more therapeutic opportunities. A selective inhibitor for JAK1 and JAK2, approved for use in rheumatoid arthritis, recently demonstrated its potential as an agent for the treatment of lupus patients. In an animal MRL/Mp-Faslpr (MRL/lpr) mice model of lupus, Baricitinib significantly suppressed lupus-like phenotypes of MRL/lpr mice, such as splenomegaly, lymphadenopathy, proteinuria, and immune system activation including autoantibodies formation and pro-inflammatory cytokines’ release. It also regulated immunocompetent cells’ activity and effectively reduced renal inflammation. In this in vitro phase of the study, Baricitinib negatively influenced B cell differentiation and restored the disrupted cytoskeletal structures of podocytes under inflammatory stimulation by blocking the JAK/STAT pathway [140]. Those promising data were verified in a double-blind placebo-controlled study of 314 lupus patients randomly assigned to receive baricitinib at 2 mg per day, 4 mg per day, or a placebo. At the end of the study at week 24, 70% patients receiving Baricitinib 4 mg achieved resolution of SLEDAI 2 k arthritis or rash [141]. JAK usage is potentially linked to a reduction of all (or almost all) cytokines’ signalling via the JAK/STAT pathway. To test this, Dörner et al. conducted a trial aimed to check the expression of key cytokines related to lupus. At week 12, Baricitinib 4 mg significantly reduced levels of C-C motif chemokine ligand (CCL) 19, C-X-C motif chemokine ligand (CXCL) 10, tumour necrosis factor alpha (TNF-α), TNF receptor superfamily member (TNFRSF)9/CD137, PD-L1, IL-6, and IL-12β [142]. Additionally, the authors observed a suppression of cytokines related to IFN I activities that translated to the reduction in the concentration of dsDNA antibodies, an improvement in SLEDAI 2000 scale, and a reduction in swollen and tender joints [142]. Some discrepancy occurs regarding JAKi selectivity. As various JAK/TYK2 combinations may serve as signal transducers from different types of receptors, the net cytokine effect may vary between different types of JAKi used. In general, when specific TYK2 inhibitors are used, they predominantly block signalling from IL-12 but also inhibit signalling from IFNα. On the other hand, the application of a specific JAK2 inhibitor blocks signalling mainly from IFNγ, in contrast to panJAKi (Tofacitinib) that blocks activation mediated by IFNα and IFNγ [143]. Disappointing data come from a recently completed trial with Filgotinib in patients with cutaneous lupus erythematosus. The study did not meet the primary endpoint as the patients treated with Filgotinib did not significantly improve their CLASI score [144]. However, the results from this study are not surprising. Filgotinib is a JAK1-specific inhibitor targeting almost all SLE-cytokine related receptors, but it is not able to stop the signalling of IL-12/IL-23, IL3, and IL-5. Blocking IL12/IL-23 signalling might be considered essential in cutaneous lupus given the results with ustekinumab in the treatment of SLE. Therefore, a lack of IL-12/IL-23 inhibition may translate directly to the failure of the study. As far as the role of IL-3 is concerned, we may only speculate that IL-3 may be involved in development of SLE indirectly acting together with IFNs to create a dual IL-3/IFN gene signature [145].



Ruxolitinib, a JAK1 and JAK2 kinase inhibitor approved by the FDA for the treatment of myelofibrosis, showed a potential to attenuate severe skin changes in a mouse model of SLE [146]. Following this promising result, the team from Rochester University started to recruit patients for a 12-week study with Ruxolitinib cream applied topically to areas with an active lupus skin lesion. The results from this study will be available soon. There are several ongoing trials registered at clinical trial registers in the USA and Europe (clinicaltral.gov and European Trial database) shown in Table 1. The results from these trials may provide a precise insight into how JAK inhibitors work in the settings of systemic sclerosis and lupus. At the current time, we may only hypothesise that some JAK inhibitors may show a satisfactory safety/efficacy profile, potentially enabling them to be registered as treatments for lupus.







Author Contributions


Conceptualization, P.K. and K.K.; methodology, P.K. and O.G.-S.; software, P.K.; validation, B.W.; resources, P.K.; data curation, P.K.; writing—original draft preparation, P.K., O.G.-S. and B.W.; writing—review and editing, P.K. and K.K.; visualization, K.K.; supervision, B.W.; project administration, P.K. and O.G.-S.; funding acquisition, P.K. All authors have read and agreed to the published version of the manuscript.




Funding


This research received no external funding. The APC was funded by Medical University of Silesia Katowice, Poland.




Institutional Review Board Statement


Not applicable.




Informed Consent Statement


Not applicable.




Data Availability Statement


Data sharing not applicable.




Acknowledgments


The authors wish to thank Laura Coates from Oxford University UK for editing the English of the manuscript.




Conflicts of Interest


The authors declare no conflict of interest.




References


	



Mak, A. T cells, interleukin-2 and systemic lupus erythematosus-from pathophysiology to therapy. Cells 2022, 11, 980. [Google Scholar] [CrossRef]

	



Rosendahl, A.H.; Schönborn, K.; Krieg, T. Pathophysiology of systemic sclerosis (scleroderma). Kaohsiung J. Med. Sci. 2022, 38, 187–195. [Google Scholar] [CrossRef]

	



Meier, C.A. Mechanisms of immunosuppression by glucocorticoids. Eur. J. Endocrinol. 1996, 134, 50. [Google Scholar] [CrossRef] [PubMed]

	



Ding, Y.; Qian, J.; Zhang, S.; Xu, D.; Leng, X.; Zhao, J.; Wang, Q.; Zhang, W.; Tian, X.; Li, M.; et al. Immunosuppressive therapy in patients with connective tissue disease-associated pulmonary arterial hypertension: A systematic review. Int. J. Rheum. Dis. 2022. [Google Scholar] [CrossRef]

	



Nakken, B.; Bodolay, E.; Szodoray, P. Cytokine milieu in undifferentiated connective tissue disease: A comprehensive review. Clin. Rev. Allergy Immunol. 2015, 49, 152–162. [Google Scholar] [CrossRef]

	



Feldmann, M.; Brennan, F.M.; Williams, R.O.; Woody, J.N.; Maini, R.N. The transfer of a laboratory based hypothesis to a clinically useful therapy: The development of anti-tnf therapy of rheumatoid arthritis. Best Pract. Res. Clin. Rheumatol. 2004, 18, 59–80. [Google Scholar] [CrossRef]

	



Ostör, A.J. Beyond methotrexate: Biologic therapy in rheumatoid arthritis. Clin. Med. 2005, 5, 222–226. [Google Scholar] [CrossRef]

	



Weaver, A.L. The impact of new biologicals in the treatment of rheumatoid arthritis. Rheumatology 2004, 43 (Suppl. S3), iii17–iii23. [Google Scholar] [CrossRef]

	



Kotyla, P.J. Bimodal function of anti-tnf treatment: Shall we be concerned about anti-tnf treatment in patients with rheumatoid arthritis and heart failure? Int. J. Mol. Sci. 2018, 19, 1739. [Google Scholar] [CrossRef]

	



Kotyla, P.J.; Kucharz, E.J. Who might be predisposed to the development of serious side effects when treated with tnf-alpha antagonist? Clin. Exp. Rheumatol. 2006, 24, 211. [Google Scholar]

	



Kotyla, P.J.; Sliwinska-Kotyla, B.; Kucharz, E.J. Treatment with infliximab may contribute to the development of peripheral neuropathy among the patients with rheumatoid arthritis. Clin. Rheumatol. 2007, 26, 1595–1596. [Google Scholar] [CrossRef] [PubMed]

	



Scheidereit, C. Iκb kinase complexes: Gateways to nf-κb activation and transcription. Oncogene 2006, 25, 6685–6705. [Google Scholar] [CrossRef]

	



Webster, J.D.; Vucic, D. The balance of tnf mediated pathways regulates inflammatory cell death signaling in healthy and diseased tissues. Front. Cell Dev. Biol. 2020, 8, 365. [Google Scholar] [CrossRef] [PubMed]

	



Burns, K.; Martinon, F.; Esslinger, C.; Pahl, H.; Schneider, P.; Bodmer, J.-L.; Di Marco, F.; French, L.; Tschopp, J. Myd88, an adapter protein involved in interleukin-1 signaling. J. Biol. Chem. 1998, 273, 12203–12209. [Google Scholar] [CrossRef] [PubMed]

	



Muzio, M.; Ni, J.; Feng, P.; Dixit, V.M. Irak (pelle) family member irak-2 and myd88 as proximal mediators of il-1 signaling. Science 1997, 278, 1612–1615. [Google Scholar] [CrossRef] [PubMed]

	



Li, X.; Bechara, R.; Zhao, J.; McGeachy, M.J.; Gaffen, S.L. Il-17 receptor-based signaling and implications for disease. Nat. Immunol. 2019, 20, 1594–1602. [Google Scholar] [CrossRef]

	



Morris, R.; Kershaw, N.J.; Babon, J.J. The molecular details of cytokine signaling via the jak/stat pathway. Protein Sci. Publ. Protein Soc. 2018, 27, 1984–2009. [Google Scholar] [CrossRef]

	



Kotyla, P.J. Are janus kinase inhibitors superior over classic biologic agents in ra patients? BioMed Res. Int. 2018, 2018, 7492904. [Google Scholar] [CrossRef] [PubMed]

	



T Virtanen, A.; Haikarainen, T.; Raivola, J.; Silvennoinen, O. Selective jakinibs: Prospects in inflammatory and autoimmune diseases. BioDrugs 2019, 33, 15–32. [Google Scholar] [CrossRef] [PubMed]

	



Gadina, M.; Chisolm, D.A.; Philips, R.L.; McInness, I.B.; Changelian, P.S.; O’Shea, J.J. Translating jaks to jakinibs. J. Immunol. 2020, 204, 2011–2020. [Google Scholar] [CrossRef] [PubMed]

	



Fiebelkow, J.; Guendel, A.; Guendel, B.; Mehwald, N.; Jetka, T.; Komorowski, M.; Waldherr, S.; Schaper, F.; Dittrich, A. The tyrosine phosphatase shp2 increases robustness and information transfer within il-6-induced jak/stat signalling. Cell Commun. Signal. 2021, 19, 94. [Google Scholar] [CrossRef] [PubMed]

	



Chang, Z.; Wang, Y.; Zhou, X.; Long, J.-E. Stat3 roles in viral infection: Antiviral or proviral? Future Virol. 2018, 13, 557–574. [Google Scholar] [CrossRef]

	



Kotyla, P.J.; Engelmann, M.; Giemza-Stokłosa, J.; Wnuk, B.; Islam, M.A. Thromboembolic adverse drug reactions in janus kinase (jak) inhibitors: Does the inhibitor specificity play a role? Int. J. Mol. Sci. 2021, 22, 2499. [Google Scholar] [CrossRef] [PubMed]

	



Darnell, J.E., Jr. Stats and gene regulation. Science 1997, 277, 1630–1635. [Google Scholar] [CrossRef]

	



Gao, Q.; Liang, X.; Shaikh, A.S.; Zang, J.; Xu, W.; Zhang, Y. Jak/stat signal transduction: Promising attractive targets for immune, inflammatory and hematopoietic diseases. Curr. Drug Targets 2018, 19, 487–500. [Google Scholar] [CrossRef]

	



Liongue, C.; Taznin, T.; Ward, A.C. Signaling via the cytor/jak/stat/socs pathway: Emergence during evolution. Mol. Immunol. 2016, 71, 166–175. [Google Scholar] [CrossRef]

	



Liongue, C.; Sertori, R.; Ward, A.C. Evolution of cytokine receptor signaling. J. Immunol. 2016, 197, 11–18. [Google Scholar] [CrossRef]

	



Ahmed, S.; Jacob, B.; Carsons, S.E.; De Leon, J.; Reiss, A.B. Treatment of cardiovascular disease in rheumatoid arthritis: A complex challenge with increased atherosclerotic risk. Pharmaceuticals 2021, 15, 11. [Google Scholar] [CrossRef]

	



Waickman, A.T.; Park, J.-Y.; Park, J.-H. The common γ-chain cytokine receptor: Tricks-and-treats for t cells. Cell. Mol. Life Sci. 2016, 73, 253–269. [Google Scholar] [CrossRef]

	



Dougan, M.; Dranoff, G.; Dougan, S.K. Gm-csf, il-3, and il-5 family of cytokines: Regulators of inflammation. Immunity 2019, 50, 796–811. [Google Scholar] [CrossRef]

	



Scheller, J.; Berg, A.; Moll, J.M.; Floss, D.M.; Jungesblut, C. Current status and relevance of single nucleotide polymorphisms in il-6-/il-12-type cytokine receptors. Cytokine 2021, 148, 155550. [Google Scholar] [CrossRef]

	



Jones, L.L.; Chaturvedi, V.; Uyttenhove, C.; Van Snick, J.; Vignali, D.A.A. Distinct subunit pairing criteria within the heterodimeric il-12 cytokine family. Mol. Immunol. 2012, 51, 234–244. [Google Scholar] [CrossRef] [PubMed]

	



Broughton, S.E.; Hercus, T.R.; Lopez, A.F.; Parker, M.W. Cytokine receptor activation at the cell surface. Curr. Opin. Struct. Biol. 2012, 22, 350–359. [Google Scholar] [CrossRef]

	



Schwartz, D.M.; Bonelli, M.; Gadina, M.; O’shea, J.J. Type i/ii cytokines, jaks, and new strategies for treating autoimmune diseases. Nat. Rev. Rheumatol. 2016, 12, 25–36. [Google Scholar] [CrossRef]

	



Pfeifer, A.C.; Timmer, J.; Klingmüller, U. Systems biology of jak/stat signalling. Essays Biochem. 2008, 45, 109–120. [Google Scholar]

	



Croker, B.A.; Kiu, H.; Nicholson, S.E. Socs regulation of the jak/stat signalling pathway. Semin. Cell Dev. Biol. 2008, 19, 414–422. [Google Scholar] [CrossRef]

	



Shuai, K.; Liu, B. Regulation of gene-activation pathways by pias proteins in the immune system. Nat. Rev. Immunol. 2005, 5, 593–605. [Google Scholar] [CrossRef]

	



Gabrielli, A.; Avvedimento, E.V.; Krieg, T. Scleroderma. N. Engl. J. Med. 2009, 360, 1989–2003. [Google Scholar] [CrossRef]

	



Jerjen, R.; Nikpour, M.; Krieg, T.; Denton, C.P.; Saracino, A.M. Systemic sclerosis in adults. Part i: Clinical features and pathogenesis. J. Am. Acad. Dermatol. 2022. [Google Scholar] [CrossRef] [PubMed]

	



Codullo, V.; Baldwin, H.M.; Singh, M.D.; Fraser, A.R.; Wilson, C.; Gilmour, A.; Hueber, A.J.; Bonino, C.; McInnes, I.B.; Montecucco, C.; et al. An investigation of the inflammatory cytokine and chemokine network in systemic sclerosis. Ann. Rheum. Dis. 2011, 70, 1115–1121. [Google Scholar] [CrossRef]

	



Katsumoto, T.R.; Whitfield, M.L.; Connolly, M.K. The pathogenesis of systemic sclerosis. Annu. Rev. Pathol. 2011, 6, 509–537. [Google Scholar] [CrossRef] [PubMed]

	



Skaug, B.; Assassi, S. Type i interferon dysregulation in systemic sclerosis. Cytokine 2020, 132, 154635. [Google Scholar] [CrossRef] [PubMed]

	



Brkic, Z.; van Bon, L.; Cossu, M.; van Helden-Meeuwsen, C.G.; Vonk, M.C.; Knaapen, H.; van den Berg, W.; Dalm, V.A.; Van Daele, P.L.; Severino, A.; et al. The interferon type i signature is present in systemic sclerosis before overt fibrosis and might contribute to its pathogenesis through high baff gene expression and high collagen synthesis. Ann. Rheum. Dis. 2016, 75, 1567–1573. [Google Scholar] [CrossRef]

	



Muangchan, C.; Pope, J.E. Interleukin 6 in systemic sclerosis and potential implications for targeted therapy. J. Rheumatol. 2012, 39, 1120–1124. [Google Scholar] [CrossRef]

	



Lin, X.; Ding, M.M.; Chen, T.; Min, S.H.; Wang, D.F.; Jiang, G. Peripheral blood il-6 levels in systemic sclerosis patients: Correlation between il-6 levels and clinical phenotypes. J. Cosmet. Dermatol. 2022. [Google Scholar] [CrossRef]

	



Sato, S.; Hasegawa, M.; Takehara, K. Serum levels of interleukin-6 and interleukin-10 correlate with total skin thickness score in patients with systemic sclerosis. J. Dermatol. Sci. 2001, 27, 140–146. [Google Scholar] [CrossRef]

	



Denton, C.P.; Ong, V.H.; Xu, S.; Chen-Harris, H.; Modrusan, Z.; Lafyatis, R.; Khanna, D.; Jahreis, A.; Siegel, J.; Sornasse, T. Therapeutic interleukin-6 blockade reverses transforming growth factor-beta pathway activation in dermal fibroblasts: Insights from the fasscinate clinical trial in systemic sclerosis. Ann. Rheum. Dis. 2018, 77, 1362–1371. [Google Scholar] [CrossRef]

	



Khanna, D. In Efficacy and safety of tocilizumab for the treatment of systemic sclerosis: Results from a phase 3 randomized controlled trial. In Proceedings of the 2018 ACR/ARHP Annual Meeting, Chicago, IL, USA, 21 October 2018; ACR: Ann Arbor, MI, USA, 2018. [Google Scholar]

	



Khanna, D.; Denton, C.P.; Jahreis, A.; van Laar, J.M.; Frech, T.M.; Anderson, M.E.; Baron, M.; Chung, L.; Fierlbeck, G.; Lakshminarayanan, S. Safety and efficacy of subcutaneous tocilizumab in adults with systemic sclerosis (fasscinate): A phase 2, randomised, controlled trial. Lancet 2016, 387, 2630–2640. [Google Scholar] [CrossRef]

	



de Almeida, A.R.; Dantas, A.T.; Pereira, M.C.; de Melo Rêgo, M.J.B.; Guimarães Gonçalves, R.S.; Pitta, I.D.R.; Branco Pinto Duarte, A.L.; Parra Abdalla, D.S.; da Rocha Pitta, M.G. Increased levels of the soluble oncostatin m receptor (sosmr) and glycoprotein 130 (sgp130) in systemic sclerosis patients and associations with clinical parameters. Immunobiology 2020, 225, 151964. [Google Scholar] [CrossRef]

	



Marden, G.; Wan, Q.; Wilks, J.; Nevin, K.; Feeney, M.; Wisniacki, N.; Trojanowski, M.; Bujor, A.; Stawski, L.; Trojanowska, M. The role of the oncostatin m/osm receptor β axis in activating dermal microvascular endothelial cells in systemic sclerosis. Arthritis Res. Ther. 2020, 22, 179. [Google Scholar] [CrossRef]

	



Bağci, I.S.; Ruzicka, T. Il-31: A new key player in dermatology and beyond. J. Allergy Clin. Immunol. 2018, 141, 858–866. [Google Scholar] [CrossRef] [PubMed]

	



Kopf, M.; Gros, G.L.; Bachmann, M.; Lamers, M.C.; Bluethmann, H.; Köhler, G. Disruption of the murine il-4 gene blocks th2 cytokine responses. Nature 1993, 362, 245–248. [Google Scholar] [CrossRef] [PubMed]

	



Gumkowska-Sroka, O.; Jagoda, K.; Owczarek, A.; Helbig, G.; Giemza-Stokłosa, J.; Kotyla, P.J. Cytometric characterization of main immunocompetent cells in patients with systemic sclerosis: Relationship with disease activity and type of immunosuppressive treatment. J. Clin. Med. 2019, 8, 625. [Google Scholar] [CrossRef] [PubMed]

	



Yang, C.; Lei, L.; Pan, J.; Zhao, C.; Wen, J.; Qin, F.; Dong, F.; Wei, W. Altered cd4+ t cell and cytokine levels in peripheral blood and skin samples from systemic sclerosis patients and il-35 in cd4+ t cell growth. Rheumatology 2022, 61, 794–805. [Google Scholar] [CrossRef] [PubMed]

	



Dantas, A.T.; Gonçalves, S.M.C.; Pereira, M.C.; Gonçalves, R.S.G.; Marques, C.D.L.; Rego, M.J.B.d.M.; da Rocha Pitta, I.; Duarte, A.L.B.P.; da Rocha Pitta, M.G. Increased il-35 serum levels in systemic sclerosis and association with pulmonary interstitial involvement. Clin. Rheumatol. 2015, 34, 1621–1625. [Google Scholar] [CrossRef] [PubMed]

	



Nakayama, W.; Jinnin, M.; Tomizawa, Y.; Nakamura, K.; Kudo, H.; Inoue, K.; Makino, K.; Honda, N.; Kajihara, I.; Fukushima, S.; et al. Dysregulated interleukin-23 signalling contributes to the increased collagen production in scleroderma fibroblasts via balancing microrna expression. Rheumatology 2016, 56, 145–155. [Google Scholar] [CrossRef]

	



Hasegawa, M.; Fujimoto, M.; Kikuchi, K.; Takehara, K. Elevated serum levels of interleukin 4 (il-4), il-10, and il-13 in patients with systemic sclerosis. J. Rheumatol. 1997, 24, 328–332. [Google Scholar]

	



Postlethwaite, A.E.; Holness, M.A.; Katai, H.; Raghow, R. Human fibroblasts synthesize elevated levels of extracellular matrix proteins in response to interleukin 4. J. Clin. Investig. 1992, 90, 1479–1485. [Google Scholar] [CrossRef]

	



Le Huu, D.; Matsushita, T.; Jin, G.; Hamaguchi, Y.; Hasegawa, M.; Takehara, K.; Tedder, T.F.; Fujimoto, M. Donor-derived regulatory b cells are important for suppression of murine sclerodermatous chronic graft-versus-host disease. Blood J. Am. Soc. Hematol. 2013, 121, 3274–3283. [Google Scholar] [CrossRef]

	



Matsushita, T.; Hamaguchi, Y.; Hasegawa, M.; Takehara, K.; Fujimoto, M. Decreased levels of regulatory b cells in patients with systemic sclerosis: Association with autoantibody production and disease activity. Rheumatology 2016, 55, 263–267. [Google Scholar] [CrossRef]

	



Mavropoulos, A.; Liaskos, C.; Simopoulou, T.; Bogdanos, D.P.; Sakkas, L.I. Il-10-producing regulatory b cells (b10 cells), il-17+ t cells and autoantibodies in systemic sclerosis. Clin. Immunol. 2017, 184, 26–32. [Google Scholar] [CrossRef] [PubMed]

	



Mavropoulos, A.; Simopoulou, T.; Varna, A.; Liaskos, C.; Katsiari, C.G.; Bogdanos, D.P.; Sakkas, L.I. Breg cells are numerically decreased and functionally impaired in patients with systemic sclerosis. Arthritis Rheumatol. 2016, 68, 494–504. [Google Scholar] [CrossRef] [PubMed]

	



Aydoğdu, E.; Pamuk, Ö.N.; Dönmez, S.; Pamuk, G.E. Decreased interleukin-20 level in patients with systemic sclerosis: Are they related with angiogenesis? Clin. Rheumatol. 2013, 32, 1599–1603. [Google Scholar] [CrossRef] [PubMed]

	



Sawamura, S.; Jinnin, M.; Inoue, K.; Yamane, K.; Honda, N.; Kajihara, I.; Makino, T.; Masuguchi, S.; Fukushima, S.; Ihn, H. Regulatory mechanisms of collagen expression by interleukin-22 signaling in scleroderma fibroblasts. J. Dermatol. Sci. 2018, 90, 52–59. [Google Scholar] [CrossRef]

	



De Ceuninck, F.; Duguet, F.; Aussy, A.; Laigle, L.; Moingeon, P. Ifn-α: A key therapeutic target for multiple autoimmune rheumatic diseases. Drug Discov. Today 2021, 26, 2465–2473. [Google Scholar] [CrossRef] [PubMed]

	



You, H.; Xu, D.; Hou, Y.; Zhou, J.; Wang, Q.; Li, M.; Zeng, X. Tofacitinib as a possible treatment for skin thickening in diffuse cutaneous systemic sclerosis. Rheumatology 2021, 60, 2472–2477. [Google Scholar] [CrossRef]

	



Karalilova, R.V.; Batalov, Z.A.; Sapundzhieva, T.L.; Matucci-Cerinic, M.; Batalov, A.Z. Tofacitinib in the treatment of skin and musculoskeletal involvement in patients with systemic sclerosis, evaluated by ultrasound. Rheumatol. Int. 2021, 41, 1743–1753. [Google Scholar] [CrossRef]

	



Trouw, L.A.; Pickering, M.C.; Blom, A.M. The complement system as a potential therapeutic target in rheumatic disease. Nat. Rev. Rheumatol. 2017, 13, 538–547. [Google Scholar] [CrossRef]

	



Tsokos, G.C.; Lo, M.S.; Reis, P.C.; Sullivan, K.E. New insights into the immunopathogenesis of systemic lupus erythematosus. Nat. Rev. Rheumatol. 2016, 12, 716–730. [Google Scholar] [CrossRef]

	



Liphaus, B.L.; Kiss, M.H. The role of apoptosis proteins and complement components in the etiopathogenesis of systemic lupus erythematosus. Clinics 2010, 65, 327–333. [Google Scholar] [CrossRef]

	



Munoz, L.E.; van Bavel, C.; Franz, S.; Berden, J.; Herrmann, M.; Van Der Vlag, J. Apoptosis in the pathogenesis of systemic lupus erythematosus. Lupus 2008, 17, 371–375. [Google Scholar] [CrossRef] [PubMed]

	



Brandt, L.t.; Hedberg, H. Impaired phagocytosis by peripheral blood granulocytes in systemic lupus erythematosus. Scand. J. Haematol. 1969, 6, 348–353. [Google Scholar] [CrossRef] [PubMed]

	



Bolouri, N.; Akhtari, M.; Farhadi, E.; Mansouri, R.; Faezi, S.T.; Jamshidi, A.; Mahmoudi, M. Role of the innate and adaptive immune responses in the pathogenesis of systemic lupus erythematosus. Inflamm. Res. 2022, 71, 537–554. [Google Scholar] [CrossRef]

	



Macedo, A.C.L.; Isaac, L. Systemic lupus erythematosus and deficiencies of early components of the complement classical pathway. Front. Immunol. 2016, 7, 55. [Google Scholar] [CrossRef] [PubMed]

	



Yap, D.Y.; Chan, T.M. B cell abnormalities in systemic lupus erythematosus and lupus nephritis—role in pathogenesis and effect of immunosuppressive treatments. Int. J. Mol. Sci. 2019, 20, 6231. [Google Scholar] [CrossRef]

	



Fakhfakh, R.; Zian, Z.; Elloumi, N.; Abida, O.; Bouallegui, E.; Houssaini, H.; Volpe, E.; Capone, A.; Hachicha, H.; Marzouk, S.; et al. Th17 and th1 cells in systemic lupus erythematosus with focus on lupus nephritis. Immunol. Res. 2022, 1–10. [Google Scholar] [CrossRef]

	



Pourreza, E.; Shahbazi, M.; Mirzakhani, M.; Yousefghahari, B.; Akbari, R.; Oliaei, F.; Mohammadnia-Afrouzi, M. Increased frequency of activated regulatory t cells in patients with lupus nephritis. Hum. Immunol. 2022, 83, 574–579. [Google Scholar] [CrossRef]

	



Jung, S.M.; Kim, W.-U. Targeted immunotherapy for autoimmune disease. Immune. Netw. 2022, 22, e9. [Google Scholar] [CrossRef]

	



Idborg, H.; Oke, V. Cytokines as biomarkers in systemic lupus erythematosus: Value for diagnosis and drug therapy. Int. J. Mol. Sci. 2021, 22, 11327. [Google Scholar] [CrossRef]

	



Stohl, W. Inhibition of b cell activating factor (baff) in the management of systemic lupus erythematosus (sle). Expert Rev. Clin. Immunol. 2017, 13, 623–633. [Google Scholar] [CrossRef] [PubMed]

	



Domeier, P.P.; Rahman, Z.S.M. Regulation of b cell responses in sle by three classes of interferons. Int. J. Mol. Sci. 2021, 22, 10464. [Google Scholar] [CrossRef] [PubMed]

	



Hooks, J.J.; Moutsopoulos, H.M.; Geis, S.A.; Stahl, N.I.; Decker, J.L.; Notkins, A.L. Immune interferon in the circulation of patients with autoimmune disease. N. Engl. J. Med. 1979, 301, 5–8. [Google Scholar] [CrossRef] [PubMed]

	



Baechler, E.C.; Batliwalla, F.M.; Karypis, G.; Gaffney, P.M.; Ortmann, W.A.; Espe, K.J.; Shark, K.B.; Grande, W.J.; Hughes, K.M.; Kapur, V. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc. Natl. Acad. Sci. USA 2003, 100, 2610–2615. [Google Scholar] [CrossRef] [PubMed]

	



Crow, M.K.; Olferiev, M.; Kirou, K.A. Type i interferons in autoimmune disease. Annu. Rev. Pathol. Mech. Dis. 2019, 14, 369–393. [Google Scholar] [CrossRef] [PubMed]

	



Rönnblom, L.; Eloranta, M.-L. The interferon signature in autoimmune diseases. Curr. Opin. Rheumatol. 2013, 25, 248–253. [Google Scholar] [CrossRef] [PubMed]

	



Haynes, W.A.; Haddon, D.J.; Diep, V.K.; Khatri, A.; Bongen, E.; Yiu, G.; Balboni, I.; Bolen, C.R.; Mao, R.; Utz, P.J.; et al. Integrated, multicohort analysis reveals unified signature of systemic lupus erythematosus. JCI Insight 2020, 5, e122312. [Google Scholar] [CrossRef] [PubMed]

	



Villadangos, J.A.; Young, L. Antigen-presentation properties of plasmacytoid dendritic cells. Immunity 2008, 29, 352–361. [Google Scholar] [CrossRef]

	



Lorenz, G.; Lech, M.; Anders, H.J. Toll-like receptor activation in the pathogenesis of lupus nephritis. Clin. Immunol. 2017, 185, 86–94. [Google Scholar] [CrossRef]

	



Marshak-Rothstein, A.; Rifkin, I.R. Immunologically active autoantigens: The role of toll-like receptors in the development of chronic inflammatory disease. Annu. Rev. Immunol. 2007, 25, 419–441. [Google Scholar] [CrossRef]

	



Fitzgerald-Bocarsly, P.; Dai, J.; Singh, S. Plasmacytoid dendritic cells and type i ifn: 50 years of convergent history. Cytokine Growth Factor Rev. 2008, 19, 3–19. [Google Scholar] [CrossRef]

	



Bezalel, S.; Guri, K.M.; Elbirt, D.; Asher, I.; Sthoeger, Z.M. Type i interferon signature in systemic lupus erythematosus. Isr. Med. Assoc. J. IMAJ 2014, 16, 246–249. [Google Scholar] [PubMed]

	



Zickert, A.; Oke, V.; Parodis, I.; Svenungsson, E.; Sundström, Y.; Gunnarsson, I. Interferon (ifn)-λ is a potential mediator in lupus nephritis. Lupus Sci. Med. 2016, 3, e000170. [Google Scholar] [CrossRef]

	



Oke, V.; Gunnarsson, I.; Dorschner, J.; Eketjäll, S.; Zickert, A.; Niewold, T.B.; Svenungsson, E. High levels of circulating interferons type i, type ii and type iii associate with distinct clinical features of active systemic lupus erythematosus. Arthritis Res. Ther. 2019, 21, 107. [Google Scholar] [CrossRef]

	



Sim, T.M.; Ong, S.J.; Mak, A.; Tay, S.H. Type i interferons in systemic lupus erythematosus: A journey from bench to bedside. Int. J. Mol. Sci. 2022, 23, 2505. [Google Scholar] [CrossRef] [PubMed]

	



Braunstein, I.; Klein, R.; Okawa, J.; Werth, V. The interferon-regulated gene signature is elevated in subacute cutaneous lupus erythematosus and discoid lupus erythematosus and correlates with the cutaneous lupus area and severity index score. Br. J. Dermatol. 2012, 166, 971–975. [Google Scholar] [CrossRef]

	



Casey, K.A.; Guo, X.; Smith, M.A.; Wang, S.; Sinibaldi, D.; Sanjuan, M.A.; Wang, L.; Illei, G.G.; White, W.I. Type i interferon receptor blockade with anifrolumab corrects innate and adaptive immune perturbations of sle. Lupus Sci. Med. 2018, 5, e000286. [Google Scholar] [PubMed]

	



Liu, W.; Li, M.; Wang, Z.; Wang, J. Ifn-γ mediates the development of systemic lupus erythematosus. BioMed Res. Int. 2020, 2020, 7176515. [Google Scholar] [CrossRef] [PubMed]

	



Pattanaik, S.S.; Panda, A.K.; Pati, A.; Padhi, S.; Tripathy, R.; Tripathy, S.R.; Parida, M.K.; Das, B.K. Role of interleukin-6 and interferon-α in systemic lupus erythematosus: A case–control study and meta-analysis. Lupus 2022, 31, 1094–1103. [Google Scholar] [CrossRef]

	



Sippl, N.; Faustini, F.; Rönnelid, J.; Turcinov, S.; Chemin, K.; Gunnarsson, I.; Malmström, V. Arthritis in systemic lupus erythematosus is characterized by local il-17a and il-6 expression in synovial fluid. Clin. Exp. Immunol. 2021, 205, 44–52. [Google Scholar] [CrossRef]

	



Gordon, C.; Richards, N.; Howie, A.; Richardson, K.; Michael, J.; Adu, D.; Emery, P. Urinary il-6: A marker for mesangial proliferative glomerulonephritis? Clin. Exp. Immunol. 1991, 86, 145–149. [Google Scholar] [CrossRef]

	



Hirohata, S.; Kikuchi, H. Role of serum il-6 in neuropsychiatric systemic lupus erythematosus. ACR Open Rheumatol. 2021, 3, 42–49. [Google Scholar] [CrossRef] [PubMed]

	



Kaneko, Y.; Takeuchi, T. An update on the pathogenic role of il-6 in rheumatic diseases. Cytokine 2021, 146, 155645. [Google Scholar] [CrossRef]

	



Votavova, P.; Tomala, J.; Kovar, M. Increasing the biological activity of il-2 and il-15 through complexing with anti-il-2 mabs and il-15rα-fc chimera. Immunol. Lett. 2014, 159, 1–10. [Google Scholar] [CrossRef]

	



Kolios, A.G.; Tsokos, G.C.; Klatzmann, D. Interleukin-2 and regulatory t cells in rheumatic diseases. Nat. Rev. Rheumatol. 2021, 17, 749–766. [Google Scholar] [CrossRef] [PubMed]

	



Alcocer-Varela, J.; Alarcon-Segovia, D. Decreased production of and response to interleukin-2 by cultured lymphocytes from patients with systemic lupus erythematosus. J. Clin. Investig. 1982, 69, 1388–1392. [Google Scholar] [CrossRef] [PubMed]

	



Dai, H.; He, F.; Tsokos, G.C.; Kyttaris, V.C. Il-23 limits the production of il-2 and promotes autoimmunity in lupus. J. Immunol. 2017, 199, 903–910. [Google Scholar] [CrossRef] [PubMed]

	



Reem, G.H.; Yeh, N.-H. Interleukin 2 regulates expression of its receptor and synthesis of gamma interferon by human t lymphocytes. Science 1984, 225, 429–430. [Google Scholar] [CrossRef]

	



Liao, W.; Lin, J.-X.; Wang, L.; Li, P.; Leonard, W.J. Modulation of cytokine receptors by il-2 broadly regulates differentiation into helper t cell lineages. Nat. Immunol 2011, 12, 551–559. [Google Scholar] [CrossRef]

	



Schinocca, C.; Rizzo, C.; Fasano, S.; Grasso, G.; La Barbera, L.; Ciccia, F.; Guggino, G. Role of the il-23/il-17 pathway in rheumatic diseases: An overview. Front. Immunol. 2021, 12, 637829. [Google Scholar] [CrossRef] [PubMed]

	



Larosa, M.; Zen, M.; Gatto, M.; Jesus, D.; Zanatta, E.; Iaccarino, L.; Inês, L.; Doria, A. Il-12 and il-23/th17 axis in systemic lupus erythematosus. Exp. Biol. Med. 2019, 244, 42–51. [Google Scholar] [CrossRef] [PubMed]

	



Teng, M.W.; Bowman, E.P.; McElwee, J.J.; Smyth, M.J.; Casanova, J.L.; Cooper, A.M.; Cua, D.J. Il-12 and il-23 cytokines: From discovery to targeted therapies for immune-mediated inflammatory diseases. Nat. Med. 2015, 21, 719–729. [Google Scholar] [CrossRef]

	



Floss, D.M.; Schröder, J.; Franke, M.; Scheller, J. Insights into il-23 biology: From structure to function. Cytokine Growth Factor Rev. 2015, 26, 569–578. [Google Scholar] [CrossRef] [PubMed]

	



Lee, S.; Nakayamada, S.; Kubo, S.; Yamagata, K.; Yoshinari, H.; Tanaka, Y. Interleukin-23 drives expansion of thelper 17 cells through epigenetic regulation by signal transducer and activators of transcription 3 in lupus patients. Rheumatology 2020, 59, 3058–3069. [Google Scholar] [CrossRef] [PubMed]

	



Ueno, H. The il-12-stat4 axis in the pathogenesis of human systemic lupus erythematosus. Eur. J. Immunol. 2020, 50, 10–16. [Google Scholar] [CrossRef]

	



Trinchieri, G. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat. Rev. Immunol. 2003, 3, 133–146. [Google Scholar] [CrossRef]

	



Ohteki, T.; Fukao, T.; Suzue, K.; Maki, C.; Ito, M.; Nakamura, M.; Koyasu, S. Interleukin 12–dependent interferon γ production by cd8α+ lymphoid dendritic cells. J. Exp. Med. 1999, 189, 1981–1986. [Google Scholar] [CrossRef] [PubMed]

	



Lauwerys, B.; Van Snick, J.; Houssiau, F. Serum il-12 in systemic lupus erythematosus: Absence of p70 heterodimers but presence of p40 monomers correlating with disease activity. Lupus 2002, 11, 384–387. [Google Scholar] [CrossRef]

	



Uzrail, A.H.; Assaf, A.M.; Abdalla, S.S. Correlations of expression levels of a panel of genes (irf5, stat4, tnfsf4, mecp2, and tlr7) and cytokine levels (il-2, il-6, il-10, il-12, ifn-γ, and tnf-α) with systemic lupus erythematosus outcomes in jordanian patients. BioMed Res. Int. 2019, 2019, 1703842. [Google Scholar] [CrossRef]

	



van Vollenhoven, R.F.; Hahn, B.H.; Tsokos, G.C.; Lipsky, P.; Gordon, R.M.; Fei, K.; Lo, K.H.; Chevrier, M.; Rose, S.; Berry, P.; et al. Efficacy and safety of ustekinumab in patients with active systemic lupus erythematosus: Results of a phase ii open-label extension study. J. Rheumatol. 2022, 49, 380–387. [Google Scholar] [CrossRef] [PubMed]

	



Wang, X.; Wong, K.; Ouyang, W.; Rutz, S. Targeting il-10 family cytokines for the treatment of human diseases. Cold Spring Harb. Perspect. Biol. 2019, 11, a028548. [Google Scholar] [CrossRef]

	



Fiorentino, D.F.; Zlotnik, A.; Mosmann, T.R.; Howard, M.; O’Garra, A. Il-10 inhibits cytokine production by activated macrophages. J. Immunol. 1991, 147, 3815–3822. [Google Scholar] [PubMed]

	



D’Andrea, A.; Aste-Amezaga, M.; Valiante, N.M.; Ma, X.; Kubin, M.; Trinchieri, G. Interleukin 10 (il-10) inhibits human lymphocyte interferon gamma-production by suppressing natural killer cell stimulatory factor/il-12 synthesis in accessory cells. J. Exp. Med. 1993, 178, 1041–1048. [Google Scholar] [CrossRef] [PubMed]

	



Wu, Y.-R.; Hsing, C.-H.; Chiu, C.-J.; Huang, H.-Y.; Hsu, Y.-H. Roles of il-1 and il-10 family cytokines in the progression of systemic lupus erythematosus: Friends or foes? IUBMB Life 2022, 74, 143–156. [Google Scholar] [CrossRef] [PubMed]

	



Li, H.-H.; Cheng, H.-H.; Sun, K.-H.; Wei, C.-C.; Li, C.-F.; Chen, W.-C.; Wu, W.-M.; Chang, M.-S. Interleukin-20 targets renal mesangial cells and is associated with lupus nephritis. Clin. Immunol. 2008, 129, 277–285. [Google Scholar] [CrossRef] [PubMed]

	



Zhao, L.; Jiang, Z.; Jiang, Y.; Ma, N.; Wang, K.; Zhang, Y.; Feng, L. Il-22+ cd4+ t-cells in patients with active systemic lupus erythematosus. Exp. Biol. Med. 2013, 238, 193–199. [Google Scholar] [CrossRef] [PubMed]

	



Pan, H.-F.; Zhao, X.-F.; Yuan, H.; Zhang, W.-H.; Li, X.-P.; Wang, G.-H.; Wu, G.-C.; Tang, X.-W.; Li, W.-X.; Li, L.-H. Decreased serum il-22 levels in patients with systemic lupus erythematosus. Clin. Chim. Acta Int. J. Clin. Chem. 2009, 401, 179–180. [Google Scholar] [CrossRef]

	



Brilland, B.; Bach-Bunner, M.; Gomes, C.N.; Larochette, V.; Foucher, E.; Plaisance, M.; Saulnier, P.; Costedoat-Chalumeau, N.; Ghillani, P.; Belizna, C. Serum interleukin-26 is a new biomarker for disease activity assessment in systemic lupus erythematosus. Front. Immunol. 2021, 12, 663192. [Google Scholar] [CrossRef]

	



Maeshima, K.; Yamaoka, K.; Kubo, S.; Nakano, K.; Iwata, S.; Saito, K.; Ohishi, M.; Miyahara, H.; Tanaka, S.; Ishii, K.; et al. The jak inhibitor tofacitinib regulates synovitis through inhibition of interferon-γ and interleukin-17 production by human cd4+ t cells. Arthritis Rheum. 2012, 64, 1790–1798. [Google Scholar] [CrossRef]

	



Furumoto, Y.; Smith, C.K.; Blanco, L.; Zhao, W.; Brooks, S.R.; Thacker, S.G.; Zarzour, A.; Sciumè, G.; Tsai, W.L.; Trier, A.M.; et al. Tofacitinib ameliorates murine lupus and its associated vascular dysfunction. Arthritis Rheumatol. 2017, 69, 148–160. [Google Scholar] [CrossRef]

	



Bonnardeaux, E.; Dutz, J.P. Oral tofacitinib citrate for recalcitrant cutaneous lupus. JAAD Case Rep. 2022, 20, 61–64. [Google Scholar] [CrossRef]

	



Kerschbaumer, A.; Smolen, J.S.; Nash, P.; Doerner, T.; Dougados, M.; Fleischmann, R.; Geissler, K.; McInnes, I.B.; Takeuchi, T.; Trauner, M.; et al. Points to consider for the treatment of immune-mediated inflammatory diseases with janus kinase inhibitors: A systematic literature research. RMD Open 2020, 6, e001374. [Google Scholar] [CrossRef] [PubMed]

	



Sedlacek, M.; Pettus, J.R. Complete remission of tip lesion variant focal segmental glomerulosclerosis (fsgs) with the janus kinase (jak) inhibitor tofacitinib. CEN Case Rep. 2022, 11, 225–230. [Google Scholar] [CrossRef] [PubMed]

	



Welzel, T.; Winskill, C.; Zhang, N.; Woerner, A.; Pfister, M. Biologic disease modifying antirheumatic drugs and janus kinase inhibitors in paediatric rheumatology-what we know and what we do not know from randomized controlled trials. Pediatr. Rheumatol. Online J. 2021, 19, 46. [Google Scholar] [CrossRef] [PubMed]

	



Williams, P.; McKinney, B. Refractory dermatomyositis-systemic lupus erythematosus overlap syndrome and response to tofacitinib. Proceedings 2020, 34, 116–117. [Google Scholar] [CrossRef] [PubMed]

	



Yamamoto, M.; Yokoyama, Y.; Shimizu, Y.; Yajima, H.; Sakurai, N.; Suzuki, C.; Naishiro, Y.; Takahashi, H. Tofacitinib can decrease anti-DNA antibody titers in inactive systemic lupus erythematosus complicated by rheumatoid arthritis. Mod. Rheumatol. 2016, 26, 633–634. [Google Scholar] [CrossRef] [PubMed]

	



Yang, J.; Li, J.; Shi, L. Successful remission with tofacitinib in a patient with refractory bullous systemic lupus erythematosus. Rheumatology 2022. [Google Scholar] [CrossRef] [PubMed]

	



You, H.; Zhang, G.; Wang, Q.; Zhang, S.; Zhao, J.; Tian, X.; Li, H.; Li, M.; Zeng, X. Successful treatment of arthritis and rash with tofacitinib in systemic lupus erythematosus: The experience from a single centre. Ann. Rheum. Dis. 2019, 78, 1441–1443. [Google Scholar] [CrossRef]

	



Hasni, S.A.; Gupta, S.; Davis, M.; Poncio, E.; Temesgen-Oyelakin, Y.; Carlucci, P.M.; Wang, X.; Naqi, M.; Playford, M.P.; Goel, R.R.; et al. Phase 1 double-blind randomized safety trial of the janus kinase inhibitor tofacitinib in systemic lupus erythematosus. Nat. Commun. 2021, 12, 3391. [Google Scholar] [CrossRef] [PubMed]

	



Lee, J.; Park, Y.; Jang, S.G.; Hong, S.-M.; Song, Y.-S.; Kim, M.-J.; Baek, S.; Park, S.-H.; Kwok, S.-K. Baricitinib attenuates autoimmune phenotype and podocyte injury in a murine model of systemic lupus erythematosus. Front. Immunol. 2021, 12, 704526. [Google Scholar] [CrossRef] [PubMed]

	



Wallace, D.J.; Furie, R.A.; Tanaka, Y.; Kalunian, K.C.; Mosca, M.; Petri, M.A.; Dörner, T.; Cardiel, M.H.; Bruce, I.N.; Gomez, E.; et al. Baricitinib for systemic lupus erythematosus: A double-blind, randomised, placebo-controlled, phase 2 trial. Lancet 2018, 392, 222–231. [Google Scholar] [CrossRef]

	



Dörner, T.; Tanaka, Y.; Dow, E.R.; Koch, A.E.; Silk, M.; Ross Terres, J.A.; Sims, J.T.; Sun, Z.; de la Torre, I.; Petri, M. Mechanism of action of baricitinib and identification of biomarkers and key immune pathways in patients with active systemic lupus erythematosus. Ann. Rheum. Dis. 2022. [Google Scholar] [CrossRef] [PubMed]

	



Hagberg, N.; Joelsson, M.; Leonard, D.; Reid, S.; Eloranta, M.-L.; Mo, J.; Nilsson, M.K.; Syvänen, A.-C.; Bryceson, Y.T.; Rönnblom, L. The stat4 sle risk allele rs7574865[t] is associated with increased il-12-induced ifn-γ production in t cells from patients with sle. Ann. Rheum. Dis. 2018, 77, 1070–1077. [Google Scholar] [CrossRef] [PubMed]

	



Werth, V.P.; Fleischmann, R.; Robern, M.; Touma, Z.; Tiamiyu, I.; Gurtovaya, O.; Pechonkina, A.; Mozaffarian, A.; Downie, B.; Matzkies, F.; et al. Filgotinib or lanraplenib in moderate to severe cutaneous lupus erythematosus: A phase 2, randomized, double-blind, placebo-controlled study. Rheumatology 2021, 61, 2413–2423. [Google Scholar] [CrossRef] [PubMed]

	



Oon, S.; Monaghan, K.; Ng, M.; Hoi, A.; Morand, E.; Vairo, G.; Maraskovsky, E.; Nash, A.D.; Wicks, I.P.; Wilson, N.J. A potential association between il-3 and type i and iii interferons in systemic lupus erythematosus. Clin. Transl. Immunol. 2019, 8, e01097. [Google Scholar] [CrossRef]

	



Chan, E.S.; Herlitz, L.C.; Jabbari, A. Ruxolitinib attenuates cutaneous lupus development in a mouse lupus model. J. Investig. Dermatol. 2015, 135, 1912–1915. [Google Scholar] [CrossRef]








[image: Pharmaceuticals 15 00936 g001 550] 





Figure 1. Cytokine network in systemic sclerosis. 






Figure 1. Cytokine network in systemic sclerosis.



[image: Pharmaceuticals 15 00936 g001]







[image: Pharmaceuticals 15 00936 g002 550] 





Figure 2. The role of cytokines in SLE. 
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Table 1. List of Jakinibs with therapeutic potential in treatment of Systemic Lupus and Systemic Sclerosis.
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	JAK Inhibitor Name
	Selectivity
	Indication (NCT Study)





	Tofacitinib
	Non-selective
	Tested for lupus treatment (NCT02535689, NCT05048238, and NCT03288324)



	Baricitinib
	Non-selective
	Studies in Lupus terminated (NCT03616912, NCT03843125)



	Ruxolitinib
	Non-selective
	Trial in DLE (NCT04908280)



	Peficitinib
	Non-selective
	Tested for RA treatment



	Filgotinib
	Jak-1 selective
	Assessed for treatment of CLE (NCT03134222)



	Upadacitinib
	Jak-1 selective
	Evaluated for lupus treatment (NCT04451772 and NCT03978520)



	Solcitinib
	Jak-1 selective
	Study in SLE terminated NCT01777256



	Itacitinib
	Jak-1 selective
	Under investigation in Systemic Sclerosis (NCT04789850)



	AC430
	Jak-2
	Potential role in the treatment of cancer and autoimmune diseases



	TG101209
	JAK-2
	Potential role in the treatment of leukaemias and myeloproliferative disorders



	Decernotinib
	JAK-3
	Tested for treatment in RA



	R 333
	Jak-3
	Further studies terminated



	PF 06651600Ritlecitinib
	JAK-3 (dual JAK-3/TEC inhibitor)
	Evaluated in alopecia areata, RA



	Brepocitinib
	JAK-1/Tyk2
	Tested in SLE (NCT03845517)



	Deucravacitinib
	Tyk-2
	Assessed in SLE (NCT03252587) (NCT03920267)







TEC tyrosine kinase expressed in hepatocellular carcinoma; DLE discoid lupus erythematosus; CLE cutaneous lupus erythematosus.
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