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Abstract: The drug resistance of colorectal cancer (CRC) cells against 5-fluorouracil (5-FU) therapy
is a major challenge to successful cancer treatment. While previous studies have proposed several
5-FU resistance mechanisms, the effects of the adipokines on cancer cells remain unclear. Thus, this
study investigated the effect of resistin on 5-FU-treated CRC cell lines. The upregulation of NLRP3
can regulate the inflammatory responses in cancer cells and then enhance cancer progression. This
study investigated the expression level and the function of NLRP3 on 5-FU-induced cytotoxicity
in CRC cells and found that resistin-induced ERK activation and increased NLRP3 expression in
CRC HCT-116 and DLD-1 cells were mediated by Toll-like receptor 4 (TLR4). The inhibition of TLR4
and ERK by pharmacological inhibitors attenuated the resistin-induced NLRP3 mRNA and protein
levels. In contrast, the knockdown of NLRP3 enhanced the cytotoxic effects of 5-FU. Furthermore,
quercetin is an effective chemopreventive compound. This study showed that quercetin fermented
by Lactobacillus could exhibit low cytotoxicity on normal mucosa cells and improve the function of
inhibiting CRC cells. The treatment of CRC cells with fermented quercetin increased the cytotoxicity
and enhanced cell death in the presence of resistin. In this study, fermented quercetin induced
the cytotoxicity and cell death of 5-FU in resistin-treated CRC cells, which is associated with the
downregulation of NLRP3 expression and ERK phosphorylation. These results indicate the role of
NLRP3 in the development of drug resistance to 5-FU in CRC cells. Elucidating the mechanism
regarding the cytotoxicity effect of quercetin may provide another vision for the development of a
chemotherapy strategy for CRC in the future.
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1. Introduction

Colorectal cancer (CRC) is one of the most common cancer types and the second
leading cause of cancer-related deaths globally. Although recent progress and emerging
opportunities have been made in the treatment of CRC, which has significantly improved
the clinical outcomes of patients with CRC, the recurrence and metastasis of cancer cells are
still the main causes of death from this disease [1]. Obesity is associated with an increased
risk of CRC, although the exact mechanism has not yet been determined [2]. Adipocytes
can secrete cytokines, which are referred to as adipokines, including leptin, adiponectin,
and resistin. Variations of serum adipokine levels caused by obesity are related to the
progression of a variety of malignant tumors, such as breast cancer, gastric cancer, and
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CRC [2–4]. 5-fluorouracil (5-FU) combined with oxaliplatin or irinotecan is currently the
first-line chemotherapy drug for CRC. However, cancer cells may eventually develop a
mechanism that inactivates these chemotherapeutic agents [5]. Thus, it is necessary to
study the potential prognostic factors and therapeutic targets for patients with CRC.

Resistin is a pro-inflammatory cytokine, which is mainly secreted by human macrophages
and adipocytes, and plays a role in many inflammatory pathophysiological diseases, in-
cluding arthritis and atherosclerosis [6]. In addition, the serum resistin levels of patients
with breast cancer, CRC, and lung adenocarcinoma gradually increase in the process of
tumor progression [7–9]. A previous study found that the serum resistin levels of CRC
patients were significantly higher than that of normal subjects [4]. It has also been reported
that a higher expression of resistin in tumor tissues is associated with the poor prognosis of
CRC [8]. Although there is increasing evidence that resistin plays an important role in the
progression of CRC, the molecular mechanism of its function on CRC chemoresistance has
not been fully evaluated.

Obesity may contribute to the progression of CRC by the induction of adipokines and
chronic inflammation. Evidence has accrued regarding the role of the NOD-like recep-
tor family pyrin domain containing 3 (NLRP3) inflammasome in adipose tissue-related
inflammation and the association with CRC susceptibility [10]. It has been reported that
the inflammation and tumorigenesis of cancer cells can be suppressed by inhibiting the
activation of NLRP3 inflammasomes [11]. While the direct effects of NLRP3 are respon-
sible for the secretion of IL-1β and IL-18, the other effects of NLRP3 can promote cancer
cells to the EMT process and metastasis [12,13]. In addition, the function of the NLRP3
inflammasome is both a crucial mediator of inflammation and a major regulator of in-
testinal homeostasis [14]. Abnormal activation of NLRP3 inflammasomes has recently
been found in various cancer types; however, the role of NLRP3 inflammasomes in 5-FU
chemoresistance of CRC cells has not been clearly elucidated.

Phytochemicals, such as phenolic compounds or flavonoids, have received exten-
sive attention due to their pharmaceutical capacity, including health promotion and the
prevention of diseases [15]. Many phytochemicals can be transformed by the intestinal
microbiota to become more active ingredients; therefore, fermentation is a useful strategy
to improve the therapeutic properties of bioactive compounds [16]. Quercetin, a natural
dietary flavonoid found in medicinal plants and vegetables, has great pharmacological
activity in inhibiting the growth and metastasis of many cancer cells [17]; however, the
effect of quercetin on increased sensitivity to chemotherapy remains unclear. The daily
intake of quercetin is estimated to be up to 30 mg [18], but the intestinal absorption of
quercetin is highly variable, often slow, and largely incomplete. Most quercetin is unab-
sorbed and may be concentrated in the intestinal lumen, which is the main reason for its
sparse bioavailability after consumption.

Quercetin is the major plant flavonoid widely present in plants, and Lactobacillus (L.)
plantarum exists in the human gastrointestinal tract and is involved in the fermentation of
various plant substrates. This study aimed to investigate the possible role of resistin in the
cytotoxicity of 5-FU to CRC cells. The results show that resistin stimulation activated ERK
phosphorylation to upregulate NLRP3 expression mediation by TLR4 in CRC cells; thus,
NLRP3 induction could further decrease the sensitivity of CRC cells to 5-FU treatment.
In addition, this study investigated the cytotoxicity of quercetin from a probiotic strain
Lactobacillus (L.) plantarum) using in vitro fermentation. Quercetin fermented by L. plantarum
markedly decreased the resistin-induced resistance development by inhibiting NLRP3
expression. Our findings provide new insights into the role and mechanism of NLRP3
upregulation in the development of the resistance of CRC cells to chemotherapeutic drugs.
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2. Results
2.1. Cytotoxicity Evaluation of Quercetin on Normal Human Colon Cell Line NCM460 after
L. plantarum Fermentation

The cytotoxicity effect of quercetin before and after L. plantarum fermentation was
determined using MTS assays with a normal human mucosa cell line NCM460. The
MTS assay demonstrated that incubation with unfermented quercetin induced significant
reductions in cell viability in concentrations of 150 µM or greater (Figure 1A). After Lacto-
bacillus-fermentation, the cytotoxicity of quercetin was completely changed at a very high
concentration without cytotoxicity up to 600 µM (Figure 1B).
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Figure 1. Changes in cytotoxicity of quercetin after fermentation. NCM460 cells were cultured in
the presence of (A) unfermented quercetin and (B) fermented quercetin for 24 h, and cell cytotoxicity
was determined by MTS assay. Data represent the mean ± SEM from three independent experiments;
* p < 0.05 vs. CL NCM460 cells.

2.2. Resistin Promotes 5-FU Resistance in CRC Cells

It was hypothesized that increased levels of resistin might confer resistance of CRC
cells against 5-FU therapy-induced cell death. To test this, CRC lines HCT-116 and DLD-1
were pretreated with resistin (50 ng/mL) or a vehicle (PBS) for 12 h, and then they were
exposed to increasing doses of 5-FU (2.5–10 µM) in the presence or absence of resistin for
an additional 48 h. The effect on the cytotoxicity of CRC cells was examined using an MTS
assay (Figure 2A,B) and trypan blue dye exclusion assay (Figure 2C,D). Our data reveal
that 5-FU treatment resulted in significant cell death in both HCT-116 (Figure 2A) and
DLD-1 (Figure 2B) cells. Notably, the resistin treatment significantly protected CRC cells
from 5-FU-induced cell death (Figure 2C,D).
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HCT-116 cells and (D) DLD-1 cells pretreated with 50 ng/mL resistin for 12 h were further treated 
with 5 μM 5-FU for 48 h in the presence of resistin, then both unattached and attached cells were 
collected and stained with trypan blue dye, and the number of dead cells was manually counted. 
The percentage of trypan blue-positive cells represented the population of dead cells. Data represent 
the mean ± SEM from three independent experiments; * p < 0.05. 
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Figure 2. Resistin promotes 5-FU resistance in CRC cells. (A) HCT-116 cells and (B) DLD-1 cells
pretreated with resistin (50 ng/mL) for 12 h were further treated with the indicated doses of 5-FU
(0–10 µM) for 48 h in the presence of resistin, and cell viability was determined by MTS assay. Cells
treated with PBS served as the control. The OD value of control cells was taken as 100% viable.
(C) HCT-116 cells and (D) DLD-1 cells pretreated with 50 ng/mL resistin for 12 h were further treated
with 5 µM 5-FU for 48 h in the presence of resistin, then both unattached and attached cells were
collected and stained with trypan blue dye, and the number of dead cells was manually counted. The
percentage of trypan blue-positive cells represented the population of dead cells. Data represent the
mean ± SEM from three independent experiments; * p < 0.05.

2.3. Resistin Increases the NLRP3 Expression to Influence the 5-FU Cytotoxic Effect on CRC Cells

CRC HCT-116 and DLD-1 cells were cultured with resistin for 12 and 24 h, and then
the mRNA and protein expression of NLRP3 were examined. The cultivation of cells with
50 ng/mL resistin significantly induced NLRP3 mRNA (Figure 3A) and protein (Figure 3B)
expression in both HCT-116 and DLD-1 cells. In order to determine the role of NLRP3
expression in the cell cytotoxicity of 5-FU induction with resistin treatment, HCT-116 cells
were pretreated with NLRP3-specific inhibitor MCC950 and then incubated with or without
resistin (50 ng/mL) and 5-FU (5 µM) for another 48 h. The results showed that the inhibition
of NLRP3 significantly decreased the 5-FU resistance of HCT-116 cells induced by resistin,
which resulted in the recovery of resistin, increased cell viability (Figure 3C), and decreased
cell death (Figure 3D).
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Figure 3. Inhibition of NLRP3 expression in CRC cells enhances the cytotoxicity induced by 5-
FU. HCT-116 and DLD-1 cells were kept as the control (CL) or treated with resistin (50 ng/mL)
for the indicated times. The mRNA (A) and protein (B) expression of NLRP3 were determined by
real-time PCR and Western blotting, respectively. Data in (A) are shown as mean ± SEM from three
independent experiments. * p < 0.05 versus CL. Results in (B) are representative of three independent
experiments with similar results. (C,D) HCT-116 cells were kept as the control (CL) or treated with
resistin for 12 h, then cultured in 5-FU for a further 48 h. After being treated with resistin, HCT-116
cells were pretreated with a specific inhibitor for NLRP3 (MCC950) and then treated with 5-FU (5 µM).
(C) HCT-116 cell viability was assayed by the MTS assay. (D) HCT-116 cells were collected and stained
with trypan blue dye, and the number of dead cells was manually counted. The percentage of trypan
blue-positive cells represent the population of dead cells. Data represent the mean ± SEM from three
independent experiments; * p < 0.05 vs. cells without treatment. # p < 0.05 vs. cells treated with 5-FU;
** p < 0.05 vs. cells treated with resistin and 5-FU.

2.4. ERK Signaling Regulates the Resistin-Induced NLRP3 Expression and Subsequent 5-FU
Resistance in HCT-116 Cells

In order to determine whether resistin induced NLRP3 expression and subsequent
5-FU resistance in HCT-116 cells are regulated by MAPK signaling, HCT-116 cells were
incubated with DMSO or specific inhibitors for MAPKs, and then treated with resistin
(50 ng/mL). HCT-116 cells were pretreated with MAPK inhibitors and then incubated with
or without resistin (50 ng/mL) and 5-FU (5 µM) for another 48 h. The results showed that
the inhibition of ERK significantly decreased the 5-FU resistance of HCT-116 cells induced
by resistin, which resulted in a recovery in the resistin-increased cell viability (Figure 4A).
Pretreating HCT-116 cells with ERK inhibitor PD98059 significantly inhibited the resistin-
increased NLRP3 mRNA (Figure 4B) and protein (Figure 4C) expression. Moreover, the cells
treated with resistin (50 ng/mL) resulted in significant increases in ERK phosphorylation
in HCT-116 cells (Figure 4D).
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Figure 4. ERK signaling regulates resistin-increased NLRP3 expression and subsequent cell cyto-
toxicity of HCT-116 cells. (A–C) HCT-116 cells were kept as the control (CL) or treated with resistin
for 12 h, then cultured in 5-FU for a further 48 h. After being treated with resistin, HCT-116 cells were
pretreated with specific inhibitors for ERK (PD98095), JNK (SP600125), and p38 (SB203580) and then
treated with 5-FU. (A) Cell viability was assayed using the MTS assays. (B) The mRNA expression
of NLRP3 was determined by real-time PCR. (C)The protein expression of NLRP3 was determined
by Western blotting. (D) HCT-116 cells were kept as the control (CL) or treated with resistin for the
indicated times. The ERK phosphorylation was determined by Western blotting. Data in (A,B) are
shown as mean ± SEM from three independent experiments. * p < 0.05 versus CL. # p < 0.05 versus
DMSO/5-FU-treated cells. Results in (C,D) are representative of three independent experiments with
similar results.

2.5. Toll-Like Receptor 4 (TLR4) Regulates the Resistin-Induced NLRP3 Expression and
Subsequent 5-FU Resistance in HCT-116 Cells

TLR4 has been indicated to be the receptor for resistin stimulation [19]. In order to
determine whether resistin-induced NLRP3 expression and subsequent 5-FU resistance in
HCT-116 cells are regulated by TLR4, HCT-116 cells were stimulated by resistin with the
addition of TLR4 neutralizing antibody or inhibitor LPS-RS. Pretreating HCT-116 cells with
TLR4 neutralizing antibody and LPS-RS significantly inhibited the resistin-increased NLRP3
mRNA (Figure 5A) and protein (Figure 5B) expression. HCT-116 cells were pretreated
with TLR4 neutralizing antibody or inhibitor LPS-RS and then incubated with or without
resistin (50 ng/mL) and 5-FU (5 µM) for another 48 h. The results show that the inhibition
of TLR4 significantly decreased the 5-FU resistance of HCT-116 cells induced by resistin,
which resulted in a recovery in the resistin-increased cell viability (Figure 5C). In addition,
treating HCT-116 cells with TLR4 neutralizing antibodies also significantly inhibited the
resistin-induced ERK phosphorylation (Figure 5D).
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Quercetin has been reported to have great potential for use in anticancer therapy [17]. 
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fermented quercetin (300 and 600 μM) and then treated with 5-FU (5 μM). The results 
showed that fermented quercetin significantly decreased the 5-FU resistance of HCT-116 

Figure 5. TLR4 signaling regulates resistin-activated NLRP3 expression in HCT-116 cells.
(A–C) HCT-116 cells were kept as the control (CL) or treated with resistin for 12 h, then cultured
in 5-FU for a further 48 h. After being treated with resistin, HCT-116 cells were pretreated with a
neutralizing antibody for TLR4 (Ab-TLR4) or a specific inhibitor for TLR4 (LPS-RS) and then treated
with 5-FU. (A) The mRNA expression of NLRP3 was determined by real-time PCR. (B) The protein
expression of NLRP3 was determined by Western blotting. (C) Cell viability was assayed using
the MTS assays. (D) HCT-116 cells were kept as the control (CL) or treated with resistin for 1 h.
Before being treated with resistin, HCT-116 cells were pretreated with a neutralizing antibody for
TLR4 (Ab-TLR4). The ERK phosphorylation was determined by Western blotting. Data in (A,C) are
shown as mean ± SEM from three independent experiments. * p < 0.05 versus CL. # p < 0.05 versus
DMSO/5-FU-treated cells. Results in (B,D) are representative of three independent experiments with
similar results.

2.6. Quercetin Fermentation by L. plantarum LYC219 Enhances 5-FU-Induced Cell Cytotoxicity in
HCT-116 Cells with Resistin Stimulation

Quercetin has been reported to have great potential for use in anticancer therapy [17].
In order to determine the effect of fermented quercetin in the cell cytotoxicity of 5-FU
induction with resistin treatment, HCT-116 cells were stimulated by resistin with added
fermented quercetin (300 and 600 µM) and then treated with 5-FU (5 µM). The results
showed that fermented quercetin significantly decreased the 5-FU resistance of HCT-116
cells induced by resistin, which resulted in a recovery in the resistin-increased cell viability
(Figure 6A) and -decreased cell death (Figure 6B). However, unfermented quercetin at a
noncytotoxic concentration (100 µM) did not induce the antitumor effect on resistin-treated
HCT-116 cells (data not shown).
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Figure 6. Fermented quercetin enhances 5-FU-induced cell cytotoxicity in HCT-116 cells with
resistin stimulation. HCT-116 cells were kept as the control (CL) or treated with resistin for 12 h,
then cultured in 5-FU for a further 48 h. After being treated with resistin, HCT-116 cells were treated
with different doses of fermented quercetin (300–600 µM) and then treated with 5-FU. (A) HCT-116
cell viability was assayed by the MTS assay. (B) HCT-116 cells were collected and stained with trypan
blue dye, and the number of dead cells was manually counted. The percentage of trypan blue-positive
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2.7. Fermented Quercetin Inhibits Resistin-Induced NLRP3 Expression and ERK Phosphorylation

HCT-116 cells were pretreated with fermented quercetin (300 µM) and then stimulated
with resistin (50 ng/mL) for 24 h. Stimulation of HCT-116 cells with resistin induced NLRP3
mRNA (Figure 7A) and protein (Figure 7B) expression, as compared with the untreated
control. However, pretreating cells with fermented quercetin significantly inhibited these
inductions in resistin-stimulated HCT-116 cells (Figure 7A,B). Next, because the activities of
ERK were demonstrated to regulate the NLRP3 expression under resistin stimulation in this
study, this study further explored if fermented quercetin also mediates the resistin-activated
ERK phosphorylation. Cells were pretreated with fermented quercetin and stimulated with
resistin for 1 h. Pretreating cells with fermented quercetin significantly suppressed ERK
phosphorylation as compared with the resistin-treated cells (Figure 7C).
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then cultured in 5-FU for a further 48 h. After being treated with resistin, HCT-116 cells were treated
with fermented quercetin and then treated with 5-FU. The mRNA (A) and protein (B) expression
of NLRP3 were determined by real-time PCR and Western blotting, respectively. (C) The ERK
phosphorylation was determined by Western blotting. Data in (A) are shown as mean ± SEM from
three independent experiments. * p < 0.05 versus CL. # p < 0.05 versus DMSO/5-FU-treated cells.
Results in (B,C) are representative of three independent experiments with similar results.

3. Discussion

This study demonstrated that (i) the expression of NLRP3 in CRC cells could be
induced with resistin treatments, and this upregulation could accordingly decrease the
cytotoxicity of 5-FU in HCT-116 and DLD-1 cells, (ii) TLR4 and ERK signaling were involved
in the NLRP3 expression and the subsequent resistin-induced decrease in cell death, and
(iii) fermented quercetin plays a crucial role in the regulation of NLRP3 expression in
resistin-treated CRC cells. Thus, these results explain a reversed drug resistance by which
NLRP3 expression could be regulated to influence the sensitivity of CRC cells to 5-FU.

Resistin is extensively studied for its role in obesity-related inflammation and cancer
progression [20]. Several studies have shown that the serum level of resistin is elevated in
CRC patients, and such an increase is correlated with poor clinical outcomes in CRC [4,8,21].
A previous study showed that the resistin levels in CRC patients were significantly higher
than a matched control group, and the concentration of resistin gradually increased as the
tumor stage progressed [22], which indicated that resistin is a convincing biomarker for
the progression of CRC malignancy. In addition, resistin is related to the survival rate, and
recent studies have raised the possibility that resistin may play a role in chemotherapy. High
levels of resistin are associated with less sensitivity to chemotherapy in different cancer
types [23–25]. The development of resistance to chemotherapy agents is the main clinical
challenge in CRC patients, which emphasizes the remarkable nature of such investigations.
This study showed that resistin-induced NLRP3 expression, which resulted in decreased
sensitivity to 5-FU-induced cytotoxicity, was a significant contributor to drug resistance in
CRC cells. Moreover, the inhibition of resistin-induced NLRP3 by MCC950 or quercetin
could enhance the sensitivity of anticancer drugs in CRC.

It is not yet clear whether resistin-induced NLRP3 expression will affect the 5-FU
chemotherapeutic potential. It has been shown that IL-1β may weaken the efficiency of
chemotherapy [26]. IL-1 receptor antagonists, in combination with chemotherapy, have
synergistic antitumor effects [27]. This study showed that resistin-mediated activation
of NLRP3 might decrease the chemotherapeutic potential of 5-FU. In addition, NLRP3
inflammasome might have an aggravating effect on tumor cell proliferation and metastasis.
Previous studies have revealed the finding that NLRP3 is overexpressed in CRC tumor
tissues [28]. Moreover, previous works have revealed that elevated expression of NLRP3
is correlated with malignant transformation and promotes drug resistance in human tu-
mors [29]. This study demonstrated that resistin treatment could induce NLRP3 expression
in human CRC HCT-116 and DLD-1 cells; on the contrary, the inhibition of NLRP3 ex-
pression could reduce the 5-FU-induced cytotoxic effect on CRC cells. Our study also
revealed that NLRP3 upregulation was mediated via TLR4 and intracellular ERK signaling.
ERK phosphorylation and TLR4 activation have been reported to play crucial roles in
modulating drug resistance in cancer cells by contributing to the anti-apoptosis effect and
promoting cell survival [30,31]. While ERK signaling has been reported to regulate the
expression of NLRP3 in various cell types [32,33], a mechanism-based approach to elucidate
the resistin-induced cell viability can identify how NLRP3 can contribute to cell cytotoxicity.
TLR4 and ERK signaling pathways could be therapeutic targets for the development of
anticancer therapies in overweight CRC patients.

Biotransformation of phytochemicals was recently demonstrated to exhibit enhanced
biological function and activity after bioconversion by Lactobacillus fermentation [34].
Quercetin is a flavonoid compound which has outstanding anticancer potential due to its
involvement in the modulation of cellular functions, inducing cell apoptosis, and inhibiting
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cell proliferation [17]. Quercetin has been reported to enhance the cytotoxicity and efficacy
of anticancer drugs [35], inhibit the gene expression of Multidrug resistance 1, increase the
activity of anticancer drugs in human uterine sarcoma cells [36], and significantly promote
gemcitabine-induced cytotoxicity in pancreatic cancer cells [37]. In addition, quercetin
enhanced the anticancer effect of chemotherapy in breast cancer cells through its ability
to promote the loss of cell viability, apoptosis, and autophagy through the modulation
of PI3K/Akt and ERK pathways [38]. The combination regimen of quercetin with other
anticancer drugs may be more effective than chemotherapeutic agents as monotherapy.
This study tried fermentation using our Lactobacillus strain LYC 219, and this Lactobacillus-
fermentation product was enhanced for antitumor function in resistin-treated CRC cells.
The inhibition of NLRP3 expression by fermented quercetin enhanced the 5-FU-induced
cytotoxicity in resistin-treated CRC cells. This study investigated the possible mechanism
of fermented phytochemical quercetin and its combination with 5-FU in promoting cell
death in CRC cells, and the results indicate the importance of the bioconversion of natural
compounds that focus on the target of the final purpose.

4. Materials and Methods
4.1. Materials

The materials for cell culture were purchased from Gibco (Grand Island, NY, USA).
Protein kinase inhibitors, including MCC950 (NLRP3), PD98059 (ERK), SP600125 (JNK),
SB203580 (p38), and LPS-RS (TLR4), were purchased from Sigma (St. Louis, MO, USA).
Rabbit antibodies against NLRP3, phospho-ERK, ERK, and β-actin were purchased from
Cell Signaling Technology (Beverly, MA, USA). The IgG and TLR4 neutralizing antibodies
were purchased from Thermo (Waltham, MA, USA). All other chemicals were obtained
from Sigma (St. Louis, MO, USA).

4.2. Fermentation of Quercetin with L. plantarum LYC219

L. plantarum LYC219 was obtained from the culture collection of Lactobacillus strains
held at the Department of Food Sciences, National Chiayi University, Taiwan. Quercetin
(Sigma, St. Louis, MO, USA) was prepared in 50 mM stock using DMSO and stored at
−20 ◦C. The different working concentrations of quercetin were prepared and stored at 4 ◦C
before use and diluted with an MRS medium. The inoculation of L. plantarum LYC219 was
adjusted to a concentration of 1 × 108 CFU/mL, and the fermentation was performed at
37 ◦C under anaerobic conditions by shaking at 100 rpm for 30–36 h until the late stationary
phase. The fermented quercetin solutions were centrifuged at 5000× g rpm for 20 min,
and the supernatants were collected and maintained at −20 ◦C before use. The equivalent
amount of quercetin in the same media in the absence of inoculating bacteria was taken as
the control.

4.3. Cell Culture

The NCM460 cells (normal human colon mucosal epithelial cell line) obtained from
INCELL Corporation (San Antonio, TX, USA) were grown in M3 media supplemented with
10% FBS at 37 ◦C with 5% CO2. The CRC HCT-116 and DLD-1 cells were purchased from
the cell bank of the Taiwan Food Industry Research and Development Institute (Hsinchu,
Taiwan). Cells were cultured in Dulbecco’s Modified Eagle Medium supplemented with
10% FBS and 1% penicillin/streptomycin in a 37 ◦C, 5% CO2 incubator.

4.4. MTS Assay

An in vitro 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenol)-2-(4-sulfophenyl)-
2H-tetrazolium (MTS) assay was performed. Cells were cultured at 5000 per well in 96-well
tissue culture plates. To assess cell viability, drugs were added after plating. At the end of
the culture period, 20 µL of MTS solution (Promega, Madison, WI, USA) was added, the
cells were incubated for another 2 h, and the absorbance was measured at 490 nm using an
ELISA plate reader (Biorad Technologies, Hercules, CA, USA) [39].
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4.5. Trypan Blue Dye Exclusion Assay

After treatment, 500 CRC cells were harvested, and the proportion of dead cells was
determined by a hemocytometer by counting the number of cells stained with trypan
blue. Trypan blue dye can be excluded from living cells but is able to penetrate dead cells.
The dead cells were calculated as follows: trypan blue (+) cells ratio (%) = (stained cell
number/total cell number) × 100.

4.6. Real-Time Quantitative PCR

The RNA was extracted from a Trizol kit and converted to cDNA by a Reverse-
transcription kit. A Real-time PCR assay of the indicated genes was performed using
the FastStart DNA SYBR Green I kit (Thermo, Waltham, MA, U.S.A.). The primers of
the indicated genes were: NLRP3 (positive: 5′-CGTGA GTCCC ATTAA GATGG AGT-3′;
negative: 5′-CCCGA CAGTG GATAT AGAAC AGA-3′) and GAPDH (positive: 5′-AGGTG
AAGGT CGGAG TCAAC-3′; negative: 5′-CCATG TAGTT GAGGT CAATG AAGG-3′).
The GAPDH gene was the internal control. The RT-PCR was determined in duplicate [40].

4.7. Western Blot Analysis

CRC cells were lysed with a lysis buffer (1% NP-40, 0.5% sodium deoxycholate,
0.1% SDS, and a protease/phosphatase inhibitor cocktail). The protein concentration
was examined using the Bradford protein assay kit (Bio-Rad, Hercules, CA, USA). Equal
amounts of protein samples (50 µg) were separated by SDS-polyacrylamide gel elec-
trophoresis (PAGE) (running gel 10%, stacking gel 4%), transferred to nitrocellulose paper,
and detected by adding the designated primary and horseradish peroxidase-conjugated
secondary antibodies.

4.8. Statistical Analysis

The results are shown with mean ± standard error of the mean. Statistical analyses
were measured by an independent student’s t-test for two groups of data, and an analysis of
variance (ANOVA) was followed by Scheffe’s test for multiple comparisons. p-values < 0.05
were indicated as significant.

5. Conclusions

In summary, this study demonstrated that fermented quercetin added a cytotoxic effect
with 5-FU in CRC cells through the suppression of resistin-induced NLRP3 upregulation.
The results of this study suggest that the inhibition of NLRP3 might potentiate the therapeu-
tic effect of 5-FU in patients with CRC. Thus, further study is needed to investigate the effect
of fermented quercetin and other chemotherapeutic drugs, as well as their combination in
obesity conditions in vivo. However, the concept of fermented quercetin combined with
5-FU seems to present a therapeutic strategy for the treatment of CRC chemoresistance.
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