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Abstract: This study aimed to determine whether adrenomedullin (ADM, 7.2 µg/kg/day, ip), an
important endogenous active peptide, has a protective role in cardiac remodeling and function in
obesity-related hypertension (OH) rats. A high-fat diet (HFD) was used to induce OH for 20 weeks.
H9c2 cells incubated with palmitate (PA, 200 µM) to mimic high free fatty acid in obesity were used
as an in vitro model. In OH rats, ADM not only decreased body weight (BW) and blood pressure
(BP) but also improved systemic inflammation and oxidative stress. Moreover, ADM still had a
greater inhibitory effect on local inflammation and oxidative stress in the hearts of OH rats, and
the same anti-inflammatory and antioxidant effects were also confirmed in PA-treated H9c2 cells.
The ADM receptor antagonist or Akt inhibitor effectively attenuated the inhibitory effects of ADM
on inflammation and oxidative stress in PA-stimulated H9c2 cells. Furthermore, ADM application
effectively normalized heart function, and hematoxylin-eosin and Masson staining and collagen
volume fraction results showed that ADM improved cardiac remodeling in hearts of OH rats. ADM
attenuated cardiac inflammation and oxidative stress via the receptor-Akt pathway, which involves
the improvement of cardiac remodeling and function in OH rats.

Keywords: adrenomedullin; obesity-related hypertension; heart; inflammation; oxidative stress;
cardiac remodeling; cardiac function

1. Introduction

Visceral obesity is an important pathogenic factor in the pathogenesis of insulin re-
sistance, leptin resistance, dyslipidemia, and hypertension, which increases the hazard
of cardiovascular diseases [1,2]. Obesity-related hypertension (OH) is closely related to
cardiovascular remodeling and dysfunction and contributes to the pathogenesis of chronic
heart failure [2]. OH is characterized by multiple metabolic disorders, low-grade inflam-
mation, oxidative stress, and hypertension, which promote adverse cardiac remodeling
and injury, such as diastolic dysfunction [2–4]. Obesity not only raises blood pressure
(BP) but also increases the left ventricular volume load and exacerbates inflammation
and oxidative stress [5,6]. Circulating or local pro-inflammatory cytokines tumor necro-
sis factor-α (TNF-α), interleukin-1β (IL-1β) and IL-6, and reactive oxygen species (ROS)
contribute to pathological hypertrophy by activating inflammatory signaling mitogen-
activated protein kinase and nuclear factor kappa-B pathways and inhibiting the protein
kinase B (Akt)/mammalian target of rapamycin (Akt-mTOR) pathway in cardiomyocytes;
moreover, injured myocytes also promote localized cardiac inflammation and oxidative
stress [6,7]. Therefore, the reduction of BP, and the local inhibition of cardiac inflammation
and oxidative stress may be a good strategy to improve cardiac injury in OH. Therefore,
new therapies for the treatment of OH-related cardiac abnormality that reduce morbidity
and mortality are needed [8].

Endogenous adrenomedullin (ADM), a 52 amino acid peptide, plays important roles
in both the health state and diseases, especially in the cardiovascular system [9–11]. The
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biological activity of ADM is mainly mediated by its receptor system through the combina-
tion of the receptor activity-modifying protein 2/3 (RAMP2/3) and calcitonin receptor-like
receptor (CRLR). ADM receptors are widespread in the body, especially in cardiovascular
tissues [12–14]. Previous studies have shown that ADM can decrease BP and increase cardiac
output in normal rats [9]. Exogenous administration of ADM can protect against cardiac
hypertrophy, cause a reduction in myocardial infarct size, and improve left ventricular
remodeling and survival in some animal models [15–20]. More importantly, it exerts its pro-
tective roles in some animal models by inhibiting insulin resistance and anti-inflammatory
and antioxidant mechanisms [21,22]. For instance, ADM reduces oxidative stress in injured
cerebral tissue of rats [22] and inhibits inflammation of vascular endothelial cells of rats [23].
People with obesity display an obvious increase in ADM levels in plasma [24–28]. These find-
ings suggest that ADM may have a critical role in OH rats by decreasing BP, and alleviating
inflammation and oxidative stress in cardiac tissue to improve OH-related cardiomyopathy.

In the present study, we aimed to investigate the roles of ADM in the cardiac remodel-
ing and function of rats with OH and related mechanisms. Therefore, this research was
designed to explore whether ADM involved the hypertension and cardiac inflammation
and oxidative stress of OH rats induced by a high-fat diet (HFD). Furthermore, the possible
mechanisms of anti-inflammatory and antioxidant effects of ADM were investigated using
an H9c2 cell line.

2. Results
2.1. The Roles of ADM in Body Weight, Hypertension, and Cardiac Parameters in Rats Fed
by HFD

HFD feeding for 24 weeks significantly led to obesity and hypertension (Figure 1a,e,f),
myocardial hypertrophy (Figure 1b,d), and the reduction of cardiac function in the present
study (Table 1). Exogenous ADM application effectively inhibited HFD-induced obesity
(Figure 1a,c,d), which was consistent with our recent study [29]. It also significantly reduced
heart weight and heart rate and improved hypertension (Figure 1b,e–g). In the present
study, HFD feeding significantly caused a decrease in cardiac function and an increase in left
ventricular hypertrophy, as demonstrated by echocardiographic analysis that showed obvious
decreases in left ventricular ejection fraction (LVEF) and left ventricular fractional shorting
(LVFS), but marked increases in left ventricular mass, left ventricular volume at end systole
(IVVs), left ventricular internal dimensions at end systole (LVIDs), left ventricular posterior
wall dimensions at end diastole (LVPWd) and interventricular septum at end diastole (IVSd)
in HFD-fed rats, but ADM could effectively normalize the cardiac function and left ventricular
hypertrophy evidenced by increased LVEF and LVFS, and decreased left ventricular mass,
IVVs and LVIDs (Table 1, Figure 1d) after HFD feeding. These results indicate that ADM can
effectively improve HFD-induced obesity, hypertension, and myocardial hypertrophy and
prevent the deterioration of cardiac function in response to HFD.

Table 1. Left ventricle dimension and function measurement in rats by echocardiography after
24 weeks of diet.

Parameters Control OH OH+ADM

LVVs (µL) 107 ± 10.8 161 ± 12.3 * 124 ± 12.5 #

LVIDs (mm) 4.76 ± 0.54 5.80 ± 0.65 * 5.09 ± 0.58 #

LVPWd (mm) 1.92 ± 0.06 2.29 ± 0.09 * 2.15 ± 0.16
IVSd (mm) 1.94 ± 0.08 2.26 ± 0.13 * 2.12 ± 0.07
LVEF (%) 74.7 ± 3.59 59.1 ± 2.48 * 69.1 ± 1.67 #

LVFS (%) 44.1 ± 2.56 35.3 ± 2.09 * 43.4 ± 1.35 #

A control diet (12% kcal as fat, Control) or a high-fat diet (HFD, 45% kcal as fat) for inducing obesity-related
hypertension (OH) was used to feed male Sprague Dawley (SD) rats for 20 weeks. Saline (vehicle) or ADM
(7.2 µg/kg/day, n = 8) by intraperitoneal injection were applied to the Control and OH rats, and HFD was further
fed for 4 weeks. Abbreviations: LVVs, left ventricular volume at end systole; LVIDs, left ventricular internal
dimensions at end systole; LVPW, left ventricular posterior wall dimensions at end diastole; IVS, interventricular
septum at end diastole; LVEF, left ventricular ejection fraction; LVFS, left ventricular fractional shorting; ADM,
adrenomedullin. n = 8 for each group. Values are presented as mean ± SEM. * p < 0.05 versus Control, and
# p < 0.05 versus OH.
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in the sum of WAT mass (e). HW/BW (c) means the ratio between heart weight and body weight. 

Chronic adrenomedullin (ADM, 7.2 μg/kg/day, ip) administration was applied to OH rats for 4 
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Figure 1. The anatomic data, systolic blood pressure (SBP), mean arterial pressure (g), and heart
rate after 24 weeks of high-fat diet (HFD) feeding. OH: obesity-related hypertension. BW: body
weight (a). HW: heart weight (b). WAT: white adipose tissue. BW, SBP (f), and heart rate (h) were
measured under conscious state. Left ventricular mass (d) was measured using the echocardiographic
method. The inguinal, perirenal, epididymal, and mesenteric WAT weights were included in the
sum of WAT mass (e). HW/BW (c) means the ratio between heart weight and body weight. Chronic
adrenomedullin (ADM, 7.2 µg/kg/day, ip) administration was applied to OH rats for 4 weeks. The
Control and OH rats were treated with saline (vehicle). n = 8 rats for each group. Values are presented
as mean ± SEM. * p < 0.05 versus Control (C), and # p < 0.05 versus OH.

2.2. Plasma Level of ADM and the Effects of ADM on Metabolic Parameters, Plasma CRP, TNF-α,
and T-AOC

The levels of triglyceride, glucose, insulin (Figure 2a–c), C-reactionprotein (CRP), TNF-
α, and total antioxidant capacity (T-AOC) (Figure 2f–h) in plasma were increased in OH rats,
which were markedly decreased by ADM application in HFD-fed rats, as well as HOMA-IR
(homeostasis model assessment of insulin resistance, Figure 2d). Moreover, the plasma
ADM level was higher in OH rats than in control rats (Figure 2e). ADM intraperitoneal
injection further increased the ADM levels in the plasma of OH rats.

2.3. Endogenous Expression of ADM and Its Receptor System in Hearts of HFD-Induced OH Rats

In this study, we examined the endogenous protein expression of ADM and its re-
ceptor system in the hearts of HFD-induced OH rats and palmitate (PA)-treated H9c2
cells. Immunohistochemistry and Western blotting results showed that there was a lower
protein expression of ADM but higher protein expressions of its receptor system, including
CRLR, RAMP2, and RAMP3, in the hearts of OH rats when compared to the control rats
(Figure 3a–e).



Pharmaceuticals 2022, 15, 719 4 of 17

Pharmaceuticals 2022, 15, x FOR PEER REVIEW 4 of 18 
 

 

2.2. Plasma Level of ADM and the Effects of ADM on Metabolic Parameters, Plasma CRP, TNF-

α, and T-AOC 

The levels of triglyceride, glucose, insulin (Figure 2a–c), C-reactionprotein (CRP), 

TNF-α, and total antioxidant capacity (T-AOC) (Figure 2f–h) in plasma were increased 

in OH rats, which were markedly decreased by ADM application in HFD-fed rats, as 

well as HOMA-IR (homeostasis model assessment of insulin resistance, Figure 2d). 

Moreover, the plasma ADM level was higher in OH rats than in control rats (Figure 2e). 

ADM intraperitoneal injection further increased the ADM levels in the plasma of OH 

rats. 

 

Figure 2. The effects of ADM on plasma metabolic parameters, inflammation markers including C-

reaction protein (CRP) and TNF-α, and total antioxidant capacity (T-AOC). The plasma levels of 

triglyceride (a), glucose (b), insulin (c), ADM (e), CRP (f), TNF-α (g) and T-AOC (h) were deter-

mined by kits referring to the instructions. At the end of 24 weeks, all rats fasted overnight, and 

about 1.5 mL of blood was collected from the tail vein. The glucose oxidase method was used to 

determine the plasma glucose level by using a kit (Jiancheng bioengineering, Nanjing, China). The 

triglyceride concentration was detected by colorimetric reaction using a kit (Jiancheng bioengi-

neering, Nanjing, China). The enzyme-linked immunoassay (ELISA) method was used to detect 

the insulin level in plasma by using a kit (RayBiotech, Norcross, GA, USA). The HOMA-IR (home-

ostasis model assessment of insulin resistance) index was used to assess IR by using the formula: 

HOMA-IR = [fasting glucose (mmol/L) × fasting insulin (mIU/L)]/22.5 (d). n = 8 rats for each group. 

Values are presented as mean ± SEM. * p < 0.05 versus Control (C), and # p < 0.05 versus OH. 

2.3. Endogenous Expression of ADM and Its Receptor System in Hearts of HFD-Induced OH 

Rats 

In this study, we examined the endogenous protein expression of ADM and its re-

ceptor system in the hearts of HFD-induced OH rats and palmitate (PA)-treated H9c2 

cells. Immunohistochemistry and Western blotting results showed that there was a low-

er protein expression of ADM but higher protein expressions of its receptor system, in-

cluding CRLR, RAMP2, and RAMP3, in the hearts of OH rats when compared to the 

control rats (Figure 3a–e). 

Figure 2. The effects of ADM on plasma metabolic parameters, inflammation markers including
C-reaction protein (CRP) and TNF-α, and total antioxidant capacity (T-AOC). The plasma levels
of triglyceride (a), glucose (b), insulin (c), ADM (e), CRP (f), TNF-α (g) and T-AOC (h) were de-
termined by kits referring to the instructions. At the end of 24 weeks, all rats fasted overnight,
and about 1.5 mL of blood was collected from the tail vein. The glucose oxidase method was used
to determine the plasma glucose level by using a kit (Jiancheng bioengineering, Nanjing, China).
The triglyceride concentration was detected by colorimetric reaction using a kit (Jiancheng bio-
engineering, Nanjing, China). The enzyme-linked immunoassay (ELISA) method was used to
detect the insulin level in plasma by using a kit (RayBiotech, Norcross, GA, USA). The HOMA-IR
(homeostasis model assessment of insulin resistance) index was used to assess IR by using the
formula: HOMA-IR = [fasting glucose (mmol/L) × fasting insulin (mIU/L)]/22.5 (d). n = 8 rats for
each group. Values are presented as mean ± SEM. * p < 0.05 versus Control (C), and # p < 0.05
versus OH.
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Figure 3. The endogenous ADM, CRLR, RAMP2, and RAMP3 protein expressions after 24 weeks of
HFD feeding were determined by immunohistochemical method (a) and Western blotting method
(b–e). CRLR, calcitonin receptor-like receptor; RAMP2, receptor activity modifying protein 2; and
RAMP3, receptor activity modifying protein 3. n = 4–5 rats for each group. The values are presented
as the mean ± SEM. * p < 0.05 versus Control (C).
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2.4. Effects of ADM on Cardiac Remodeling, Inflammation and Oxidative Stress in HFD-Treated
OH Rats

HFD treatment also markedly induced the increase of cardiomyocyte area and cardiac
fibrosis, as demonstrated by H&E staining and Masson staining, which were markedly
improved by ADM application in HFD-fed rats (Figure 4a–c). It has been reported that HFD
can cause substantial inflammation in the heart, which involves the pathogenesis of cardiac
damage and remodeling [1,7]. We first determined the level of protein expression of the
typical pro-inflammatory cytokines in the heart. The results showed that TNF-α, IL-1β, and
IL-6 protein levels were significantly upregulated in cardiac tissue after HFD, while ADM
effectively attenuated the upregulation of these pro-inflammatory cytokines (Figure 4d–f).
Studies have indicated that inflammation or hyperlipidemia can enhance ROS production
involving cardiac damage and obesity-related complications [30,31]. Nicotinamide adenine
dinucleotide phosphate (NADPH) oxidase is a dominant enzyme responsible for ROS
production in the heart. HFD can cause an imbalance between the antioxidant system
and ROS generation [32]. Malondialdehyde (MDA), a biological marker of oxidative
stress, determines the degree of peroxidation of membrane lipids. Glutathione Peroxidase
1 (GPx1), manganese superoxide dismutase, namely superoxide dismutase 2 (SOD2),
and catalase (CAT), are antioxidant enzymes involved in ROS scavenging during cardiac
injury [33,34]. The decreased GPx1 (Figure 5e) and SOD2 expression (Figure 5f) and
increased CAT expression (Figure 5g), ROS level (Figure 5a,b), NADPH oxidase activity
(Figure 5c), and MDA content (Figure 5d) caused by HFD were effectively improved by
ADM application (Figure 5a–g). These data indicate that ADM involves the improvement
of inflammation and oxidative stress in the hearts of OH rats.
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Figure 4. The effects of ADM on remodeling and inflammation in the heart. Representative sections
showing the myocardial remolding observed under a microscope (200×). Hematoxylin-eosin (H&E)
and Masson’s trichrome-staining (a), relative cardiomyocyte area (b), and the quantitative myocardial
fibrosis analysis (c). The arrows indicate the collagen fibers. The typical pro-inflammatory cytokines
TNF-α, IL-1β and IL-6 protein expressions (d–f) in the heart were determined by the Western blotting
method. CVF: collagen volume fraction. n = 3–8 rats. The values are presented as mean ± SEM.
* p < 0.05 versus Control (C), and # p < 0.05 versus OH.
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Figure 5. The effects of ADM on cardiac oxidative stress and Akt activation. DHE fluorescence
staining for ROS evaluation (a), ROS level (b) and NADPH activity (c) examination by chemilumi-
nescence method, MDA content (d) measurement by spectrophotometrical analysis and antioxidant
enzymes including GPx1, SOD2, and CAT (e–g), and Akt phosphorylation (h) determination by
Western blotting method. C, control; ROS, reactive oxygen species; NADPH, nicotinamide adenine
dinucleotide phosphate; MDA, malondialdehyde; GPx1: glutathione peroxidase 1; SOD2, superoxide
dismutase 2 (SOD2); and CAT, catalase. n = 3–8 rats. The values are presented as the mean ± SEM.
* p < 0.05 versus Control (C), and # p < 0.05 versus OH.

2.5. Endogenous Expression of ADM and Its Receptor System in PA-Treated H9c2 Cells and the
Effects of Exogenous ADM Pretreatment on PA-Induced Inflammation in the H9c2 Cell Line

PA induced higher protein expressions of ADM and its receptor system than those in
control H9c2 cells (Figure 6a–d). We wanted to further explore the roles and mechanisms of
ADM in inflammation in cardiomyocytes. PA was used to mimic fatty acid stimulation and
to verify the roles of ADM in cardiomyocyte damage induced by hyperlipidemia. ADM
alone did not cause obvious effects on cell viability, but PA alone significantly decreased
it. More importantly, ADM plus PA obviously improved cell viability in the H9c2 cells
(Figure 6e). We also observed that ADM in H9c2 cells significantly decreased the protein
levels of inflammatory cytokines TNF-α, IL-1β and IL-6 induced by PA (Figure 6f,g). These
results confirmed the protective roles of ADM in fatty acid-induced cardiomyocyte viability
and inflammation.

2.6. Effects of ADM Pretreatment on Oxidative Stress in PA-Treated H9c2 Cells

Since ADM in vitro attenuated the inflammatory response [20,21], it is speculated
that ADM application may exert a beneficial effect on PA-caused oxidative stress in car-
diomyocytes. The results in Figure 7a–c show that the increased ROS level and NADPH
oxidase activity caused by PA were notably reduced after ADM treatment in H9 c2 cells,
demonstrating the antioxidant effects of ADM in vitro. Moreover, PA-treated H2 cells
showed reduced GPx1 and SOD2 protein expressions, and increased CAT expression, but
the exogenous ADM pretreatment restored their protein expressions to normal levels in
PA-stimulated H9c2 cells (Figure 7d–f), which further confirmed that ADM effectively
improved oxidative stress.
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Figure 6. Endogenous protein expressions, cell viability, and the effects of ADM on inflammation
caused by palmitic acid (PA) in H9c2 cells. Endogenous protein expressions of ADM, CRLR, RAMP2,
and RAMP3 (a–d) in H9c2 cells treated by PA (200 µM) for 24 h; the roles of PA (200 µM) and ADM
(10 nM) alone or their combination in cell viability for 24 h (e); and ADM pretreatment in protein
expressions of inflammatory cytokines TNF-α, IL-1β and IL-6 induced by PA (f–h). After ADM (10
nM) pretreatment in the H9c2 cells for 30 min, 200 µM PA was applied for a further 24 h. C, control. n
= 3–6. The values are presented as the mean ± SEM. * p < 0.05 versus Control (C), and # p < 0.05
versus PA.
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Figure 7. The effects of ADM on PA-induced oxidative stress and decreased Akt actiation in H9c2
cells. DHE fluorescence staining for intracellular ROS evaluation (a) in H9c2 cells, ROS level (b)
and NADPH activity (c) were examined in H9c2 cells by chemiluminescence method, antioxidant
enzymes including GPx1, SOD2, and CAT (d–f), and Akt phosphorylation (g) were analyzed in
H9c2 cells by Western blotting method. The H9c2 cells were pretreated with 10 nM ADM for 30 min,
subsequently treated by PA (200 µM) for 24 h. n = 3–6. The values are presented as the mean ± SEM.
* p < 0.05 versus Control (C), # p < 0.05 versus PA, and $ p < 0.05 versus PA+ADM.



Pharmaceuticals 2022, 15, 719 8 of 17

2.7. Roles of ADM22-52 (ADM Receptor Antagonist) and A6730 (Akt Activation Inhibitor) in
ADM’s Responses to PA-Caused Inflammation and Oxidative Stress in H9c2 Cells

Increasing evidence indicates that the receptor–Akt pathway involves the protective
effects of ADM on some diseases [20,35,36]. Therefore, we examined whether the ADM
receptor antagonist ADM22-52 and Akt activation inhibitor A6730 could block the ADM’s
effects on PA-induced inflammation and oxidative stress in H9c2 cells, and whether ADM
could promote Akt activation. The data in Figure 5h showed that there was a decreased
phosphorylated Akt (P-Akt) level in the heart tissue of the OH group when compared to the
Control group, but the P-Akt level was higher in the OH+ADM group than in the OH group.
Similarly, we observed decreased P-Akt levels in PA-stimulated H9c2 cells, whereas ADM
treatment could also restore P-Akt levels in PA-stimulated H9c2 cells (Figure 7g). Then,
we found that the ADM receptor antagonist ADM22-52 or Akt inhibitor A6730 effectively
reversed exogenous ADM-caused anti-inflammatory (Figure 8a–f) and antioxidant effects
(Figure 9a–j) in PA-stimulated H9c2 cells. Furthermore, ADM22-52 also prevented Akt
activation caused by ADM (Figure 7g). Therefore, these results demonstrate that the
protective effects of ADM on cardiac inflammation and oxidative stress may involve the
activation of the receptor-Akt pathway, and the receptor-Akt pathway contributes to the
inhibitory effects of ADM on inflammation and oxidative stress in cardiomyocytes.
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Figure 8. The effects of ADM receptor antagonist ADM22-52 (10−6 M, a–c) or Akt activation inhibitor
A6730 (IAkt, 10 µM, d–f) on ADM’s response to pro-inflammatory cytokines TNF-α, IL-1β and IL-6
protein expressions caused by PA in H9c2 cells. ADM (10 nM) was administrated in H9c2 cells
for 30 min; subsequently, cells were exposed to PA (200 µM) for further 24 h. ADM22-52 or A6730
was added 30 min before ADM application. n = 3–5. The values are presented as the mean ± SEM.
* p < 0.05 versus Control (C). # p < 0.05 versus PA, and $ p < 0.05 versus PA+ADM.
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Figure 9. The roles of 10−6 M ADM22-52 (ADM receptor antagonist. (a–e) or 10 µM A6730 (Akt
activation inhibitor, IAkt. (f–j) in ADM’s response to PA-induced oxidative stress, including ROS level
(a,f) and NADPH activity (b,g), and antioxidant enzymes GPx1, SOD2, and CAT protein expressions
(c–e,h–j) in H9c2 cells. ADM (10 nM) was applied in H9c2 cells for 30 min, then cells were treated
by 200 µM PA for a further 24 h. ADM22-52 or A6730 was added 30 min before ADM application.
n = 3–6. The values are presented as the mean ± SEM. * p < 0.05 versus Control (C). # p < 0.05 versus
PA, and $ p < 0.05 versus PA+ADM.

3. Discussion

The primary novel findings in this study were that ADM contributed to the improve-
ment of heart structure and function, lowered BP, and reduced inflammation and oxidative
stress in the hearts of rats with OH induced by HFD. ADM could also attenuate PA-caused
inflammation and oxidative stress responses in cardiomyocytes, which were associated
with the receptor-Akt pathway.

It has been reported that there is an increased plasma ADM level in people with
obesity [24,25], and ADM might derive from many other organs or tissues, such as WAT.
This increase could be a compensatory response of the body. In this study, there was an
obvious elevation in plasma ADM level, but its protein level was decreased in the heart, and
its receptor system including CRLR, RAMP2, and RAMP3 levels were increased. The results
suggest that the ADM and ADM receptor systems may be involved in cardiac remodeling
and function in OH rats. The increased ADM receptor expression and decreased ADM
expression in the heart may be important in the cardiac abnormality in OH. ADM may exert
protective effects on the heart in the OH state, and its deficiency may be associated with
deterioration in cardiomyopathy in response to HFD. In this study, our findings confirmed
that ADM exerted its beneficial roles in heart structure and function in OH rats, and ADM
receptors mediated its effects in cardiomyocytes.

To adapt to volume overload and/or mechanical stress of pressure during OH, the
heart gradually becomes compensatory hypertrophy, which is featured by an increment in
LV mass without ventricular function improvement, but this hypertrophy can eventually
decompensate [1,3,8]. In this study, we found that the heart in the OH group had obvi-
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ous hypertrophy, as shown by the increased HW, left ventricular mass, IVVs, and LVIDs,
and decreased heart function, as shown by the decreased LVEF and LVFS. Mechanisms
underlying heart abnormality in OH patients are related to the altered fat tissue amount,
hypertension, inflammatory, and oxidative stress processes, and changed cardiac phys-
iology [3,6,7]. There are many findings involving hypotensive, anti-inflammatory, and
antioxidant effects of ADM [9,21–23,37]. For instance, ADM has been shown to inhibit
oxidative stress and inflammation in vascular endothelial cells [23]. We previously reported
the protective effects of ADM in the WAT of obese rats [20,29]. For instance, ADM could
reduce inflammation in WAT in obese rats induced by HFD [29], and we recently also
found that ADM could improve IR in WAT by inhibiting inflammation and oxidative
stress [20]. In this study, we evidenced that administration of ADM not only lowered BP,
but also reduced TG, TNF-α and CRP levels in plasma. Moreover, ADM improved the total
antioxidant capacity in the plasma of OH rats. These results showed that ADM improved
cardiac remodeling and function, which may be due to its hypotensive, anti-inflammatory,
and antioxidant effects. These beneficial effects may effectively prevent deterioration in
cardiac structure and function in the OH state.

The local effects of ADM on inflammation and oxidative stress in the heart were
also explored. It is also known that the increased amount of visceral adipose tissue can
cause elevated levels of plasma fatty acids, which lead to more intensive pro-inflammatory
cytokines and ROS production [4,6,7,38–43] and reduce antioxidant enzyme activity such
as GPx1, SOD2, and CAT [39,43]. Pro-inflammatory cytokines and ROS in neighboring
cardiomyocytes can synergically contribute to pathological hypertrophy, which activates the
inflammatory signaling pathways and suppresses the Akt-mTOR pathway [11,39,40,43,44].
In the present study, HFD feeding appeared to increase inflammatory cytokines (TNF-
α, IL-1β and IL-6) generation and oxidative stress demonstrated by a high content of
MDA, which is a by-product of lipid peroxidation and is regarded as a crucial marker of
oxidative stress. ROS level, NADPH oxidase activity, and altered antioxidant enzymes
(GPx1, SOD2, and CAT) expression in cardiac tissues. ADM application effectively inhibited
local inflammation and oxidative stress and restored antioxidant enzyme expression levels
in the heart. Therefore, ADM may be an effective active peptide for attenuating the adaptive
structure response and cardiac injury caused by local excessive inflammation and oxidative
stress in the heart.

It is known that the effects of ADM are mostly mediated by ADM receptors [13,15].
Previous studies indicated that ADM exerts protective roles in numerous cell types via
Akt activation, such as cardiomyocytes, vascular endothelial cells, endothelial progenitor
cells, rat leydig cells, and differentiated adipocytes [20,45–48]. Referring to these findings,
it can be hypothesized that ADM has protective roles in the heart of the OH condition
via the receptor-Akt pathway. According to our in vivo and vitro data, we found that
the phosphorylated Akt (P-Akt) level was downregulated in the heart of OH rats or PA-
treated H9c2 cells, whereas ADM application led to an enhanced phosphorylation level of
Akt under HFD treatment in rats or PA treatment in H9c2 cells. The receptor antagonist
ADM22-52 effectively blocked the ADM’s action on the P-Akt in PA-treated H9c2 cells.
Moreover, ADM22-52 and Akt activation inhibitor A6730 pretreatment also attenuated
the anti-inflammatory and antioxidative effects of ADM in PA-treated H9c2 cells. These
results suggest that the protective roles of ADM in the heart involve receptor-Akt signaling
pathway activation.

A decrease in BW, especially in WAT, may substantially change heart muscle remodel-
ing, function, and symptoms connected to obesity. In this study, it was obvious in cardiac
hypertrophy and fibrosis, and there was an obvious decrease in cardiac function, whereas
the cardiac remodeling and function were almost normalized after ADM application. The
reduction in body mass and in WAT after ADM application may also involve the normaliza-
tion of BP and the improvement of left ventricular remodeling and function. ADM-induced
inhibition of food intake [29] and the promotion of lipolysis [49] may be responsible for BW
and WAT loss. Therefore, the improvement of cardiac remodeling and the normalization of
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cardiac function may be associated with the reduction of cardiac workload and the inhibi-
tion of inflammatory and oxidative stress processes. ADM also has a positive impact on the
regulation of metabolic processes, such as hyperlipemia and IR in WAT, as demonstrated
by our previous study [20,29]; therefore, ADM may have positive effects on cardiac tissue
indirectly through the improvement of hyperlipemia and IR.

4. Methods
4.1. Animals

Male SD rats weighing 300 g or so at the age of 2 months were chosen for the study.
They were randomized into the Control and HFD groups. Rats (n = 36) were housed in
a room that possessed a 12 h light-dark cycle and controllable temperature and humidity.
They can be permitted access to tap water and rat chow ad libitum. The obese group
(n = 28) was fed an HFD (fat provided 45% kilocalories; Nantong, China) for 20 weeks,
and the control group (n = 8) was fed a normal low-fat diet (fat provided 12% kilocalories;
Nantong, China). The experiments complied with the Guidelines for the Care and Use of
Laboratory Animals (NIH publication, 8th edition, 2011) and were approved by the animal
research ethics committee of Nanjing Medical University (1911016, 14 September 2020).
The criterion for the OH rats was that the BW was 20% higher than that of the mean weight
of the control rats, and the SBP was more than or equal to 140 mmHg after 20 weeks of
HFD feeding. OH rats (n = 16) were further randomized into two groups and continued to
receive an HFD for 4 weeks. An intraperitoneal injection of ADM (7.2 µg/kg/day) was
applied to the OH rats (n = 8), and the remaining rats (n = 8) received an equal volume
of saline. At the end of 24 weeks, the BW was measured, and the visceral WAT was also
weighted after rats were anesthetized with sodium pentobarbital.

4.2. Measurement of Heart and SBP

The heart rate and SBP of the rat tail artery in waking state were measured by a
computerized tail-cuff system (NIBP, ADInstruments, Sydney, New South Wales, Australia).
To obtain a steady pulsation of the tail artery, the rat was warmed for 15 min or so and was
trained for SBP detection for 10 days before the formal experiment began. The values were
obtained by averaging 10 measurements per rat [50].

4.3. Echocardiographic Measurement

Ketamine was used to anesthetize the rats, and then a Vevo 2100 (VisualSonics, Toronto,
Ontario, Canada) system was used to evaluate cardiac function. Left ventricular mass,
IVVs, LVIDs, LVPWd, IVSd, LVEF and LVFS were measured [51].

4.4. Cardiac Sample Preparation and H&E and Masson Staining

Rats were anesthetized with 2% sodium pentobarbital solution according to the weight
(0.3 mL/100 g) and the heart was removed quickly. One part of the anterior wall of the
left ventricle tissue was kept at −80 ◦C for further analysis, and the other was incubated
overnight in formalin. Cardiac tissue slices were cut. The sections of cardiac tissue slices
(6~8 µm) received hematoxylin-eosin (H&E) and Masson’s trichrome staining. The images
were obtained with a light microscope. The cardiomyocyte area was used to evaluate the
degree of pathological changes in myocardial hypertrophy. Cardiac fibrosis was evaluated
by Masson’s trichrome staining. Five fields of each slice were selected randomly, and
Image-Pro Plus 6.0 was used to assess the collagen volume fraction (CVF) [51].

4.5. Enzyme-Linked Immunosorbent Assay (ELISA)

The plasma levels of ADM, CRP, and TNF-α were determined by the ELISA method
using the kits referring to the manufacturer’s instructions [20]. The respective final solu-
tion was detected using a microplate reader (ELX800, BioTek, Winooski, VT, USA) at a
certain wavelength. The ELISA kit for ADM was purchased from Phoenix Pharmaceuticals
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(Burlingame, CA, USA), and the kits for CRP and TNF-α were obtained from RayBiotech
(Peachtree Corners, GA, USA).

4.6. Cell Culture and Treatment

The embryonic rat heart-derived H9c2 cell line was from Costar Corning Inc. (Corning,
CA, USA). DMEM/F12 medium supplemented with 10% fetal bovine serum and 1%
penicillin (100 U)/streptomycin (100 mg/mL) was used to culture the H9c2 cells. H9c2
cells were treated with 200 µM PA binding BSA at a ratio of 5:1 for 24 h to mimic high lipid
stimulation for inducing inflammation and oxidative stress. PA was applied 30 min after
10 nM of ADM pretreatment. ADM receptor antagonist ADM22-52 (1 µM) or Akt inhibitor
A6730 (10 µM) was added 30 min before ADM pretreatment. The phosphorylated protein
level of Akt was detected 30 min after PA application.

4.7. Cell Viability Assay

The H9c2 cell suspension (100 µL) was placed into a 96-well plate and cultured in
a cell incubator for 24 h at 37 ◦C. The effect of ADM (10 nM) alone, PA (200 µM) alone
or ADM plus PA on cell viability was determined by Cell Counting Kit-8 (CCK8) cell
cytotoxicity test. The test substances (10 µL) were added to the plate. After incubation, the
CCK8 solution (10 µL) was applied to each well and incubated for 3 h. A microplate reader
(ELX800; BioTek, Winooski, VT, USA) was used to determine the absorbance at 450 nm.

4.8. DHE Fluorescence Staining for ROS Level Assay

ROS production in myocardium or H9c2 cells was evaluated with DHE staining. A
part of the left ventricle was excised from the whole heart, rinsed in ice-cold PBS, and then
incubated overnight in formalin. The heart tissue was embedded in an OCT compound
before DHE staining. The tissue was cut into 25 µm thick sections that were incubated with
10 µM DHE in PBS for 5 min in a dark and humidified container at 37 ◦C. Under the same
conditions, the H9c2 cells (3 × 105 cells/mL) were incubated by PBS containing 10 µM of
DHE in six-well plates. Then, they were rinsed three times with cold PBS. Under excitation
at 518 nm and emission at 605 nm, fluorescence was detected by fluorescence microscopy
(DP70, Olympus Optical, Tokyo, Japan).

4.9. Analysis of Inflammation and Oxidative Stress Markers

We analyzed the state of inflammation and the antioxidant system in the plasma,
heart tissue, and H9c2 cells. The T-AOC was determined using an analysis kit (Jiancheng
Bioengineering Institute, Nanjing, China). The state of inflammation was determined by the
protein expression levels of pro-inflammatory cytokines TNF-α, IL-1β and IL-6 using the
Western blot method. We also evaluated the protein expression of the antioxidant enzymes
system, including GPx1, SOD2, and CAT, with the Western blot method. Lipid peroxidation
was assessed by measuring MDA concentration using a kit (Jiancheng Bioengineering
Institute, Nanjing, China). Lipid peroxidation was measured by the reaction of MDA with
thiobarbituric acid to form a colorimetric product that is proportional to the MDA content.
The color intensity was detected spectrophotometrically at 532 nm.

4.10. Determination of ROS Level and NADPH Oxidase Activity

NADPH oxidase is one of the dominant mechanisms of ROS production in the heart.
Therefore, we additionally determined the ROS amount and NADPH oxidase activity in
heart muscle and H9c2 cells by using the enhanced lucigenin-derived chemiluminescence
method [26]. Both dark-adapted 5 µM lucigenin and 100 µM NADPH was used to trig-
ger the photon emission, and the background chemiluminescence was measured in the
buffer containing lucigenin (5 µM). The data from a luminometer (Turner, CA, USA) were
averaged by using 10 measurements in 10 min and were presented as the mean of light
unit (MLU)/min/mg protein. The level of ROS in myocardium or H9c2 cells was detected
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by the lucigenin-derived chemiluminescence method, referring to previously published
literature [32,50].

4.11. Immunohistochemistry

Immunohistochemistry was utilized to detect ADM and its receptor system expression
in the hearts of the Control and OH rats. Primary antibodies (1:100), including ADM, CRLR,
RAMP2, and RAMP3, and horseradish peroxidase-conjugated goat anti-rabbit antibody
were used. A analytical reagent, 3,3-diaminobenzidine, was used to show the positive cells.
Images were taken from a light microscope (BX-51, Olympus, Tokyo, Japan).

4.12. Western Blot Analysis

Cardiac tissues or H9c2 cells were sonicated and homogenized in RIPA lysis buffer.
After the protein was quantified, polyacrylamide gel electrophoresis (PAGE) (Bio-Rad) was
used to separate the equal quantities of tissues or H9c2 cell protein lysates, which were
further electrotransferred onto polyvinylidene difluoride membranes. Primary antibodies
against ADM, CRLR, RAMP2/3, TNF-α, IL-1β, IL-6, SOD2, GPx1, CAT, total-Akt (T-Akt),
phosphorylated-Akt (P-Akt), or GAPDH were used overnight in 4 ◦C fridge, followed
by incubation with appropriate secondary antibodies. The intensity of the protein bands
was normalized with total Akt or GAPDH levels. The Odyssey Imaging System (LI-COR
Biosciences, Lincoln, NE, USA) was used to quantify the signals, which were further
quantified by Image J software for determining the amount of detected protein.

4.13. Reagents and Antibodies

Rat The ADM (molecular formula: C242H381N77O75S5) was obtained from Bachem
(Bubendorff, Switzerland). PA was purchased from Sigma-Aldrich. ADM receptor antago-
nist ADM22-52 and Akt inhibitor A6730 were purchased from Anaspec (Fremont, CA, USA).
DMEM, 0.25% trypsin-EDTA, fetal bovine serum, trypsin, and streptomycin/penicillin
were from Thermo Fisher Scientific (Pudong New District, Shanghai, China). The antibod-
ies of ADM, CRLR, RAMP2, RAMP3, and TNF-α were obtained from Affinity Biosciences
(Pottstown, PA, USA). The antibodies of IL-6, IL-1β, SOD2, GPx1, CAT, and GAPDH were
from Proteintech (SANYING, Wuhan, China). Total Akt and phosphorylated Akt were
purchased from Cell Signaling Technology (Shanghai, China).

4.14. Statistics

In this study, GraphPad Prism version 8.0.2 (San Diego, CA, USA) software was used
to analyze all data. The differences in the mean values were evaluated by unpaired t
test between the two groups. For more than two groups, one-way or two-way ANOVA
was used for data analysis, which was further analyzed by Bonferroni post hoc analysis.
The data were presented as mean ± SEM (standard error of the mean). A p < 0.05 was
considered statistically significant.

5. Conclusions

In this study, based on the animal model, we report that HFD per se may be the main
driver by increasing WAT mass and BP, and regulating inflammation and oxidative stress in
the heart muscle. Exogenous ADM application efficiently normalized the heart remolding
and function in OH rats. The mechanisms of ADM’s action may be through improving
hypertension and inhibiting cardiac inflammation and oxidative stress via the activation of
the receptor-Akt pathway. The improvement of hyperlipemia and IR and the reduction in
BW and in WAT may also be involved.
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Abbreviations

OH obesity-related hypertension
TNF-α tumor necrosis factor-α
IL-1β interleukin-1β
IL-6 interleukin-6
ROS reactive oxygen species
Akt protein kinase B
ADM adrenomedullin
CRLR calcitonin receptor-like receptor
RAMP2 receptor activity modifying protein 2
RAMP3 receptor activity modifying protein 3
HFD high-fat diet
BP blood pressure
LVEF Left ventricular ejection fraction
LVFS fractional shortening
IVVs left ventricular mass, left ventricular volume at end systole
LVIDs left ventricular internal dimensions at end systole
LVPWd left ventricular posterior wall dimensions at end diastole
IVSd interventricular septal thickness at the end of diastole
SBP systolic blood pressue
BW body weight
HW heart weight
WAT white adipose tissue
HW/BW the ratio between the heart weight and body weight
CRP C-reactionprotein
T-AOC total antioxidant capacity
HOMA-IR homeostasis model assessment of insulin resistance
NADPH Nicotinamide adenine dinucleotide phosphate
MDA malondialdehyde.
GPx1 glutathione peroxidase
SOD2 superoxide dismutase 2
CAT catalase
CVF collagen volume fraction
PA palmitate
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