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Abstract: The selective activation of the innate immune system through blockade of immune check-
point PD1-PDL1 interaction has proven effective against a variety of cancers. In contrast to six
antibody therapies approved and several under clinical investigation, the development of small-
molecule PD1-PDL1 inhibitors is still in its infancy with no such drugs approved yet. Nevertheless,
a promising series of small molecules inducing PDL1 dimerization has revealed important spatio-
chemical features required for effective PD1-PDL1 inhibition through PDL1 sequestration. In the
present study, we utilized these features for developing machine-learning (ML) classifiers by fitting
Random Forest models to six 2D fingerprint descriptors. A focused database of ~16 K bioactive
molecules, including approved and experimental drugs, was screened using these ML models, lead-
ing to classification of 361 molecules as potentially active. These ML hits were subjected to molecular
docking studies to further shortlist them based on their binding interactions within the PDL1 dimer
pocket. The top 20 molecules with favorable interactions were experimentally tested using HTRF
human PD1-PDL1 binding assays, leading to the identification of two active molecules, CRT5 and
P053, with the IC50 values of 22.35 and 33.65 µM, respectively. Owing to their bioactive nature,
our newly discovered molecules may prove suitable for further medicinal chemistry optimization,
leading to more potent and selective PD1-PDL1 inhibitors. Finally, our ML models and the integrated
screening protocol may prove useful for screening larger libraries for novel PD1-PDL1 inhibitors.

Keywords: cancer immunotherapy; protein-protein interaction; immune checkpoint; PD1-PDL1;
PDL1 dimerization; machine learning; random forest; 2D fingerprints; molecular dynamics

1. Introduction

The majority of the important biological functions in living organisms including
humans are regulated and executed through a vast array of protein–protein interactions
(PPIs). In this context, the human interactome may represent a promising source of many
novel therapeutic targets owing to the large size of the human interactome estimated to
range from ~300,000 [1] to as high as ~650,000 PPIs [2]. To date, the interactome engineering
through PPI modulation has been under the realm of primarily large biologics-based
therapies, including antibodies and fusion proteins. This is due to the relatively large,
featureless protein–protein binding interfaces lacking the well-defined “druggable” binding
pockets that are the hallmarks of the traditional targets like G-protein coupled receptors
(GPCRs) and enzymes [3]. These large biotherapeutics, however, possess several inherent
drawbacks such as lack of oral bioavailability, low tumor infiltration, adverse immune
events, and high cost. These drawbacks can be successfully overcome with the use of
low molecular weight (up to 500 Da) bioactive chemical compounds, and small-molecule
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tractability of PPIs is on the rise with the first such bioactive drugs entering clinical trials
recently [4].

One such important PPI that has been clinically targeted by humanized monoclonal
antibodies and warrants development of viable small-molecule alternatives is the pro-
grammed cell death protein 1 (PD1)–programmed cell death ligand 1 (PDL1) interaction.
The PD1 is an immunoinhibitory receptor expressed on the surface of activated T and B
cells, while its ligand PDL1 is present on different cell types, including activated T and
B cells, dendritic cells, macrophages, and mesenchymal cells [5]. Notably, many tumor
types, such as melanoma and carcinomas of bladder, breast, colorectum, head, kidney, liver,
lung, neck, ovary and pancreas, also overexpress PDL1 on their cell surfaces [6]. Thus,
although PD1-PDL1 interaction is physiologically beneficial in preventing excessive stimu-
lation of immune system, it also leads to detrimental immune tolerance within the tumor
microenvironment through T-cell functional exhaustion and apoptosis, in turn helping
the tumors escape their immune destruction. Therefore, pharmacological inhibition of
PD1-PDL1 inhibition has emerged as one of the most promising therapeutic strategies to
strengthen the immune response against a broad-spectrum of PDL1-expressing cancers [7].

To date, the U.S. Food and Drug Administration (FDA) has approved seven mono-
clonal antibodies exhibiting unprecedented clinical benefits through effective PD1-PDL1
blockade by binding to either PD1 (Cemiplimab, dostarlimab, Nivolumab, and Pem-
brolizumab) or PDL1 receptors (Atezolizumab, Avelumab, and Durvalumab) [8]. In con-
trast, development of small-molecule PD1-PDL1 inhibitors has lagged considerably, owing
to the inherent lack of druggability of such traditionally challenging PPIs with large yet
featureless binding interfaces. The PD1-PDL1 interface is especially challenging to target
using small molecules because of a large interface spanning over ~1970 Å2 that is devoid
of well-defined binding pockets [9]. Accordingly, efforts to directly target this PD1-PDL1
binding interface have yielded only modestly active small-molecule inhibitors with µM
activities [10,11]. Another novel approach utilized by Bristol Myers Squibb (BMS) to block
PD1-PDL1 interaction involves PDL1 dimerization, yielding small molecules with im-
pressive IC50 values in the pM-nM range [12]. These novel molecules effectively block
the PD1-binding pockets on PDL1 proteins by forming and stabilizing the PDL1 homod-
imers [13]. The clinical development of these potent PDL1 dimerizers, however, is still
in its infancy, with only one such molecule (INCB86550 from Incyte, Wilmington, DE,
United States) reaching early clinical trials (NCT03762447, clinicaltrials.gov, accessed on
10 April 2022, Bethesda, MD, USA), and none being approved yet.

Thus, there is a significant unmet need to explore this highly promising but relatively
uncharted therapeutic space for potential cancer immunotherapy applications. In the present
study, we aimed to discover bioactive PDL1 dimerizers for PD1-PDL1 blockade via machine-
learning (ML) enabled virtual screening combined with in vitro experimental testing.

2. Results and Discussion

The process of new drug discovery, design and development remains immensely
challenging due to inherent high cost and time requirements. The success rate of this
challenging process can be amplified when a combination of computational and experi-
mental approaches is utilized. Recently, computer-aided drug discovery process has been
improved by utilizing various machine-learning approaches [14]. Here, we developed
ML models based on 2D chemical descriptors to optimize virtual screening followed by
experimental testing for bioactive PD1-PDL1 inhibitors. The schematic of our integrated
virtual and experimental screening protocol is shown in Figure 1.
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Figure 1. Overview of the integrated screening protocol to identify small-molecule inhibitors of 
PD1-PDL1 interaction: (a) Development of ML models based on 2D fingerprint descriptors of 
known ACTIVE and INACTIVE molecules against PDL1; (b) ML-based virtual screening, followed 
by experimental testing of top virtual hits using HTRF assay. 
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developing ML classifiers by fitting Random Forest (RF) models to 2D fingerprints de-
scriptors of these known PDL1 ligands. Specifically, six fingerprint descriptors (FP1, FP2, 
Layered, MACCS, Morgan, RDKit) implemented in the Open Drug Discovery Toolkit 
(ODDT) [15] were generated for 1,581 BMS molecules (classified as “ACTIVE”), their 
property-matched DECOYS (50 DECOYS per ACTIVE molecule) obtained from DUD-E 
database [16], and 417 known INACTIVE molecules from our in-house experimental stud-
ies against this target (Supplementary Table S1). The objective was to utilize these multi-
ple fingerprint descriptors for describing active compounds for the PDL1 dimerization 
approach in comparison to the compounds that we have previously found to be inactive 
in inhibiting the PD1-PDL1 interaction. 
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with Morgan fingerprints yielding the best results against both the training (R2 = 0.9729) 
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screening of a commercial database for identifying potential PDL1 dimerizers for PD1-
PDL1 inhibition. The Cayman Chemical database contained 16,191 bioactive molecules 
containing many approved and experimental drugs. The ensemble screening of Cayman 
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Figure 1. Overview of the integrated screening protocol to identify small-molecule inhibitors of
PD1-PDL1 interaction: (a) Development of ML models based on 2D fingerprint descriptors of known
ACTIVE and INACTIVE molecules against PDL1; (b) ML-based virtual screening, followed by
experimental testing of top virtual hits using HTRF assay.

We started by analyzing the promising series of novel small-molecule PDL1 dimerizers
invented by the Bristol-Myers Squibb (BMS) and published in 6 patents [WO2015034820A1;
WO2015160641A2; WO2018009505A1; WO2018183171A1; WO2017066227A1; WO2018044963A1].
These potent PDL1 dimerizing molecules have revealed important spatio-chemical features
required for PDL1 sequestration, leading to effective PD1-PDL1 inhibition. In the present
study, we utilized these molecular features for developing ML classifiers by fitting Random
Forest (RF) models to 2D fingerprints descriptors of these known PDL1 ligands. Specifically,
six fingerprint descriptors (FP1, FP2, Layered, MACCS, Morgan, RDKit) implemented in
the Open Drug Discovery Toolkit (ODDT) [15] were generated for 1581 BMS molecules
(classified as “ACTIVE”), their property-matched DECOYS (50 DECOYS per ACTIVE
molecule) obtained from DUD-E database [16], and 417 known INACTIVE molecules
from our in-house experimental studies against this target (Supplementary Table S1). The
objective was to utilize these multiple fingerprint descriptors for describing active com-
pounds for the PDL1 dimerization approach in comparison to the compounds that we have
previously found to be inactive in inhibiting the PD1-PDL1 interaction.

In this context, we first applied ML RF classifiers on 2D molecular fingerprint descrip-
tors of these ACTIVE and INACTIVE molecules (Figure 1). The quality of these trained
models was assessed by a correlation coefficient (R) implemented in the ODDT, with Mor-
gan fingerprints yielding the best results against both the training (R2 = 0.9729) and the test
(R2 = 0.9664) sets, while other fingerprints also following closely (Table 1).

Table 1. The ODDT training and test set modeling metrics.

Fingerprint FP2 FP4 MACCS Morgan Layered RDKit

Training 0.9629 0.9429 0.9549 0.9729 0.9649 0.9659
Test 0.9537 0.9283 0.9442 0.9664 0.9562 0.9575

Therefore, we decided to use all of these six fingerprint models to carry out ensemble
screening of a commercial database for identifying potential PDL1 dimerizers for PD1-
PDL1 inhibition. The Cayman Chemical database contained 16,191 bioactive molecules
containing many approved and experimental drugs. The ensemble screening of Cayman
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database using our machine-learning models led to classification of 361 molecules as
potentially active against PD1-PDL1 target by at least one out of six fingerprint models.
This computational screening output with ~98% reduction in database size is helpful in
potentially limiting the number of inactive and false positive molecules that would be
tested in the wet-lab experiments.

To further reduce the number of molecules for experimental testing, we subjected these
361 ML hits to structure-based docking studies against PDL1 dimer pocket. Many X-ray
crystal structures of PDL1 dimers bound with their respective crystal ligands are available
with varying resolutions ranging from 1.70 Å to 2.79 Å (PDB IDs: 5N2F, 5NIU, 6R3K, 5J89,
5J8O, 5N2D, 6NM8), with 5N2F having the highest crystallographic resolution (1.70 Å).
Previously, we have carried out ensemble virtual screening against all 7 receptors, leading to
identification of Pyrvinium, an FDA-approved anthelmintic drug, as a small-molecule PD1-
PDL1 inhibitor with IC50 value of ~29.66 µM [17]. Among all 7 published crystal structures,
5N2F was found to exhibit the highest average docking score for all 7 PDL1 crystal ligands,
thus proving it suitable for our current molecular docking studies. Therefore, in the present
study, we docked our 361 ML hits against only this highest resolution structure 5N2F. The
AutoDock Vina algorithm [18] was used to carry out docking, which correctly predicted
binding mode of the crystal ligand 8HW with −11.4 Kcal/mol binding score against 5N2F
(Figure 2).
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Figure 2. The PDL1 dimer binding modes of crystal ligand (8HW) and three hits (18532, 26113, and
19922) predicted by AutoDock Vina: (a) Representation of PDL1 dimer pockets containing bound
ligands; and (b) 2D ligand–protein interactions.
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The structural interaction fingerprints [19] for top-ranking poses for all the docked
compounds and known PDL1 crystal ligands were then generated using the script im-
plemented in Schrödinger’s graphical user interface Maestro. The PDL1 crystal ligands
showed various key interactions potentially responsible for their potent receptor-binding
ability and corresponding IC50 values. These included aromatic π-π interactions with Tyr56
and Tyr123 on both PDL1 chains of the dimer, hydrophobic interactions with several amino
acids along the tunnel-like pocket of PDL1 dimer, and hydrogen and halogen bonds at
the solvent-exposed opening of the pocket. The hydrogen bond interactions with Asp122,
Lys124 and Arg125 have shown to play important role in ligand binding to PDL1 [20].
Therefore, we selected ligands exhibiting similar interactions with the PDL1 pocket. In
addition, we visually inspected top-ranking poses of all the docked ligands for their proper
docking modes within the PDL1 pocket and their alignment in comparison to the crystal
ligand 8HW. Through these structure-based analyses, we shortlisted a total of 20 molecules
to investigate their potential activity in inhibiting PD1-PDL1 interaction in vitro (Table 2).

Table 2. Top 20 virtual hits tested in the HTRF PD1-PDL1 binding assay, together with their AutoDock
Vina docking scores.

Compound # Cayman ID % PD1-PDL1 Inhibition AutoDock Vina Score (Kcal/mol)

1 18532 50.9 ± 1.3 −11.0
2 26113 41.4 ± 0.9 −9.6
3 19922 34.7 ± 2.1 −10.6
4 18006 24.9 ± 1.8 −9.8
5 24159 20.2 ± 1.3 −10.5
6 29424 18.7 ± 1.1 −10.3
7 19160 18.5 ± 0.7 −9.4
8 21546 17.0 ± 1.0 −9.6
9 70635 16.6 ± 1.3 −9.8
10 24057 15.9 ± 2.1 −10.6
11 32729 15.4 ± 1.3 −10.8
12 25747 14.4 ± 0.9 −10.1
13 21688 13.5 ± 1.3 −9.7
14 31758 13.1 ± 1.3 −10.4
15 21137 12.4 ± 1.5 −10.9
16 19404 5.8 ± 1.8 −9.8
17 19876 −4.3 ± 1.5 −10.4
18 18124 −4.4 ± 1.2 −10.3
19 25326 −4.5 ± 2.0 −9.9
20 17034 −4.6 ± 1.4 −10.9

The homogeneous time-resolved fluorescence (HTRF) binding assay was used to test
these top 20 molecules for their potential blockade of human PD1-PDL1 interaction. We
have previously established the utility of the HTRF assay over similar homogenous assay
like AlphaLISA, with the latter proving to be more promiscuous in identifying potential
false positives against PD1-PDL1 target [17]. Importantly, a known PD1-PDL1 inhibitor
(BMS-1166) was used as a positive control to investigate the compatibility of this assay
for the present experimental screening. BMS-1166 induced dose-dependent inhibition of
PD1-PDL1 interaction with the IC50 value of ~1.0 nM that is in agreement with its reported
HTRF IC50 range of 0.06–10 nM [21]. This further supported the use of the HTRF assay for
our current studies, leading to identification of 3 out of 20 compounds exhibiting ≥30%
PD1-PDL1 inhibition at 25 µM single-dose test concentration (Table 2).

We subjected these 3 active compounds to dose-dependent experimental testing to
further confirm their observed activity. Two out of these 3 compounds showed promising
dose-dependent activity, with the HTRF IC50 value of the most active compound 1 being
~22 µM (Figure 3). This is a promising activity by a relatively low-molecular-weight
compound 1 (454.6 g/mol) against a large protein–protein interaction like PD1-PDL1 with a
large binding interface spanning ~1970 Å2 [22]. It is also noteworthy that both compounds
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1 and 2 have been shown to be active in cell-based and animal model studies of different
human indications, thus emphasizing their bioactive nature against important therapeutic
targets. Specifically, compound 1 (CRT5) is a specific protein kinase D (PKD) inhibitor with
1–2 nM IC50 values against all three PKD isoforms in VEGF-treated endothelial cells [23].
Compound 2 (P053) is a potent, selective ceramide synthase 1 (CerS1) inhibitor leading
to increased fatty acid oxidation in skeletal muscles of mice fed with high-fat diet [24].
Our present study is the first to show the potential role of these bioactive compounds as
small-molecule PD1-PDL1 inhibitors, warranting their further investigation for potential
anti-cancer benefits.

Pharmaceuticals 2022, 15, x FOR PEER REVIEW 6 of 13 
 

 

~22 µM (Figure 3). This is a promising activity by a relatively low-molecular-weight com-
pound 1 (454.6 g/mol) against a large protein–protein interaction like PD1-PDL1 with a 
large binding interface spanning ~1970 Å2 [22]. It is also noteworthy that both compounds 
1 and 2 have been shown to be active in cell-based and animal model studies of different 
human indications, thus emphasizing their bioactive nature against important therapeutic 
targets. Specifically, compound 1 (CRT5) is a specific protein kinase D (PKD) inhibitor 
with 1–2 nM IC50 values against all three PKD isoforms in VEGF-treated endothelial cells 
[23]. Compound 2 (P053) is a potent, selective ceramide synthase 1 (CerS1) inhibitor lead-
ing to increased fatty acid oxidation in skeletal muscles of mice fed with high-fat diet [24]. 
Our present study is the first to show the potential role of these bioactive compounds as 
small-molecule PD1-PDL1 inhibitors, warranting their further investigation for potential 
anti-cancer benefits. 

 
Figure 3. Dose–response HTRF data for small-molecule inhibitors of PD1-PDL1 interaction. 

To study possible molecular interactions and binding stability of our active com-
pounds in comparison to the crystal ligand 8HW within the PDL1 dimer interface, their 
top-ranked Vina docking complexes were subjected to molecular dynamics simulations 
(Desmond Molecular Dynamics System from D. E. Shaw Research, New York, NY, USA). 
The root mean square deviation (RMSD) analysis of the best active compounds 1 and 2 
over 5 ns molecular dynamics simulation revealed their stable binding within the PDL1 
dimer pocket (Figure 4A). Our top hit compound 1 (IC50~22.35 µM) showed similar bind-
ing stability as the crystal ligand 8HW. After initial configuration change, compound 1 
did not deviate much, exhibiting consistent RMSD value around ~2.0 Å at the end of the 
5 ns simulation period, thus indicating its stable binding at the PDL1 dimer interface. The 
ligand RMSD value for compound 2 was ~3.0–4.0 Å, which is consistent with its slightly 
higher IC50 value of ~33.65 µM. Here, it should be noted that the RMSD profile for ligand-
bound PDL1 backbone for both compounds 1 and 2 fluctuated as high as ~5.0 Å, as com-
pared to observed ligand–protein stability in case of crystal ligand 8HW. For compound 
3 (19922), a high ligand RMSD value of ~8.0 Å was observed, coinciding with its very high 
IC50 value of ~633.80 µM. 

0
10
20
30
40
50
60
70
80
90

100

0 10 20 30 40 50 60 70 80 90 100

PD
1-

PD
L1

 In
te

ra
ct

io
n 

(%
 o

f C
on

tr
ol

)

Test Concentration (µM)

1 (18532)- 22.35 µM

2 (26113)- 33.65 µM

3 (19922)- 633.8 µM

Figure 3. Dose–response HTRF data for small-molecule inhibitors of PD1-PDL1 interaction.

To study possible molecular interactions and binding stability of our active compounds
in comparison to the crystal ligand 8HW within the PDL1 dimer interface, their top-ranked
Vina docking complexes were subjected to molecular dynamics simulations (Desmond
Molecular Dynamics System from D. E. Shaw Research, New York, NY, USA). The root
mean square deviation (RMSD) analysis of the best active compounds 1 and 2 over 5 ns
molecular dynamics simulation revealed their stable binding within the PDL1 dimer pocket
(Figure 4A). Our top hit compound 1 (IC50~22.35 µM) showed similar binding stability as
the crystal ligand 8HW. After initial configuration change, compound 1 did not deviate
much, exhibiting consistent RMSD value around ~2.0 Å at the end of the 5 ns simulation
period, thus indicating its stable binding at the PDL1 dimer interface. The ligand RMSD
value for compound 2 was ~3.0–4.0 Å, which is consistent with its slightly higher IC50
value of ~33.65 µM. Here, it should be noted that the RMSD profile for ligand-bound
PDL1 backbone for both compounds 1 and 2 fluctuated as high as ~5.0 Å, as compared to
observed ligand–protein stability in case of crystal ligand 8HW. For compound 3 (19922), a
high ligand RMSD value of ~8.0 Å was observed, coinciding with its very high IC50 value
of ~633.80 µM.

The analysis of the final pose of the ligand-complex after 5 ns molecular dynamics
simulation revealed several key interactions between our best active compound 1 with the
PDL1 dimer pocket (Figure 4B). Specifically, compound 1 is predicted to make hydrophobic
interactions with several amino acid residues lining the PDL1 dimer tunnel. Importantly,
naphthalenyl moiety in compound 1 occupied the distal end of the PDL1 dimer pocket,
functionally replacing the biaryl moiety present in the published PDL1 dimerizers in-
cluding the crystal ligand 8HW (Figure 4B). Furthermore, the amine group in the middle
pyridinyl moiety formed H-bond with Ala121 amino acid residue. The π-π interaction with
Tyr56 amino acid residue is also observed in case of compound 1, which is a well-known
characteristic of published PDL1 dimerizers, including crystal ligand 8HW (Figure 4B).
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Notably, the dimethylamino-ethyl-benzamide tail part of compound 1 is predicted
to make a hydrogen bond with the PDL1 pocket residue exposed to the solvent (Asn63),
further contributing to the ligand–PDL1 binding. The importance of such tail part H-
bond interactions for the observed activity is evident by comparing structure of the active
compound 2 with a structurally similar compound 19 (25326) that completely lacked activity
against PD1-PDL1 interaction (Table 2). The difference between these two structural analogs
is the lack of such tail-part H-bond capabilities in the inactive compound 19 versus the
active compound 2 (Figure 4B). This small structural difference completely changed the
binding mode of compound 19 with its orientation shifting in 180◦, with dichlorobenzyl
group exposed to solvent, as opposed to filling the hydrophobic PDL1 dimer pocket.

In contrast to active compounds 1 and 2, compound 3 did not bind well with the
PDL1 dimer, resulting in an unstable ligand–protein complex over 5 ns simulation period
(Figure 4A). This is in line with the lack of key aromatic, hydrophobic, and H-bond interac-
tions between compound 3 and the PDL1 dimer residues (Figure 4B). Notably, as compared
to crystal ligand and our two top active compounds 1 and 2, compound 3 showed minimal
hydrophobic interactions and complete lack of H-bond interactions with the Ala121 residue
(Figure 5). These molecular modeling data further support the experimentally observed
weak PD1-PDL1 inhibitory activity of compound 3 with IC50 value of ~633.80 µM (Figure 3).
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In summary, our present study involving ML-enabled virtual screening and in vitro
experimental testing successfully identified compounds 1 (CRT5) and 2 (P053) as potential
inhibitors of the immune checkpoint PD1-PDL1 interaction.

3. Materials and Methods
3.1. Development of 2D Fingerprint-Based Classification Models

A key goal of our experimental design was to train a classifier machine learning (ML)
models that could preprocess a commercial molecular database for potential active com-
pounds against PD1-PDL1 interaction. To achieve this, six BMS patents published in the
literature were mined to obtain the SMILES for the small molecule PDL1 dimerizers (classi-
fied as “ACTIVE”). First, the IUPAC (International Union of Pure and Applied Chemistry)
names of ACTIVE molecules were text mined from BMS patents and then corresponding
SMILES (simplified molecular input line entry specification) were obtained using OPSIN
(Open Parser for Systematic IUPAC Nomenclature) [25]. A total of 1581 ACTIVE molecules
were thus compiled with varying HTRF IC50 values, ranging from 0.6 nM to 100 µM. With
the aim of developing classification models, inclusion of another group of molecules is
warranted in addition to these ACTIVE molecules. Therefore, we included 417 molecules
that were unable to inhibit PD1-PDL1 interaction in our previous in-house experimental
work (classified as “INACTIVE”). Six fingerprint descriptors (FP2, FP4, MACCS, RDKit,
Morgan, Layered) implemented in the ODDT [15] were generated for these actives, their
property matched DECOYS from DUD-E database [16], and experimentally established
INACTIVE molecules against PD1-PDL1 target. The ML Random Forest (RF) classifier
model was then fit on the molecular fingerprints in the training (ACTIVE and INAC-
TIVE) and test (ACTIVE and DECOYS) sets. The RF classification is an ensemble based
classification method, which involves generation of a number of internal models with
introduced randomness to create naturally varying results. Each of these RF classifier
models is executed on the provided data to generate a classification for the supplied input.
The results from all the internal models thus trained are then averaged, resulting in a final
RF model result. The models internally used here are Decision Trees, which are supervised
learning methods whose goal is to generate a resulting classification based on a number
of dynamically generated decisions based on the data utilized to train the decision tree.
Here, we utilized the ODDT platform to facilitate creating the RF classifiers through use
of the open source Python library Scikit-learn. For each type of fingerprint generated, a
different RF classifier was trained, being provided the fingerprints of each input molecule
for the given fingerprint type as well as the corresponding classification (“ACTIVE”, “IN-
ACTIVE”) of each molecule. Parameters supplied for the RF classifier training included:
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n_estimators = 500, oob_score = true, max_features = 6, min_samples_split = 6. Default
values were used for all other parameters. The quality of the ML RF models thus trained
on our data was assessed by a correlation coefficient (R) implemented in the ODDT. Specifi-
cally, cross validation algorithms implemented in ODDT via Scikit-learn were performed
on the generated RF models to evaluate their performance. The models with >90% accuracy
in cross validation were considered a good fit. Finally, the trained RF classifier models
based on six fingerprint models were utilized to screen the fingerprint models generated
for 16,191 bioactive molecules from Cayman Chemical database. The RF classifiers re-
turned a generalized “ACTIVE” or “INACTIVE” classification for these molecules. Top
361 molecules thus classified as “ACTIVE” by at least 1 out of 6 fingerprint models were
then subjected to further computational and experimental studies.

3.2. Molecular Docking and Ligand Interaction Fingerprint Analysis

The SMILES for top 361 ML hits were used to generate their 3D conformers using
OMEGA 4.1.2.0: OpenEye Scientific Software, Santa Fe, NM (http://www.eyesopen.com,
accessed on 10 April 2022) [26]. The docking of these molecules was then carried out
against a published crystal structure of the PDL1 dimer with the best resolution of 1.70 Å
(PDB ID: 5N2F), downloaded from the protein data bank (PDB) [27] and processed using
AutoDock Tools [28]. The AutoDock Vina docking algorithm [18] was used to carry out the
structure-based docking of these bioactive molecules into the PDL1 dimer interface. The
docking search space coordinates used for docking were: [Center: X: 31.9429, Y: 12.7403,
Z: 133.7878; Dimensions (Å): X: 20.0, Y: 20.0, Z: 20.0]. Default AutoDock Vina docking
parameters were used, and the ligands were ranked according to their best docking scores.
The protein–ligand binding interactions of all the docked compounds were analyzed using
the structural interaction fingerprint (SIFt) method [19]. The SIFt analysis was used to
shortlist compounds that make aromatic π-π interactions and H-bond interactions with key
amino acids including Tyr56, Asp122, Lys124 and Arg125, which are shown to be important
for PDL1 ligand binding [20]. These top binding poses of these shortlisted compounds
were further inspected visually for their proper binding orientation within the PDL1 dimer
pocket, leading to their selection for the experimental testing.

3.3. Molecular Dynamics Simulations

To investigate ligand binding stability, molecular dynamics (MD) simulations were
conducted on respective ligand–protein complexes using Desmond Molecular Dynamics
package (D. E. Shaw Research, New York, NY, USA). The top binding conformation from
AutoDock Vina docking was used as the starting conformation for MD simulation. The
ligand interactions were modeled with the OPLS_2005 force field. The TIP3P water model
was used to solvate the ligand–protein complex, setting up the system for MD simulations.

The solvated system was further neutralized using an appropriate number of counte-
rions. Default parameters in Desmond were utilized to equilibrate this molecular system.
Finally, the equilibrated system was subjected to 5 ns MD simulations at constant tempera-
ture and pressure of 300 K and 1 atm, respectively. The atom coordinates were recorded at
every 5.0 ps for the follow-up MD simulation analyses. The root mean square deviations
(RMSDs) for the protein and the docked ligand were calculated over the entire simulation
trajectory with reference to their respective first frame. The protein interactions with the
ligand were normalized over the course of the 5 ns trajectory, with the score value depicted
in the stacked bar chart indicating the percentage of the simulation time when a specific
interaction is maintained. These score values may exceed 1.0 (or 100%), as a given protein
residue may make multiple contacts of the same subtype with the ligand.

3.4. In Vitro Testing Using HTRF Assay

The potential activity of our virtual hits in inhibiting PD1-PDL1 interaction was
investigated using the homogeneous time-resolved fluorescence (HTRF) binding assay from
Perkin Elmer. The assay was carried out according to the manufacturer’s instructions using

http://www.eyesopen.com
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the HTRF protocol in BioTek Synergy NeoTM microplate reader. The percent inhibition of
PD1-PDL1 interaction by test compounds was calculated by subtracting the assay signals
for the compounds at 25 µM concentration from the control (untreated) signal. The assay
mixture with only PDL1 protein, but not PD1 protein served as a negative control denoting
0% PD1-PDL1 interaction. Dose–response curves (0–100 µM) were generated for top
three active compounds exhibiting >30% inhibition at 25 µM test concentration. The
dose–response data were analyzed using GraphPad Prism to determine IC50 values using
nonlinear regression variable slope models.

4. Conclusions

In the present study, a ML-based virtual screening approach was applied to screen a
commercially available database for potentially novel inhibitors of PD1-PDL1 interaction.
Several molecules were identified with 2D chemical fingerprints similar to the known
PDL1 dimerizers and hence classified as possibly “Active” for PD1-PDL1 blockade. The
RF ML predictions were further shortlisted to the top 20 virtual hits using ligand–receptor
interaction fingerprint analysis. The experimental testing of these computational hits
using in vitro HTRF assay led to identification of two structurally novel molecules with
PD1-PDL1 inhibition activity in the µM range. Despite having relatively weaker µM
activities than the known PD1-PDL1 inhibitors with nM activities, the newly identified
experimental compounds have the advantage of being tested in cell and animal models
of human clinical importance [23,24]. It is noteworthy here that the known PD1-PDL1
inhibitors, although potent, are associated with acute cytotoxicity [29], thus hampering their
pre-clinical and clinical development. Thus, there is an unmet need to identify and design
alternative PD1-PDL1 inhibitors, including PDL1 dimerizers, with the aim of overcoming
this developmental hurdle. In this context, our two bioactive hits may prove suitable as
starting points for further hit-to-lead optimization in the quest for design and development
of more potent and select inhibitors of PD1-PDL1 interaction. For example, potential
incorporation of bromine at a suitable position has been previously shown to significantly
enhance the potency of PDL1 dimerizers leading to pM active compounds [12]. Finally, the
adopted integrated screening protocol involving 2D fingerprint based ML models may also
prove suitable for exploring other larger databases of lead- and drug-like compounds for
novel PD1-PDL1 inhibitors with suitable pharmacological properties.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3
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