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Abstract: Herpes simplex virus (HSV) infections are a worldwide health problem in need of new
effective treatments. Of particular interest is the identification of antiviral agents that act via different
mechanisms compared to current drugs, as these could interact synergistically with first-line anti-
herpetic agents to accelerate the resolution of HSV-1-associated lesions. For this study, we applied a
structure-based molecular docking approach targeting the nectin-1 and herpesvirus entry mediator
(HVEM) binding interfaces of the viral glycoprotein D (gD). More than 527,000 natural compounds
were virtually screened using Autodock Vina and then filtered for favorable ADMET profiles. Eight
top hits were evaluated experimentally in African green monkey kidney cell line (VERO) cells, which
yielded two compounds with potential antiherpetic activity. One active compound (1-(1-benzofuran-
2-yl)-2-[(5Z)-2H,6H,7H,8H-[1,3] dioxolo[4,5-g]isoquinoline-5-ylidene]ethenone) showed weak but
significant antiviral activity. Although less potent than antiherpetic agents, such as acyclovir, it acted
at the viral inactivation stage in a dose-dependent manner, suggesting a novel mode of action. These
results highlight the feasibility of in silico approaches for identifying new antiviral compounds, which
may be further optimized by medicinal chemistry approaches.

Keywords: herpes simplex virus type 1; virtual screening; molecular docking; glycoprotein D;
natural compounds

1. Introduction

Herpes simplex virus type 1 (HSV-1) is a contagious human pathogen that is estimated
to affect 3.7 billion people worldwide [1]. Whereas HSV-1 infections are commonly associ-
ated with limited facial–oral lesions, severe disease can occur in neonates or immunocom-
promised individuals (keratitis, meningitis, encephalitis, and disseminated infections) [2,3].
Viral infections are the most common cause of sporadic life-threatening encephalitis in the
United States, and up to 75% of these cases are caused by HSV-1 [3,4].

Primary infection with HSV-1 occurs by virus penetration at mucosal surfaces or
through skin abrasions. From here, HSV-1 infects innervating sensory nerves of the trigem-
inal or dorsal root ganglia, where it establishes a life-long latent infection with a high rate
of periodical reactivation [2,5–7]. The current predominant antiherpetic agents are viral
deoxyribonucleic acid (DNA) extension inhibitors, such as acyclovir (ACV), penciclovir,
valacyclovir, famciclovir, foscarnet, and cidofovir. However, these drugs only act to shorten
the duration of initial and recurrent episodes to a limited degree [8–10]. Consequently, HSV-
1 infection is usually described as an incurable disease [1]. Drug-resistant HSV-1 strains
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among immunocompromised patients are a growing health concern and have emerged
after decades of exposure to a single class of antiherpetics compounds [11–13]. All these
issues support the search for new antiviral compounds that target other stages of HSV-1
infection, such as viral attachment and entry.

Among the 12 surface glycoproteins of HSV, glycoprotein D (gD) plays a key role in
the viral attachment and entry process [14,15]. Binding of gD to one of its cellular receptors,
nectin-1 or herpesvirus entry mediator (HVEM), induces a conformational change in
the structure of gD, which triggers a cascade of molecular interactions, resulting in the
formation of a fusion complex involving gH/gL and gB [15–17]. Although some steps
of the entry process of HSV-1 remain unclear, the critical role of gD in viral binding and
entry, as well as its three-dimensional structure in bound and unbound states, has been
well-documented [15,17–19]. This provides an opportunity to exploit this knowledge using
advanced computational approaches to discover novel antiviral compounds that interact
with gD.

Naturally derived molecules have been recognized as highly promising sources of
novel antiherpetic compounds. The first antiviral drug, Ara-A, was originally derived from
the marine compounds: spongonucleosides, spongothymidine, and spongouridine [20].
Subsequently, a broad range of natural compounds have since been found to possess
antiviral activities, with half-maximal effective concentration (EC50) ranging from 10 to
200 µM. These include emodin (EC50 = 21.5 − 195 µM) [21–23], epigallocatechin gallate
(EC50 = 12.5 − 50 µM) [24–27], curcumin (EC50 = 89.6 µM) [28–30], and other extracted
polyphenol compounds [31]. However, practical screening of bioactive molecules with
desirable activity from the large pool of diverse natural compounds can be a costly and
time-consuming task. Computational modelling represents an underutilized and efficient
alternative to accelerate this complex process. Molecular docking is a well-developed tool
for screening promising candidates from libraries of bioactive molecules and has been
applied to identify inhibitors of viral targets, including thymidine kinase [29,32–34], DNA
polymerase [35,36], and protease [37]. However, few molecular docking studies have been
attempted with a limited focus on natural compounds and viral surface glycoproteins as
the target, suggesting a potential research gap [38,39].

Herein, we present a discovery pipeline to identify novel HSV-1 inhibitors from an
extensive natural compound library via virtual screening. Molecular docking was targeted
at the HVEM and nectin-1 binding sites of the viral gD to identify compounds that bind
the virus and prevent infection with different mechanisms of action than those of current
antivirals. The antiviral activity of top-ranked molecules was then investigated using
in vitro HSV-1 assays. One natural molecule exhibited antiherpetic activity and could serve
as a basis for further drug modification and optimization. These findings highlight the
capacity of applying computer-aided techniques to facilitate the discovery of lead active
compounds (ACs) with desirable properties.

2. Results
2.1. Virtual Screening in Search of Potential gD Inhibitors

The interaction between gD and its two major cellular receptors, nectin-1 and HVEM,
can be described as non-reciprocal competitive binding. Glycoprotein D forms a hairpin
structure after interacting with HVEM, which masks the binding site for nectin-1 [16,40].
Similarly, the interaction between gD and nectin-1 blocks the HVEM binding sites [16]. As
distinct residues interact with each receptor, we performed targeted molecular docking
on each site separately. Docking against the HVEM binding site of gD was conducted
first, before a refined set of compounds was docked against the nectin-1 binding site. A
schematic diagram of the virtual screening steps and outcomes is presented in Figure 1.
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Figure 1. Schematic diagram of the molecular docking workflow for identifying natural glycoprotein
D inhibitors with antiviral activity against HSV-1.

AutoDock Vina software was used to estimate the theoretical affinity between the
HVEM binding site of gD and a library of 527,209 natural compounds. The generated dock-
ing score is based on the change in Gibbs free energy between bound and unbound states;
therefore, a more negative score indicates higher putative affinity [41]. A secondary round
of screening, which involved performing a greater number of docking runs, was conducted
on the top 2% of compounds (n = 10,897). These compounds included 6654 molecules
from the Supernatural II database, 3813 from ZINC Natural Products, 210 from Human
Metabolome, 206 from Marine Natural Products, and 14 molecules from Phenol Explorer.
The docking scores from this screen ranged from −10.6 to −4.3.

To select ACs for downstream in vitro testing, ligands with docking scores ≤−8.2
were filtered for favorable ADMET properties and commercial availability (n = 3898). The
selection criteria were based on toxicity ratings and drug-conforming behavior according to
the OSIRIS property explorer tool [42]. Consequently, 26 drug-like compounds that could
be readily obtained from commercial vendors were selected for further molecular docking
analysis against the nectin-1 binding site.

To investigate inhibitory cross-reactivity against the nectin-1 binding site of gD, re-
docking analysis was performed with the 26 previously selected compounds. Free energy
scores from this redocking screen ranged from−9.4 to−6.8. Docked binding conformations
were analyzed by visual inspection, and the top eight ACs with scores ≤−7.6 were selected
for in vitro validation. The molecular docking results of the eight selected compounds are
listed in Table 1, and their molecular structures are illustrated in Figure 2. The predicted
interactions between these eight ligands and the HVEM and nectin-1 binding interfaces of
gD are illustrated and outlined in Figure 3 and Table 2. For these eight ligands, the number
of predicted interacting residues ranged from 9 to 13 and from 6 to 12 for the HVEM and
nectin-1 binding interfaces, respectively. The number of H-bonds ranged from 0 to 3 for
both binding interfaces.



Pharmaceuticals 2022, 15, 361 4 of 19

Table 1. List of compounds selected for in vitro validation based on in silico predictions on the
(herpes virus entry mediator) HVEM and nectin-1 binding interfaces of glycoprotein D.

ID Database ID Name Empirical
Formular

Molecular
Weight

Docking Score on
Drug
ScoreHVEM

Site
Nectin-1

Site

7 Sn00074072

1-(1-benzofuran-2-yl)-2-[(5Z)-
2H,6H,7H,8H-[1,3]dioxolo

[4,5-g]isoquinoline-5-
ylidene]ethenone

C20H15NO4 333.34 −8.2 −8.6 0.58

10 Sn00115356

13-[3-(4-methylpiperazin-1-yl)-3-
oxopropyl]-8,13-

dihydroindolo[2′,3′:3,4] pyrido
[2,1-b]quinazolin-5(7H)-one

C26H27N5O2 441.53 −8.2 −8.5 0.69

12 Sn00099520

(2S,5Ar,6Ar,9S,9Ar)-2,5a-dimethyl-9-
((4-(isoquino-2-yl)piperazin-1-

yl)methyl)octahydro-2H-
oxireno[2′,3′:4,4a]naphtho[2,3-

b]furan-8(9Bh)-one

C24H33N3O3 411.54 −8.5 −7.6 0.77

16 Sn00104387

(1Ar,2S,5Ar,6Ar,9S,9Ar,9Bs)-2,5a-
dimethyl-9-((4-phenylpiperazin-1-

yl)methyl)octahydro-2H-
oxireno[2′,3′:4,4a]naphtho[2,3-

b]furan-8(9Bh)-one

C25H34N2O3 410.56 −8.3 −7.6 0.74

17 Sn00104404

(1Ar,2S,5Ar,6Ar,9S,9Ar,9Bs)-9-( (4-(
5-chloro-2-methylphenyl)piperazin-1-
yl)methyl)-2,5a-dimethyloctahydro-
2H-oxireno[2′,3′:4,4a]naphtho[2,3-

b]furan-8(9Bh)-one

C26H35ClN2O3 459.03 −8.4 −7.9 0.58

27 Zinc96221711
5-(7-Hydroxy-1H-benzofuro[3,2-

b]pyrazolo[4,3-e]isoquino-4-yl)-1H-
pyrrolo[3,2,1-ij]isoquinol-4(2H)-one

C23H14N4O3 394.39 −9.3 −9.4 0.53

28 Zinc96115494

N-((S)-5,11-dioxo-2,3,5,10,11,11a-
hexahydro-1H-benzo[e]pyrrolo[1,2-

a][1,4]diazepin-7-yl)-2-(3-
oxoisoindolin-1-yl)acetamide

C22H20N4O4 404.43 −9.5 −8.6 0.76

29 Sn00346605 Arcyriaflavin A C20H11N3O2 325.3 −9.1 −9.1 0.89

2.2. Investigating the Antiviral Activity of Selected Compounds by In Vitro Assays
2.2.1. Determination of Cytotoxicity of ACs

Eight ACs, selected based on their docking scores against both the HVEM and nectin-1
binding interfaces, ADMET profiles, and commercial availability, were investigated for
cytotoxicity in African green monkey kidney cell line (VERO). Data from cytotoxicity assays
were used to determine test concentrations to be used in cytopathic effect (CPE) inhibition
assays, as summarized in Table 3. Three compounds demonstrated negligible toxicity at
the highest concentration tested (100 µg/mL) compared with dimethyl sulfoxide (DMSO)
control: #7, 1-(1-benzofuran-2-yl)-2-[(5Z)-2H,6H,7H,8H-[1,3]dioxolo[4,5-g]isoquinoline-5-
ylidene]ethenone; #27, 5-(7-Hydroxy-1H-benzofuro[3,2-b]pyrazolo[4,3-e]isoquino-4-yl)-1H-
pyrrolo[3,2,1-ij]isoquinol-4(2H)-one; and #28, N-((S)-5,11-dioxo-2,3,5,10,11,11a-hexahydro-
1H-benzo[e]pyrrolo[1,2-a][1,4]diazepin-7-yl)-2-(3-oxoisoindolin-1-yl)acetamide. These com-
pounds were subsequently tested at 10 µg/mL in downstream CPE assays.
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Figure 2. Structure of the eight natural compounds selected as potential glycopro-
tein D inhibitors by molecular docking. All eight compounds were subjected to
in vitro validation. Listed active compounds (ACs) are: #7,1-(1-benzofuran-2-yl)-
2-[(5Z)-2H,6H,7H,8H-[1,3]dioxolo[4,5-g]5soquinoline-5-ylidene]ethenone; #10,13-[3-(4-
methylpiperazin-1-yl)-3-oxopropyl]-8,13-dihydroindolo[2′,3′:3,4]pyrido[2,1-b]quinazolin-5(7H)-
one; #12,(2S,5Ar,6Ar,9S,9Ar)-2,5a-dimethyl-9-((4-(5soquino-2-yl)piperazin-1-yl)methyl)octahydro-2H-
oxireno[2′,3′:4,4a]naphtho[2,3-b]furan-8(9Bh)-one; #16,(1Ar,2S,5Ar,6Ar,9S,9Ar,9Bs)-2,5a-dimethyl-9-
((4-phenylpiperazin-1-yl)methyl)octahydro-2H-oxireno[2′,3′:4,4a]naphtho[2,3-b]furan-8(9Bh)-one;
#17, (1Ar,2S,5Ar,6Ar,9S,9Ar,9Bs)-9-((4-(5-chloro-2-methylphenyl)piperazin-1-yl)methyl)-2,5a-
dimethyloctahydro-2H-oxireno[2′,3′:4,4a]naphtho[2,3-b]furan-8(9Bh)-one,#27,5-(7-Hydroxy-1H-
benzofuro[3,2-b]pyrazolo[4,3-e]5soquino-4-yl)-1H-pyrrolo[3,2,1-ij]5soquinol-4(2H)-one; #28,
N-((S)-5,11-dioxo-2,3,5,10,11,11a-hexahydro-1H-benzo[e]pyrrolo[1,2-a][1,4]diazepin-7-yl)-2-(3-
oxoisoindolin-1-yl)acetamide, #29, Arcyriaflavin A. Their molecular structures were illustrated using
ChemDraw 18.2 (PerkinElmer).

Table 2. Predicted interactions between (herpes virus entry mediator) HVEM and nectin-1 binding
interfaces of glycoprotein D and compounds selected for in vitro validation.

ID

HVEM Binding Interface Nectin-1 Binding Interface

No. of
Interacting
Residues

No. of
H-bonds

Interacting
Residues

No. of
Interacting
Residues

No. of
H-bonds

Interacting
Residues

7 9 0
M11, A12, P14, F17,
L22, P23, V24, L25,

Y234
9 2

Y38, H39, R134, D215,
L220, P221, I296, P297,

A303

10 11 1
M11, A12, P14, F17,
L22, P23, V24, L25,

D26, Q27, Y234
12 2

Y38, H39, R134, D215,
M219, L220, P221, I296,
P297, S298, I299, A303

12 9 0
M11, A12, P14, F17,
P23, V24, L25, Q27,

Y234
9 0

Y38, H39, R134, T213,
D215, I299, D301, A302,

A303
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Table 2. Cont.

ID

HVEM Binding Interface Nectin-1 Binding Interface

No. of
Interacting
Residues

No. of
H-bonds

Interacting
Residues

No. of
Interacting
Residues

No. of
H-bonds

Interacting
Residues

16 9 0
M11, A12, P14, F17,
P23, V24, L25, Q27,

Y234
9 0

Y38, H39, R134, T213,
D215, I299, D301, A302,

A303

17 11 0
M11, A12, D13, P14,

F17, P23, V24, L25, D26,
Q27, Y234

10 1
Y38, R134, D215, L220,
P221, I296, P297, S298,

I299, A303

27 9 2 A12, P14, N15, F17,
R18, G19, L22, V24, L25 8 2 Y38, R134, D215, L220,

P221, R222, I296, P297

28 13 3
M11, A12, D13, P14,

F17, R18, G19, L22, P23,
V24, L25, Q27, Y234

8 3 Y38, H39, R134, T213,
D215, P221, A303, T304

29 9 1
M11, A12, P14, F17,
L22, V24, L25, Q27,

Y234
6 2 Y38, R134, D215, G218,

L220, P221

(A) (B)

Figure 3. Binding interaction diagrams of the eight compounds selected for in vitro validation with
the (herpes virus entry mediator) HVEM (A) and nectin-1 (B) binding interfaces of HSV-1 glycoprotein
D as predicted by molecular docking. Red lines represent hydrophobic contacts, and broken green
lines represent hydrogen bonds, with distances in angstroms.
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Table 3. Cell viability of tested antiherpes active compounds with African green monkey kidney cell
line (VERO).

ID Highest Concentration with
Cell Viability above 75%

Relative Cell
Viability *

Test
Concentration

7 >100 µg/mL 123.7% ± 4.8% 10 µg/mL

10 1 µg/mL 73.2% ± 5.9% 1 µg/mL

12 1 µg/mL 77.4% ± 4.2% 1 µg/mL

16 1 µg/mL 102.1% ± 16.7% 1 µg/mL

17 1 µg/mL 96.8% ± 7.1% 1 µg/mL

27 >100 µg/mL 105.9% ± 0.2% 10 µg/mL

28 >100 µg/mL 105.0% ± 0.5% 10 µg/mL

29 1 µg/mL 86.2% ± 14.8% 1 µg/mL
* Relative cell viability of ACs is presented as mean ± standard deviation.

The remaining five ACs exhibited toxicity to the cells at a concentration of 10 µg/mL
(Table 3): #10, 13-[3-(4-methylpiperazin-1-yl)-3-oxopropyl]-8,13-dihydroindolo[2′,3′:3,4]pyrido
quinazolin-5(7H)-one; #12, (2S,5Ar,6Ar,9S,9Ar)-2,5a-dimethyl-9-((4-(isoquino-2-yl)piperazin-
1-yl)methyl)octahydro-2H-oxiren[2′,3′:4,4a]naphtho[2,3-b]furan-8(9Bh)-one; #16, (1Ar,2S,5Ar,
6Ar,9S,9Ar,9Bs)-2,5a-dimethyl-9-((4-phenylpiperazin-1-yl)methyl)octahydro-2H-oxireno[2′,3′:
4,4a]naphtho[2,3-b]furan-8(9Bh)-one; #17, (1Ar,2S,5Ar,6Ar,9S,9Ar,9Bs)-9-((4-(5-chloro-2-
methylphenyl)piperazin-1-yl)methyl)-2,5a-dimethyloctahydro-2H-oxireno[2′,3′:4,4a]naphtho
furan-8(9Bh)-one; and #29, Arcyriaflavin A. Therefore, these five compounds were tested at
a concentration of 1 µg/mL in downstream CPE assays.

2.2.2. Investigating the Mechanism of Action of ACs by Time of Addition Assay

Next, the eight ACs were assessed in cell-based assays to test for antiviral activity
against HSV-1. Three separate assays were performed to elucidate the mechanism of action
(Figure 4A,C,E). A viral inactivation assay was performed by incubating HSV-1 with ACs
at 10 µg/mL or 1 µg/mL (depending on cytotoxicity) before addition to the cells. Viral
attachment and entry-inhibition assay involved the simultaneous addition of virus and
ACs to cells (Figure 4C), whereas post-entry effects of ACs were investigated by adding
ACs 1 h post-HSV-1 infection (Figure 4E). The initial screening was performed using a
low MOI of 0.01 (Supplementary Materials Figure S1). Three promising ACs, #7, #27, and
#28, were selected based on cytotoxicity (Table 3) and preliminary results (Figure S1) and
further tested at MOI of 5, which triggered a cytopathic effect in 90% of cultured cells. The
inhibitory effect of each compound was measured by cell survival as determined by using
water-soluble tetrazolium 1 (WST-1) reagent (Figure 4).
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Figure 4. Antiviral screening assays for three selected active compounds. The antiviral activity of
active compounds (ACs) was investigated at three different stages. The antiviral activity of ACs #7,
#27, and #28 was tested at 10 µg/mL. (A) Schematic diagram of the viral inactivation assay performed
by preincubating Herpes Simplex Virus type 1 (HSV-1) with ACs for 1 h prior to addition to cells
is. (B) Results of the viral inactivation assay. Viral attachment and entry inhibition of ACs were
investigated by simultaneously adding the virus and ACs to cells, as shown in (C); results are shown
in (D). The post-entry antiviral effect of ACs was tested by adding ACs after infection (E); results
are plotted in (F). Cells infected with the virus and treated with dimethyl sulfoxide (DMSO) at 0.1%
v/v were included as solvent controls. This experiment was performed four times with triplicates.
Means of the four experiments are plotted with standard error of the mean. Friedman test, followed
by Dunn’s test, was used to determine statistical significance (* p < 0.05, ** p < 0.01).

Two out of eight tested compounds demonstrated promising antiviral activity at
different stages of infection. AC#7 exhibited significantly higher activity than the DMSO
control at the viral inactivation stage, as shown in Figure 4B. AC#27 was also found to
possess antiherpetic activity; however, this effect was seen at the post-entry stage (Figure 4F),
indicating inhibition at later stages of the viral infection. The antiviral activity of AC#7
was found to be most effective when added to the virus prior to addition to the cells. No
antiviral activity was observed when cells were preincubated with AC#7 (at 10 µg/mL)
prior to HSV-1 infection (Figure S2). Based on the obtained data, the activity exhibited by
AC#7 reflects the hypothesized mechanism of action predicted by the molecular docking
study. Therefore, AC#7 was selected for further testing using a dose–response assay.

2.2.3. Estimating the Efficacy of ACs by Plaque Reduction Assay

To visualize and evaluate the activity of AC#7, a plaque reduction assay was performed
at concentrations from 400 µM (133.33 µg/mL) to 6.25 µM (2 µg/mL) using two-fold serial
dilutions. Cells treated with DMSO only at concentrations ranging from 1.33% (v/v) to
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0.02% (v/v) were used as a solvent control, and the results are plotted in Figure 5. AC#7
significantly reduced the number of virus-induced plaques compared to the DMSO control
at a concentration of 25 µM (Figure 5A). This is consistent with the results obtained from the
CPE assay, in which the AC was tested at a concentration of 30 µM (10 µg/mL) (Figure 4B).
Notably, AC#7 demonstrated a dose-dependent antiviral response when pre-incubated
with the virus compared to the DMSO control (Figure 5B).

Figure 5. Quantification of the antiviral activity of AC #7. The antiviral activity of AC#7 was investi-
gated by plaque reduction assay in African green monkey kidney cell line (VERO). (A) AC#7 demon-
strated significantly high antiviral activity at a concentration of 25 µM compared to the dimethyl
sulfoxide (DMSO) control (0.08% v/v). (B) AC#7 exhibited antiviral activity in a dose-dependent
manner compared with the DMSO controls. The DMSO controls were tested at concentrations of
1.33%, 0.67%, 0.33%, 0.16%, 0.08%, 0.04%, and 0.02% (v/v), which are the concentrations at which
AC#7 was dissolved in Dulbecco’s Modified Eagle Medium (DMEM) media. The plaque reduction
assay was performed three times with duplicates. Means of the three experiments are plotted with
standard error of the mean. One-sample t-test was applied to compare the antiviral activity of the
DMSO control and AC#7 (* p < 0.05).

The EC50 value of AC#7 was 183 µM (61 µg/mL), as calculated based on the asym-
metric nonlinear regression model (R2 = 0.84). To determine the therapeutic index (TI),
the cytotoxicity of AC#7 was further tested at a concentration of 800 µM. Cell viability
was measured 46 h after the 2 h of exposure to AC#7. Negligible toxicity to VERO cells
was found, as illustrated in Figure 6. Thus, the TI of AC#7 is estimated to be >4.37, which
suggests this molecule could serve as a potential lead compound for future antiviral drug
development [43,44].

For comparison, the standard antiherpetic drug ACV was tested in parallel to AC#7.
ACV was added post-HSV infection due to its inhibitory mechanism at the viral DNA
replication stage (Figure S3). The EC50 of ACV was 0.77 µM, determined using the same
asymmetric nonlinear regression model (R2 > 0.99). This is consistent with previously
published in vitro results obtained with VERO cells in which the calculated EC50 for ACV
lies between 0.3 and 4.3 µM [45,46].
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Figure 6. Toxicity of AC#7 in VERO cells at 800 µM. The cytotoxicity of AC#7 was tested by incubating
Vero cells with AC#7 (800 µM) for 2 h. AC#7 was then removed, and cells were incubated in fresh
media for a further 46 h before cell viability was evaluated using water-soluble tetrazolium 1. Cells
without any treatment were included as cell-only control and used to calculate cell viability. Cells
treated with dimethyl sulfoxide (DMSO) (2.7% v/v), corresponding to the solvent concentration in the
tested samples, were used as the solvent control. The wells treated with 1% (v/v) Triton X-100 were
used as a negative control. The cytotoxicity assay was performed three times with duplicates. Means
of the three experiments are plotted with standard error of the mean. Wilcoxon test was applied to
compare the cytotoxicity of DMSO control and AC#7 (ns indicates not significant, p > 0.05).

3. Discussion

The basis of this study lies in the well-understood interactions between HSV-1 en-
velope glycoprotein D and its cellular receptors [18,19]. The wild-type strains of HSV-1
exploit either nectin-1 or HVEM as entry receptors to infect host cells, depending on the
cell type [47,48]. For key target cells, neurons and human keratinocytes, nectin-1 has been
reported as the primary receptor and is therefore the most important. Alternatively, HVEM
functions as the main receptor in nectin-1-deficient cell lines, with similar infectivity [47–49].
Thus, it may be important for antiviral compounds to inhibit both nectin-1 and HVEM
binding sites on gD to be considered potential therapeutic agents. The interaction between
HVEM and gD forms an N-terminal hairpin structure that masks the nectin-1 binding site,
whereas the binding between nectin-1 and gD blocks the accessibility of the HVEM [16].
Therefore, molecular docking must be performed on multiple regions of the glycoprotein, a
requirement that entails significant computational resources to screen the large compound
library of over 500,000 molecules used in this study. To overcome this obstacle, an inno-
vative docking strategy was applied, resulting in the selection of eight compounds with
predicted affinity to both binding sites in silico.

Among the eight chosen molecules, AC#7, [1-(1-benzofuran-2-yl)-2-[(5Z)-2H,6H,7H,8H-
[1,3] dioxolo[4,5-g] isoquinolinelin-5-ylidene]ethenone] was identified as a weak HSV-1
inhibitor. The Gibbs free energy values generated by the docking software for AC#7 on both
sites were −8.2 kcal/M and −8.6 kcal/M for the HVEM and nectin-1 sites, respectively.
However, affinity with gD is not necessarily correlated with the potency of antiviral activity.
A number of aptamers that have been reported to demonstrate strong affinity with gD
at nanomolar concentrations using surface plasmon resonance were found to possess
insignificant antiviral activity in vitro [50]. Therefore, some highly ranked hits, such as
AC#28 and #29, may still bind gD, although they failed to show antiherpetic activity in the
in vitro assays.

Two weak antiviral ligands were identified in this study; however, only AC#7 demon-
strated activity at the early stage of infection, aligning with the in silico results. AC#7 is
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predicted to interact with nine residues in the HVEM binding interface via hydrophobic
contacts and nine residues in the nectin-1 binding interface via hydrophobic contacts and
two hydrogen bonds. Notably, the interaction at the nectin-1 interface involves amino
acid residue Y38, which has been identified as critical for viral entry via the nectin-1 recep-
tor [51–53]. Additionally, there are no overlapping residues between the binding interfaces,
suggesting that the compound can bind to both sites simultaneously. However, although
AC#7 exhibited low antiviral activity in the early stage of infection, further tests are required
to confirm the interaction between this compound and glycoprotein D. Techniques such as
surface plasmon resonance could provide deeper insights into the mechanism of action at a
molecular level and could guide chemical modifications to improve the antiviral efficacy of
this compound.

The compound 9-((2-Hydroxyethoxy) methyl) guanine, commonly known as ACV,
is the gold standard in the treatment of HSV-1 infection, with an EC50 of around 1 µM
in vitro [54]. ACV is a typical nucleoside analogue that acts after viral entry, requiring
phosphorylation by virally encoded thymidine kinase to prevent viral DNA elongation,
resulting in a shorter duration of infection and relief from symptoms [10,55]. Other antiher-
petic drugs, including nucleosides, nucleotides, and pyrophosphate analogues, all target
viral replication and hence fail to eliminate the lifelong latent infection caused by HSV-
1 [10]. Docosanol is the only approved herpesvirus entry inhibitor and directly interferes
with the host-cell surface phospholipids [56]. However, drugs targeting host cells may lead
to higher toxicity and lower selectivity compared to compounds that interact specifically
with viral components [10,57]. Compared to these drugs, AC#7 demonstrated a distinct
mechanism, reducing HSV-1 infection at an early stage. This unique activity of AC#7 can
be used to exploit this molecule as the basic structure for future drug modification.

Although AC#7 acts at the early stage of infection with an acceptable selectivity
(therapeutical index >4) [44], its low antiviral activity remains the main drawback for its
consideration as a potential antiviral agent. This may be explained by several reasons.
Firstly, it has proven challenging for small molecular compounds to inhibit high-affinity
interactions between proteins with contributions from either continuous or discontinuous
sites in their respective protein structures [58–60]. Another explanation is the potential
interaction between these ligands and other viral or cellular components. Given that
molecular docking does not account for the complex environment of in vitro conditions,
unknown off-target effects are a limitation of virtual screening [61].

Discovery of structures with low activity can lead to the identification of potent
compounds via medicinal chemistry approaches. As an example, the HSV-1 ribonucleotide
reductase inhibitor BILD 1633 SE demonstrated higher antiviral activity than ACV in vitro
and exhibited a potent therapeutic effect against ACV-resistant HSV-1 infections in vivo [62].
This antiherpetic agent was designed via extensive drug modification and optimization
of a series of peptides with initial EC50 values between 30 and 780 µM in vitro [63–65].
The drug improvement process of BILD1633 SE demonstrates the feasibility of improving
the potency of molecules via medicinal chemistry approaches [62–65]. More recently,
a chemical-modification design strategy targeting the cysteine-3-like protease (3CLpro)
enzyme of severe acute respiratory syndrome coronavirus (SARS-CoV), has given rise
to the novel antiviral PF-00835231, the main component of Paxlovid [66]. A previously
identified inhibitor of human rhinovirus (rupintrivir) was used as the basis of the study;
however, the drug and other modified versions produced weak to undetectable inhibition
of SARS-CoV 3CLpro. Consequently, structural binding data from co-crystallography
experiments were used to guide chemical modifications, resulting in the production of
PF-00835231. Although initially intended for SARS-CoV, this compound demonstrates
promising activity against SARS-CoV-2 and is currently being studied in clinical trials [67].
Based on these examples, a similar pathway could be applied to AC#7 to engineer superior
antiherpetic compounds.

Natural compounds are an important resource for modern drug development. More
than 100 small molecules with diverse antiherpetic activities have been identified from a
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wide range of organisms [8,43,68,69]. AC#7 was originally derived from glycyrrhiza glabra,
which has been found to have versatile bioactivity, including antiviral activity [70–73].
This molecule contains benzofuran and isoquinoline elements (Figure 2), which have both
been found to possess antiviral abilities [74–76]. To the best of our knowledge, this is the
first report of antiherpetic activity of a molecule with both benzofuran and isoquinoline
elements in vitro, suggesting a promising foundation for designing a new generation of
antiviral drugs via medicinal chemistry.

The fact that AC#7 reduced HSV-1 at the early stage of infection in a dose-dependent
manner shows that this compound likely acts on the viral surface glycoprotein, gD, as
predicted by the molecular docking analysis. Identification of a new natural molecule with
an antiviral mode of action different from that of ACV provides a fresh basis for subsequent
drug development and optimization.

4. Materials and Methods
4.1. In Silico Screening
4.1.1. Preparation of Natural Compound Library

A total of 527,209 compounds from five natural compound libraries (SuperNatural
II [77], Phenol Explorer [78], Human Metabolome Database [79], Marine Natural Prod-
ucts [80], and ZINC Natural Products [81]) were downloaded in SDF format from the
Miguel Hernandez University Molecular Docking site [82]. To prepare ligands for docking,
each compound was edited with PyMOL to include polar hydrogens [83]. For the initial
round of virtual screening, 3D coordinates were generated by converting files to MOL2
format with Marvin Suite 6.0 from ChemAxon [84]. Ligands were then energy-minimized
using the universal force field (UFF) and converted to PDBQT format with Open Babel
software v 3.1.1[85]. For the second round of screening, ligands were energy-minimized
and converted from SDF to PDBQT format using the PyRx virtual screening tool [86].

4.1.2. Preparation of Receptor Proteins

Glycoprotein D, the key surface protein of HSV-1 involved in viral attachment to host
cells, was selected for molecular docking. The X-ray-derived crystal structures for gD
complexed with HVEM (Protein Data Bank (PDB) ID: 1JMA) and in unliganded form (PDB
ID: 2C36) were downloaded from the RCSB protein databank [18]. To prepare receptors for
screening, files were edited using PyMOL to add polar hydrogens and to remove water
molecules, ions, and ligands [83]. PDB files were converted to PDBQT format using the
PyRx virtual screening tool [86].

4.1.3. Virtual Screening on the HVEM Binding Site of gD

Virtual screening was performed using AutoDock Vina molecular docking software [41].
A targeted docking approach was employed by defining a search space containing residues
involved in the interaction with the native HVEM receptor [18]. The crystal structure of gD
bound to HVEM (1JMA) was used as the docking model, and the search space was defined
as follows: center: coordinates (x,y,z): −27.284, 50.152, −6.099; dimensions (x,y,z): 15.364,
23.087, 22.147. A flexible docking procedure was adopted to account for changes in the
receptor conformation. The gD residues defined as flexible were: C15, R24, V25, E27, A28,
and C29.

To identify optimal docking conformations whilst minimizing the number of compu-
tational resources required, the protocol was conducted in two stages. The initial round of
screening was performed with all 527,209 ligands. For each ligand, the number of docked
conformations (modes) was set to 10, and the number of runs (exhaustiveness) was set to
20. A secondary, more thorough screen was then conducted with the top 10,000 ligands,
with the number of runs increased to 80. As some ligands produced identical docking
scores, the number of compounds screened in this round was 10,897.
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4.1.4. ADMET Analysis

To filter for compounds with favorable absorption, distribution, metabolism, excretion,
and toxicity (ADMET) properties, ligands ranked within the top 25 scores from the sec-
ondary screen were assessed (n = 3893). The OSIRIS property explorer was used to compare
the properties of each ligand to currently traded drugs and predict their toxicity based
on data from the Registry of Toxic Effects of Chemical Substances (RTECS) database [42].
Ligands were filtered for the absence of toxic fragments (mutagenic, tumorigenic, irritant,
or reproductive effects), molecular weight (MW) < 500 Da, hydrophilicity (cLogP) < 5,
solubility (logS) >−6, topological surface area (TPSA) < 120Å2, drug likeness > 0, and
overall drug score >0.5.

4.1.5. Redocking Selected Compounds on the Nectin-1 Binding Site of gD

As nectin-1 is a primary receptor of gD and occupies a binding site distinct from that
of HVEM, the ligands ranked with the top 25 scores, filtered for favorable ADMET profiles
and commercial availability, were redocked against the nectin-1 binding site of gD (n = 26).
For this docking experiment, an unliganded X-ray-derived crystal structure of gD was
used due to its high resolution of 2.11Å (PDB ID: 2C36) [19]. The search space was selected
based on a region of interacting residues at the nectin-1 binding interface known as surface
patch 2 [87]. The following residues were defined as flexible: V37, Y38, H39, Q132, V214,
D215, I217, M219, L220, R222, and F223. The search space was defined as follows: center
coordinates (x,y,z): 60.637, 42.391, 98.991; dimensions (x,y,z): 20.428, 24.261, 15.139. As with
the virtual screen against the HVEM binding site, the number of docked conformations
was set to 10, and the number of runs was set to 80.

The docking results were visualized using PyMOL. Residues involved in hydrogen-
bonding and hydrophobic interactions were plotted using LigPlot+ software [88].

4.2. In Vitro Validation
4.2.1. Chemicals

A total of 8 synthetic purified ACs with docking scores ≤−8.2 for the HVEM site
and ≤−7.6 for the nectin-1 site and favorable ADMET properties were selected for in vitro
screening. All ACs were purchased from VITAS-M laboratory, USA, as listed in Table 1.
Their molecular structures are illustrated by ChemDraw 18.2 (PerkinElmer). Each com-
pound was dissolved in molecular-grade dimethyl sulfoxide (DMSO) (Sigma, Melbourne,
Australia) to a final concentration of 10 mg/mL and kept at −20 ◦C until use.

4.2.2. Cells and Virus

HSV-1 strain F was used in all antiviral assays in this study. African green mon-
key epithelial kidney (VERO) cells were cultured in Dulbecco’s modified Eagle medium
(DMEM) (Lonza, Thermo Fisher Scientific, Walkersville, MD, USA) supplemented with
10% (v/v) fetal bovine serum (FBS) and 1% (v/v) penicillin streptomycin (Gibco, Thermo
Fisher Scientific, Scoresby, VIC, Australia) at 37 ◦C under 5% CO2. HSV-1 was propagated
in VERO cells and titrated by plaque assay as described in [8]. Viral stocks were aliquoted
and kept at −80 ◦C until use.

4.2.3. Cytotoxicity of ACs

The cytotoxicity of each AC was determined using WST-1 reagent (Sigma, Australia)
as described previously [43]. VERO cells were seeded in 96-well plates at a density of
10,000 cells per well for 24 h at 37 ◦C under 5% CO2. Then, the ACs were 10-fold serially
diluted in DMEM supplemented with 2% (v/v) FBS and 1% (v/v) penicillin streptomycin to
concentrations of 100 µg/mL, 10 µg/mL, 1 µg/mL, and 0.1 µg/mL and incubated with the
cells for 24 h at 37 ◦C. After incubation, cells were washed with DMEM with 2% FBS and
1% (v/v) penicillin streptomycin once and incubated with 10% (v/v) WST-1 for 2 h at 37 ◦C
under 5% CO2. To determine cell viability, plates were read by a SpectraMAX iD3 plate
reader (Molecular Devices) at 450 nm. The absorbance at 620 nm was used as a reference.
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Cells treated with DMSO only were included as solvent controls, and untreated cells were
included as cell-only control. Wells containing DMEM without cells were prepared as
blanks. The cytotoxicity of each AC was calculated by comparing treated cells with the
DMSO control Equation (1). The experiment was performed in quadruplicate.

1 =
ACA450 − BlankA450

Cell controlA450 − BlankA450
× 100% = Cell viability % (1)

4.2.4. Time of Addition Assay

A cytopathic effect (CPE) inhibition assay was applied to screen for the antiviral
activity of selected ACs at different time points. VERO cells were seeded in 96-well plates
at a density of 10,000 cells per well for 24 h before the addition of virus at 37 ◦C under 5%
CO2. The initial screening was conducted at a multiplicity of infection (MOI) = 0.01; then,
the active compounds were tested with a higher MO1 = 5 to confirm their activity. ACs
were tested at 10 µg/mL or 1 µg/mL depending on their cytotoxicity.

To identify compounds with antiviral activity, virus and ACs were added at different
time points: viral inactivation (preincubation of the virus with ACs for 1 h prior to addition
to cells at 37 ◦C under 5% CO2), attachment and entry (ACs and virus were added to
cells simultaneously), and post-entry stages (ACs were added 1 h after HSV-1 infection
of cells and were kept during the entire 48 h incubation at 37 ◦C under 5% CO2). After
infection, the cells were incubated for another 48 h in DMEM with 2% FBS before addition
of WST-1 to quantify cell viability. Three controls were included: Solvent controls were
prepared by diluting DMSO at concentration of 0.1% (v/v) in DMEM without ACs and
added to the cells at different time points corresponding to the samples. Cells cultured
with DMEM only were prepared as the cell control, and cells infected with virus without
DMSO were included as the virus control. The initial antiviral activity of each AC was
calculated using Equation (2) as described in [89], with modifications. The initial screening
(with MOI = 0.01) was performed once in quadruplicate, and the secondary experiments
(with MOI = 5) were conducted four times in triplicate. The ACs that demonstrated CPE
inhibition were further analyzed by plaque reduction assay.

2 =
ACA450 −Viral controlA450

Cell controlA450 −Viral controlA450
× 100% = Inhibition % (2)

4.2.5. Plaque Reduction Dose–Response Assay

The antiviral activity of selected ACs on VERO cells was quantitatively determined by
plaque reduction assay as described in [43], with modifications. VERO cells were seeded
in 24-well plates (50,000 cells/well) for 24 h. The virus was diluted to 50 plaque-forming
units (PFU) per 0.2 mL and preincubated with the ACs at different concentrations (400, 200,
50, 25, 12.5, and 6.25 µM) or DMSO controls (1.33%, 0.67%, 0.33%, 0.16%, 0.08%, 0.04%, and
0.02%, v/v) for 1 h before being added to the cell monolayer. Then, the cells were incubated
with the mixture for 1 h at 37 ◦C under 5% CO2. After removing the inoculum, the cells
were rinsed with PBS and overlayed with DMEM containing 1.6% carboxymethyl cellulose
(CMC) and 1% FBS. After incubation for 48 h, the cells were fixed with methanol and
stained with 0.5% crystal violet (Sigma, Australia). The number of plaques was counted
manually using upright microscopy (Olympus, Tokyo Japan). Cells infected with virus
without DMSO were included as the virus control. The antiviral activity was calculate
using Equation (3) [90], and the EC50 values were determined by linear regression analysis
of the dose–response curve.

3 =
Plaque numberViral − Plaque numberAC

Plaque numberViral
× 100% = Inhibition % (3)



Pharmaceuticals 2022, 15, 361 15 of 19

4.2.6. Toxicity of AC#7 on VERO Cells at High Concentrations

Since AC#7 did not exhibit cytotoxicity to VERO cells in the plaque reduction assay
at a concentration of 400 µM, its toxicity was further tested at 800 µM in 96 well-plates.
Due to stock limitation, 800 µM was the highest concentration that could be tested. Briefly,
VERO cells were seeded in 96-well plates at a density of 10,000 cells per well for 24 h at
37 ◦C under 5% CO2. Then, the cells were exposed to AC#7 at a concentration of 800 µM or
controls for 2 h at 37 ◦C under 5% CO2. AC#7 or controls were then removed and replaced
with fresh DMEM with 2% FBS and 1% penicillin streptomycin. Cells were incubated for
46 h at 37 ◦C under 5% CO2. After incubation, cells were washed with DMEM once and
incubated with 10% (v/v) WST-1 for 2 h at 37 ◦C under 5% CO2. Cells treated with DMSO
at 2.7% (v/v), corresponding to the solvent used to dissolve 800 µM AC#7 in DMEM, were
included as solvent control. Cells treated with Triton X-100 at 1% (v/v) (Sigma, Australia)
were included as negative control, and untreated cells were included as cell-only controls.
Then, the cell viability of AC#7 was calculated using Equation (1). Wells containing DMEM
without cells were prepared as blanks. The experiment was performed three times with
duplicates.

4.3. Statistical Analysis

All statistical analyses were performed using GraphPad Prism 9 software (GraphPad
Software, Inc., San Diego, CA, USA). Linear regression curves were obtained using the
five-parameter logistic sigmoidal model offered by the same software. Significance testing
between multiple samples and controls was performed using Friedman test followed by a
post-hoc Dunn’s multiple comparisons test. Wilcoxon matched test or t-tests were applied
to compare the mean between two samples.

5. Conclusions

This study represents the first application of a large-scale structure-based virtual screen
targeting the binding interfaces of HSV-1 glycoprotein D to identify inhibitors of early
viral infection. Two out of eight selected compounds exhibited significant activity against
HSV-1 infection in vitro. Notably, compound AC#7 demonstrated a mechanism of action
consistent with inhibiting early-stage infection. Although the potency of AC#7 is lower
than that of current first-line drugs, these data suggests that it could serve as a structural
basis for further drug development. More importantly, this work supports the use of
molecular docking as a powerful tool for identifying novel antiviral compounds. Future
studies will expand on these computational methods with an aim to screen additional
compound libraries, as well as other viral protein targets.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ph15030361/s1, Figure S1: Preliminary screening of antiviral activity of eight select ACs;
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