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Abstract: A multi-target small molecule modulator is advantageous for treating complicated diseases
such as cancers. However, the strategy and application for discovering a multi-target modulator
have been less reported. This study presents the dual inhibitors for kinase and carbonic anhydrase
(CA) predicted by machine learning (ML) classifiers, and validated by biochemical and biophysical
experiments. ML trained by CA I and CA II inhibitor molecular fingerprints predicted candidates
from the protein-specific bioactive molecules approved or under clinical trials. For experimental
tests, three sulfonamide-containing kinase inhibitors, 5932, 5946, and 6046, were chosen. The enzyme
assays with CA I, CA II, CA IX, and CA XII have allowed the quantitative comparison in the molecules’
inhibitory activities. While 6046 inhibited weakly, 5932 and 5946 exhibited potent inhibitions with
100 nM to 1 µM inhibitory constants. The ML screening was extended for finding CAs inhibitors of
all known kinase inhibitors. It found XMU-MP-1 as another potent CA inhibitor with an approximate
30 nM inhibitory constant for CA I, CA II, and CA IX. Differential scanning fluorimetry confirmed the
direct interaction between CAs and small molecules. Cheminformatics studies, including docking
simulation, suggest that each molecule possesses two separate functional moieties: one for interaction
with kinases and the other with CAs.

Keywords: carbonic anhydrase; cheminformatics; docking simulation; dual inhibitor; fingerprint;
kinase; machine learning; polypharmacology

1. Introduction

A molecule targeting a single disease-related protein often causes insufficient efficacy,
even potent from the viewpoint of target engagement. Therapeutic strategies for treating
cancer, neurodegenerative, cardiovascular, and infectious diseases often necessitate mul-
tiple target simultaneous modulation due to their complicated origins [1–3]. Targeting
numerous targets may increase side effects. There is an increasing interest in developing
therapeutics that selectively manipulate multiple desired pathways at once [4].

Two approaches are known for simultaneous control. The first method is a mixture of
monotherapies, including a combination of drugs with an active ingredient and a single for-
mula comprising multiple active ingredients. The second approach is a single molecule that
can modulate several targets. Multi-target-directing molecules are advantageous because
of the fewer side effects and toxicities [5,6]. Instead, finding and designing a molecule with
multiple functions is not straightforward, necessitating an effective strategy [4,7].

One of the diseases where the multiprotein-targeting modulators are necessary is
cancer [8]. Cancer cells have changed signal pathways. The altered pathways are the
causes and effects of the disease. Drugs targeting several cancer pathways have been
developed. Notably, more than 40 small molecule kinase inhibitors have been approved [9].
Meanwhile, cancer cells require more control of pH. Carbonic anhydrases (CAs) catalyze
the production of carbonate ion from carbon dioxide, and mono- and di-carbonate are part
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of the central buffer systems in our bodies. The increased modulation of pH requires the
hyper-functioning CAs. Indeed, the relation between the decreased survival rates and the
elevated CA IX and CA XII in triple-negative breast cancer has been reported [10]. Reliance
on the role of CAs by cancer cells has made CA a target for cancer therapy. Of accumulated
CA inhibitors, dual inhibitors with kinase have been reported [11–13]. Nevertheless, the
dual inhibitors are limited, and there is no established strategy to find new dual inhibitors.

Accumulating chemical and biological data enables the prediction of small bioactive
cellular target molecules. Computational methods have helped to decode off-targets and
polypharmacological effects with the data. The similarity ensemble approach (SEA) is
a representative example [14–16]. Successful SEA applications have been reported for
predicting off-targets of FDA-approved drugs and excipients [17–19]. Besides the SEA,
several computational approaches have been reported [20–24]. Of them, some employ
machine learning (ML) [24].

ML is an approach to finding the hidden rule among the accumulated data. Classifica-
tion, regression, and clustering are three areas applied by ML. If the data are significant,
one can apply deep learning using neural networks. Two crucial factors for ML are the
features to train and the algorithm. How to select and optimize the pair determines the per-
formance of ML. Popular features to employ ML for small molecule research are molecular
fingerprints. Several applications have been reported for discovering new inhibitors against
a specific target, including the inhibitor screenings for JAK2 and FGFR4 kinases [25,26].
However, the applications to discover multiple modulators or find off-targets are less
known. The coupled experimental validation with the prediction is especially limited.

This study reports the dual inhibitors of kinases and CAs using ML and experiments.
The small molecule inhibitors of CA I and CA II were gathered and treated as active.
Their physicochemically matched but topologically different decoys were generated for
use as inactive molecules. The conversion of each molecule into a molecular fingerprint
and the trainings using the ML classifiers followed. Use of an external dataset allowed
selection of the best pair of features and classifiers. The selected ML classifier screened
the database of experimentally validated protein-specific modulators. The successive
biochemical and biophysical experiments confirmed the inhibitory activities of the predicted
kinase inhibitors against CAs. The ML classifier was extended for screening all known
kinase inhibitors. The cheminformatics, including docking simulation, also provide the
chemical features of the dual inhibitors.

2. Results
2.1. The Pair of ECFP4 Fingerprint and Logistic Regression Classifier Was Selected for Screening

We retrieved the inhibitors for human CA I (UniProt ID: P00915) and CA II (P00918)
from BindingDB [27]. Here, molecules smaller than 500 Da and more potent than 500 nM
in terms of inhibitory constant (Ki) or half-maximal inhibitory concentration (IC50) were
considered. Once clustering the molecules with the cutoff of 0.6 Tanimoto coefficient (TC),
the most potent ones in each cluster were representatively chosen as active. This is to
minimize the bias in the chemical spaces of the ligands. Then, the DUD-E server [28] gener-
ated 40 decoys per inhibitor, which were treated as inactive. No decoy shares similarity
higher than 0.6 to inhibitors and 0.8 to each other in TC. The respective numbers of actives
(inactives) for CA I and CA II were 167 (6627) and 302 (11,968). We then digitized the
SMILES of each chemical with three fingerprints [29,30], extended-connectivity fingerprint
4 (ECFP4), extended-connectivity fingerprint 6 (ECFP6), and molecular access system keys
(MACCS), and used them as the features for ML classification. For ML classification, we
used seven methods, which are K-Nearest Neighbor (KNN), Naïve Bayesian (NB), Logistic
Regression (Logit), Decision Tree (DT), Random Forest (RF), Multi-Layer Perceptron (MLP),
and Extreme Gradient Boosting (XGBoost).

Table 1 indicates the result metrics by ML classification with three fingerprints and
seven models in two proteins of CA I and CA II (21 cases per protein). The metrics for
judging the results by each ML classifier are accuracy (ACC), the area under the curve of
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receiver operating characteristics curve (AUC), and the Matthews correlation coefficient
(MCC). The values of ACC and AUC were comparable with the values approximating 1,
which makes them less helpful in discriminating the models. Meanwhile, MCC values
differed depending on the combination. MCC is a suited metric reflecting true and false
positives and negatives of varying sizes [31]. The abundance of inactive data in screening
can bring about substantial false positives when the classification is inaccurate. In this
situation, MCC can be the metric for reflecting the reliability of the ML classifier. Overall,
the ECFP4 fingerprint exhibited better results than those with ECFP6 and MACCS. Indeed,
many publications have used ECFP4 as a fingerprint [14,17–19,24,25,32,33]. The models
of Logit and MLP revealed comparable and higher MCC values than other methods.
Therefore, we focused on the two methods.

Table 1. The metrics of machine learning classifiers with fingerprints.

CA I
ECFP4 ECFP6 MACCS

ACC AUC MCC ACC AUC MCC ACC AUC MCC

KNN 0.970 0.950 0.632 0.952 0.932 0.532 0.984 0.916 0.720
NB 0.979 0.697 0.483 0.964 0.660 0.291 0.812 0.868 0.284

Logit 0.994 0.994 0.863 0.993 0.994 0.849 0.989 0.988 0.771
DT 0.988 0.889 0.757 0.985 0.858 0.703 0.985 0.864 0.703
RF 0.992 0.988 0.826 0.990 0.985 0.782 0.990 0.988 0.771

MLP 0.995 0.993 0.883 0.993 0.990 0.843 0.990 0.991 0.794
XGBoost 0.992 0.977 0.832 0.990 0.985 0.797 0.991 0.994 0.815

CA II
ECFP4 ECFP6 MACCS

ACC AUC MCC ACC AUC MCC ACC AUC MCC

KNN 0.981 0.973 0.734 0.972 0.965 0.659 0.984 0.929 0.739
NB 0.932 0.779 0.331 0.872 0.779 0.268 0.840 0.900 0.321

Logit 0.994 0.998 0.878 0.994 0.998 0.869 0.990 0.993 0.793
DT 0.989 0.899 0.777 0.988 0.868 0.747 0.986 0.862 0.716
RF 0.992 0.997 0.831 0.991 0.996 0.801 0.992 0.995 0.815

MLP 0.994 0.996 0.872 0.993 0.995 0.848 0.991 0.996 0.812
XGBoost 0.992 0.994 0.836 0.992 0.995 0.839 0.990 0.995 0.797

The input dataset comprises 167 actives and 6627 inactive molecules for CA I, and 302 and 11,968 for CA II. The
bits for ECFP4, ECFP6, and MACCS fingerprints are 1024, 1024, and 166, respectively. In ML classifiers, KNN
stands for K-Nearest Neighbor, NB for Naïve Bayesian, Logit for Logistic Regression, DT for Decision Tree, RF for
Random Forest, MLP for Multi-Layer Perceptron, and XGBoost for Extreme Gradient Boosting. The metrics are
accuracy (ACC), the area under the curve (AUC) of the receiver operating characteristic curve, and Matthews
correlation coefficient (MCC). The values through five-fold cross-validation are averaged in each.

Using an external dataset can help choose the better ML model [34]. The discriminating
powers in the pairs of ECFP4 and Logit, and ECFP4 and MLP were compared using
an external dataset of FDA-approved drugs. The 1318 small molecules registered as
“Approved drugs” in the International Union of Basic and Clinical Pharmacology database
(IUPHAR) and having a molecular weight smaller than 700 Da were extracted for the
validation [35]. The family of diuretic drugs includes CA inhibitors. All the analogs
showing the similarity to FDA-approved drugs with TC ≥ 0.6 were excluded from the
ligands in the training dataset for a fair comparison. Their corresponding decoys were also
omitted from inactive molecules. Logit and MLP classifiers trained with the remaining
CA I dataset retrieved seven molecules as common candidates. An extensive literature
search confirmed that these seven molecules are direct binders to at least one of the CAs
(Table 2 and Figure S1). The CA inhibitors are valdecoxib (IUPHAR ID: 2894), sulpiride
(5501 and 958), acetazolamide (6792), diclofenamide (6807), methazolamide (6828), and
zonisamide (7047). Logit and MLP classifiers trained using CA II dataset predicted six
common true positives, which are celecoxib (2892), valdecoxib (2894), acetazolamide (6792),
diclofenamide (6807), ethoxzolamide (6814), and methazolamide (6828). These have also
been known to directly interact with CAs. When compared to those from Logit, the results
from MLP classifiers were worse, predicting more non-binders as candidates both in CA I
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and CA II cases (Table 2 and Figure S1). Altogether, it was judged that Logit classifier is
more suited for our study. Notably, Logit classifier is simpler than MLP in terms of the
parameters’ numbers. A simpler model can decrease the concerns on overfitting if the
discriminative powers are comparable.

Table 2. Validation of machine learning classifiers using the approved drug database.

Protein Classifier TP1 TP2 FP Sum

CA I
Logit 7 2 9
MLP 7 1 4 12

CA II
Logit 6 5 11
MLP 6 8 14

True positives 1 (TP1) indicates the known CA targeting drugs predicted both by Logit and MLP classifiers
with ECFP4 fingerprint. True positives 2 (TP2) means additional CA-targeting drugs by MLP. The molecules of
false positives (FP) are those unrelated to CA inhibitors by the literature search. These data are prepared by ML
classifiers trained with other datasets that exclude the actives similar (TC ≥ 0.6) to the approved drugs and their
corresponding inactive molecules.

2.2. Screening Known Protein-Specific Modulators by ML Classified the Candidate Inhibitors
for CA

IUPHAR-registered “Synthetic organics” 6975 molecules smaller than 700 Da were
screened using the two paired ECFP4 and Logit classifiers trained with CA I and CA II
datasets. IUPHAR database contains only experimentally validated protein-specific modu-
lators, mostly FDA-approved or under clinical trials [35]. CA I and CA II cases led to 42
and 49 candidates with p ≥ 0.5, respectively (Table 3 and Figure S2). Of them, 23 molecules
are common in CA I and CA II predictions. Their on-targets are various, but the primary
targets are CAs in 13 molecules (Table 3). It covers 72% (=13/18) of the total 18 CA in-
hibitors in the database (Figure S3). Interestingly, the candidates include 4836 (p = 0.897,
hydrochlorothiazide) and 7197 (0.509, hydroflumethiazide). They are unassigned as CA
inhibitors in the IUPHAR database. However, the literature search found that they inhibit
CAs [36], demonstrating the performance of our ML-based prediction.

Our proof-of-concept study focused on the kinase inhibitors of unverified CA in-
hibitor candidates. The literature search identified four potent kinase inhibitors, 5932
(JNJ-7706621) [37], 5946 (CDK1/2 inhibitor III) [37], 8146 [38], and 6046 [39]. The molecules’
primary targets are cyclin-dependent kinases (CDKs) and mammalian sterile 20-like kinase
3 (MST3) for 5932 (IC50 for CDK2: 2 nM) and 5946 (IC50 for CDK2: 0.5 nM), TXK tyrosine
kinase for 8146 (IC50 for TXK: 0.4 nM), and spleen associated tyrosine kinase (SYK) for
6046 (IC50 for SYK: 15.8 nM). All target proteins are related to cancers. We chose 5932, 5946,
and 6046 for experimental tests considering commercial availability. A literature search
revealed that pazopanib (IUPHAR ID: 5698) is inhibitory in both CAs and kinases such
as CSF1R [13], although ML could not list it as a candidate. Acetazolamide (6792) and
pazopanib were used as positive controls. There are a number of notable points. First, active
molecules for training did not include 5932, 5946, and 6046. The closest compounds of 5932,
5946, and 6046 in the training data were ZINC28389402, ZINC28389402, and ZINC13804313
with the TC values of 0.460, and 0.407, and 0.270, respectively (Table 3). Second, all the
molecules have a sulfonamide moiety needed to chelate with the zinc atom in the catalytic
core. Third, 5932 was not listed by the CA II model, despite the shared similarity to 5946
with a TC of 0.685.
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Table 3. Candidates from the screen of the known bioactive molecules.

CA I (19) CA I and CA II (23) CA II (26)

ID Prob Max TC ZINC ID ID Prob Max TC ZINC ID ID Prob Max TC ZINC ID

3463 0.982 0.394 13800463 6920 0.999 0.737 28526472 9753 0.935 0.475 13780724
10070 0.935 0.274 28526472 6814 0.995 1.000 56721 3962 0.931 0.290 13612907
4840 0.900 0.288 13650488 6828 0.994 1.000 8415468 3986 0.928 0.464 64527862
7047 0.838 0.283 58569258 7046 0.992 0.422 184018 10483 0.910 0.264 34717999
1376 0.834 0.342 1099 4839 0.990 0.404 13800448 10664 0.903 0.353 87722919

10175 0.801 0.426 131170 6792 0.979 1.000 3813042 4836 0.897 0.700 34799864
8821 0.762 0.227 13650488 10017 0.978 0.270 28388514 4742 0.850 0.328 27638369
980 0.751 0.328 22198192 5946 0.959 0.407 28389402 10242 0.785 0.474 95586265
9092 0.740 0.192 2101 10149 0.948 0.639 84759371 11205 0.776 0.241 64526424
932 0.734 0.283 595377 8146 0.912 0.413 13800465 7289 0.757 0.340 13800448

4702 0.724 0.464 1099 2894 0.909 0.435 58569258 8316 0.714 0.375 40917210
960 0.685 0.324 95591272 6807 0.905 0.405 13800446 4055 0.680 0.341 26387397
958 0.685 0.324 95591272 6810 0.884 1.000 1530622 11201 0.641 0.227 64526424

5501 0.685 0.324 95591272 6849 0.838 0.245 34717916 4357 0.623 0.367 27636999
10321 0.589 0.391 84670597 9513 0.830 0.361 84670374 6574 0.599 0.195 13472881
8378 0.548 0.244 1099 7028 0.817 0.380 84652324 4835 0.585 0.360 34799864
5932 0.546 0.460 28389402 4837 0.800 0.317 84670374 9129 0.583 0.243 64526424
7409 0.535 0.408 16525334 6797 0.722 0.542 1530622 11174 0.580 0.404 27635960
1394 0.509 0.239 5159179 10433 0.694 0.541 13829485 10693 0.578 0.406 27741075

4635 0.661 0.212 13800446 7893 0.572 0.471 16525334
4084 0.661 0.212 13800446 2892 0.571 0.509 95586265
11220 0.601 0.250 26387397 6514 0.570 0.357 84669523
7125 0.584 0.318 28349861 6046 0.565 0.270 13804313

7870 0.562 0.425 131170
7197 0.509 0.690 34799864
6648 0.507 0.273 27644927

Logistic Regression classification models for CA I and CA II screened IUPHAR “Synthetic organics” comprising
6975 molecules. The candidates are arranged into three criteria: CA I only (the number of candidates: 19), both
CA I and CA II (23), and CA II only (26). The ID in IUPHAR, the probability by Logistic Regression classifier, and
TC (Max TC) and the name (ZINC ID) of the closest molecule in the training dataset are presented. Those colored
in red are known CA inhibitors. Known kinase inhibitors are colored in gray.

2.3. Two Candidates, 5932 and 5946, Were Highly Inhibitory for CAs

Two candidates, 5932 and 5946, exhibited potent inhibition against CAs, but the
inhibition by 6046 was moderate (Figure 1 and Figure S3, and Table 4). The Ki values for
5932, 5946, and 6046 were 123 nM, 149 nM, and 16 µM in CA II, whereas they were 207 nM,
258 nM, and 60 µM in CA I, respectively. We also quantified the inhibition toward two
anticancer therapeutic targets, CA IX and CA XII. The Ki values for CA IX were 220 nM,
100 nM, and 2.7 µM for 5932, 5946, and 6046, while CA XII revealed 1.2 µM, 254 nM,
and 13 µM values. Except for CA XII, 5932 and 5946 showed similar inhibitory constants.
It is noteworthy that all the reaction mixtures contain 0.01% Triton X-100 to avoid the
aggregation-based enzyme inhibition by small molecules [40–43]. The direct bindings of
5932, 5946, and 6046 to CA I and CA II were checked using differential scanning fluorimetry
(DSF) (Figure 2). The measured ∆Tm from the apo CA I were in the descending order of 6792
(4.5 degrees), 5698 (3.8), 5932 (2.0), 5946 (1.3), and 6046 (0.1). The degrees of ∆Tm were more
distinct in CA II. The order was 6792 (9.9), 5632 (4.4), 5946 (3.2), 5698 (2.3), and 6046 (0.2).
All shifted beyond 3 × standard deviation from the reference except for 6046, reflecting the
significance of the change and thus direct interactions. The data qualitatively agree with
enzyme assay, supporting the consistency in the orthogonal experimental confirmation.
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Figure 1. Concentration-dependent inhibitory profiles. Enzyme activities are scaled to have a relative
value in the range of 0–1 on the y-axis. The enzyme activity in the absence of an inhibitor is expressed
as one. The molar concentrations in each small molecule ([C]) are expressed as Log10[C] on the x-axis.
The Ki values that are converted from the fitted IC50 values are written with units.

Table 4. Quantified compound activities.

Compound 2D Structure CA I CA II CA IX CA XII

6792
(Acetazolamide)
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molecule concentrations. The values are inhibitory constant, Ki. 6792 (acetazolamide) and 5698 (pazopanib) are
known CA inhibitors and positive controls in this study. Except for those explicitly labeled, the other values have
units of nM. The value following ± is standard deviation that Monte-Carlo simulation of 100 cycles calculates
assuming at least 5% uncertainty in experimental data.
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Figure 2. Profiles of differential scanning fluorimetry. Temperature-dependent changes of fluores-
cence from SYPRO® Orange in the mixture of protein and inhibitor are fitted for calculating the
mid-temperature (Tm) of denaturation. Fluorescence intensities are normalized with relative fluores-
cence units in the range of 40 ◦C–68 ◦C. Markers and lines indicate the raw and fitted data in each
case, respectively. The DSF profiles (A,B) and the name (C) in each compound are prepared to have
identical colors. Three independent experiments were repeated for calculating means and standard
deviations.

2.4. Cheminformatics Demonstrated Unique Features Compared to Other CA Inhibitors

Are the chemical scaffolds of 5932 and 5946 unique compared to the other known CA
inhibitors? To answer this question, we inspected the distribution of TCs between 5932 and
5946, and other known inhibitors in CA I and CA II. In this SEA, the distribution’s biased
shape toward one on the x-axis reflects the shared chemical similarities between two groups
of inhibitors [14]. Compared to the cases of CA I and CA II inhibitors, the distributions
between 5932 and 5946 and the known inhibitors were constrained, with values mostly
smaller than 0.4 (Figure 3). The closest similarities were found in ZINC28470844 with a TC
of 0.469 for 5932 and ZINC28127722 with 0.417 for 5946. Indeed, the apparent similarities
are limited, except for benzenesulfonamide moiety (Figure 3). This data can qualitatively
support the scaffolds’ novelty in 5932 and 5946.
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Figure 3. Cheminformatics using similarity ensemble approach. Distributions of TCs between the
pairs in a set of known CA I and CA II inhibitors (upper) are expressed using histogram as references.
TCs of two new inhibitors, 5932 (middle) and 5946 (bottom), and the known CA I and CA II inhibitors,
are computed for comparison. The closest known CA inhibitors registered in BindingDB [25] are
drawn with the TCs in the parentheses.

2.5. Docking Simulation Predicted the Binding Modes of the Dual Inhibitors

To obtain detailed information at the atomic level, we performed a docking simulation.
Direct inhibitors targeting metalloenzymes usually require a metal-binding group (MBG)
to interact with the catalytic metals [44]. Sulfonamide is the representative MBG for CAs.
Considering the shared sulfonamide, one can infer that 5932 and 5946 interact with CA
with the same moiety. The protein database contained 58 coordinates of CA I from 33 crystal
structures in the absence or presence of inhibitors. Complex structures with sulfonamide-
containing inhibitors have shown a lack of a proton in the amide. It makes the moiety have
the net charge of −1, enabling the chelation between the nitrogen and the zinc metal. The
proton’s exclusion was approximated by setting pH as 14.0 in the ligand preparation.

The pair of Glide-SP [45,46] and 4WUP-B (4WUP Chain B) of CA I [47] was chosen
as a docking engine and a template coordinate, respectively. Two key factors considered
for judging structure-based docking are pose reproduction and early enrichment of true
positives over false positives. We first tested which software reproduced the crystal poses
most faithfully of DOCK3.7 [48,49], Fred [50,51], and Glide-SP [45,46]. Once aligning
58 coordinates with an identical direction, 24 inhibitors from the crystal structures were
docked into the structures using each software. The runs using Glide-SP showed the
best results with reasonable energies and geometries. Then, the total of 960 decoys (40
per ligand, 960 = 24 × 40) was prepared with the identical method applied for ML. The
docking simulations using Glide-SP into each coordinate followed with a set of inhibitors
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and decoys. The early enrichment of true positives in the docking with 4WUP-B was shown
as the best with AUC and LogAUC [48] values of 86.3 and 20.8 (Figure S4). Note that the
preparation of small molecules by setting pH as 14.0 is indispensable to obtain the desirable
profiles.

Docked poses indicated that 6792, 5932, 5946, and 5698 contacted the zinc atoms
through the sulfonamide. Particularly, 6792 had an identical pose to that of the crystal struc-
ture. However, 6046 displayed entirely different poses, not contacting the zinc (Figure 4).
These data are consistent with the experimental observation that 6046 is less inhibitory for
CAs. It shows that the presence of the sulfonamide moiety is not a sufficient condition for
inhibiting CAs. Both the existence of MBG and the geometrical fitness of other parts are
equally essential.

Figure 4. Docking simulation. The docked poses between CA I and the molecules in this study are
prepared using Glide and the coordinate of 4WUP-B. The molecules in red, green, magenta, cyan,
and yellow indicate 6792 (acetazolamide), 5932, 5946, 6046, and 5698 (pazopanib), respectively. The
sphere of brown is the zinc ion. The ligands for docking were prepared setting pH as 14 using LigPrep
of Schrödinger package.

Discriminating the functional moieties for recognizing CAs and kinases is valuable.
Comparing the docked poses of 5932 and 5946 in CA I to those in crystal kinase structures
would allow a detailed understanding of the multiple and specific inhibition by 5932 and
5946. The protein databank includes 13 crystal structures with 5932 as a ligand named SKE
(http://www.rcsb.org/ligand/SKE, accessed on 1 April 2021). Eleven belong to kinase or
pseudokinase domains (PDB IDs: 3AMA, 4QMU, 5DPV, 5DR6, 5DR9, 5DT0, 5OBR, 5USY,
5USZ, 5WIN, and 6DRW), and two cases are spastin AAA domain (6P10 and 6P11). The
kinases are MST3 and Aurora A kinases. Additionally, 10 crystal structures with 5946 are
found to have the name of DKI (http://www.rcsb.org/ligand/DKI, accessed on 1 April
2021). The PDB IDs are 2CHL, 2J51, 2JFL, 2W4O, 2WU6, 3HMI, 3LJ1, 4AAA, 4FZF, and
4QMP. All proteins belong to the kinase family, including ABL2, casein kinase, CLK3,
and MST3. Notably, the kinase structures complexed with 5932 and 5946 have a DFGin
conformation at the kinase activation loop [52].

In MST3 (4QMU) and AAA domain (6P10) structures, the sulfonamides of 5932 exist
on the solvent-accessible surface, forming contacts with the side chains of aspartate and
tyrosine. This interaction seems not to be the key contact compared with other kinase

http://www.rcsb.org/ligand/SKE
http://www.rcsb.org/ligand/DKI
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inhibitors. AAA domain additionally uses arginine to interact with the aromatic through
intermolecular π-cation contact. Meanwhile, the docked models indicate that the sulfon-
amide mediates the chelation with the catalytic zinc atom in the core of CAs. The existence
of the next aromatic group to sulfonamide is also important by forming intermolecular π-π
stacking with histidine. Both kinase and AAA domains use amino-triazole for intermolec-
ular hydrogen bonds (Figure 5A). The poses of 5946 were similar to those of 5932 in CA
I and MST3, respectively. The benzenesulfonamide plays a crucial role in intermolecular
interaction with CA I. Triazole diamine is more vital for interacting with kinase (Figure 5B).

Figure 5. Comparison of poses in carbonic anhydrase and other proteins. (A) 2D diagrams of
intermolecular interactions of 5932 with CA I (docked model), MST3 kinase (PDB ID: 4QMU), and
AAA domain (6P10). (B) 2D diagrams of intermolecular interactions of 5946 with CA I (docked
model) and MST3 kinase (4QMP). (C) Residue and interaction styles used in (A,B) are defined with
the shapes and colors of circles according to the OpenEye Grapheme Toolkit.

2.6. ML Screening of the Known Kinase Inhibitors Led to Discovering a New Potent CA
Inhibitor, XMU-MP-1

A meaningful question is whether our approach is extensible to a larger database for
finding dual kinase and CA inhibitors. We extracted 35,455 kinase inhibitors of 437 kinases
from the ChEMBL database [53]. The molecules smaller than 450 Da and more potent
than 500 nM in Ki or IC50 were considered. We then applied the ML classifier of the
CA I model. It retrieved 192 kinase inhibitors with p ≥ 0.6 as candidates for CA inhibi-
tion. Most molecules have a sulfonamide moiety, but those without the moiety also exist
(Figure S5). Interestingly, the candidates include eight molecules whose complex structures
with kinases are available. Besides 5932 (CHEMBL191003) and 5946 (CHEMBL261720), the
other six molecules were CHEMBL2377825 (p = 0.965, PDB ligand name: 106, and PDB ID:
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1FVT), CHEMBL231950 (0.923, X64, and 3QXP), CHEMBL233149 (0.893, C85, and 2UZD),
CHEMBL319467 (0.847, 4SP, and 1H1S/5M57/6BSS), CHEMBL585367 (0.752, ZZF, and
2WOU), and CHEMBL4554938 (0.674, 5BS, and 5DH3) (Figure 6 and Figure S6). Notably,
the IUPHAR database does not include these six molecules.

Figure 6. Inhibition of carbonic anhydrase by XMU-MP-1. Profiles and uncertainty analyses of
enzyme inhibition by XMU-MP-1 are prepared identically to Figures 1 and 2 and Table 4. (A) Enzyme
inhibitory profiles. (B) Temperature-dependent fluorescence changes by DSF. Red, black, and navy
lines correspond to those without inhibitor, with acetazolamide, and with XMU-MP-1, respectively.
(C) 2D diagrams of intermolecular interactions of XMU-MP-1 in docked with CA I and in MST2 kinase
structure. The values in the parentheses are probability by ML classifier and PDB ID. (D) Chemical
structure, the values of Ki in enzyme activity, and Tm in DSF with XMU-MP-1 are presented. The
closest molecule to XMU-MP-1 of the known CA I inhibitors is drawn with the TC in the parenthesis.

Of these molecules, considering the commercial availability and feasibility of a detailed
comparison, we selected CHEMBL4554938 (XMU-MP-1) and tested its inhibition for CAs.
XMU-MP-1 was developed to pharmacologically inhibit MST1/2 kinases [54]. The reported
IC50 values for MST1 and MST2 are 71 and 31 nM. Remarkably, XMU-MP-1 was a potent
inhibitor for CA I, CA II, and CA IX with the Ki values of 32, 24, and 31 nM, respectively
(Figure 6A,D). The Ki for CA XII was 1 µM. DSF also verified the direct interaction between
XMU-MP-1 and CA I and CA II (Figure 6B,D). Docking simulation and crystal structure
indicated that the intermolecular contacts found in the bound poses of XMU-MP-1 to CA I
and kinase are similar to 5932 and 5946 cases (Figure 6C). While the benzenesulfonamide is
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crucial for the interaction with the zinc atom of CA I, the key interaction with the hinge
region of MST2 kinase uses 2-aminopyrimidine of XMU-MP-1 [54]. The activation loop of
the kinase structure with XMU-MP-1 has a DFGin conformation too [52]. The chemical
similarity to the known CA inhibitors is limited in the sulfonamide moiety. The closest
known inhibitor is ZINC28389402 with a TC of 0.436 (Figure 6D).

3. Discussion

Rapidly accumulating chemical and biological data are expected to accelerate more
accurate computational screens. However, imperfectness in the algorithm and the training
dataset brings about vast false positives in computer-assisted screens [55,56], necessitating
experimental confirmation. Quantitative prediction using ML regression is more chal-
lenging than classification. The optimization of ML regression relies on the loss function,
expressed mainly as the mean squared error. Comparing the loss functions with k-fold
cross-validation is the way to select the best model. By contrast, ML binary classifica-
tion allows the use of various metrics. It is advantageous for judging several models
simultaneously. In addition, ML classification is less sensitive to erroneous data than ML
regression. A few errors can significantly influence the performance of ML regression.
Our data showed that MCC [31] is the discriminative metric for selecting the more proper
ML classification model, whereas ACC discriminates little. We even employed another
approach to compensate for the imperfectness of ML, the validation using an external
dataset. When the number of true positives is small, a direct comparison of true positives
would be straightforward for selecting the best approach. Notably, our approach is readily
extensible for discovering other types of dual inhibitors as long as the information for
inhibitors is available.

A comprehensive understanding of the polypharmacology of a small molecule is
crucial for developing selective drugs and for studying signaling pathways mediated
through the target protein. Unidentified targets of a bioactive molecule may impact the
interpretation made under the assumption of a single on-target effect. XMU-MP-1 is the
chemical probe widely being used to study the Hippo pathway. Several publications
have described the cellular roles of MST1/2 in the Hippo pathway with XMU-MP-1,
assuming the molecule can pharmacologically inhibit the function of MST1/2 [54,57–63].
Our study showed that XMU-MP-1 is a comparably potent inhibitor for CA I, CA II, and CA
IX to MST1/2. This raises the possibility that CAs inhibition influences the experimental
observations. Indeed, the linkage between CAs and TEAD-YAP/TAZ in the Hippo pathway
has been reported [64]. Similarly, the interpretation of cellular studies using 5932 and 5946
may require caution on off-target effects through CA inhibition.

For maximizing the therapeutic effects of kinase and CA dual inhibitors as anticancer
agents, one must consider kinase type-specific and CA isoform-specific dual inhibitors.
Our proof-of-concept study has mainly focused on the feasibility of the combined use
of ML binary classification and experiments to discover dual inhibitors. The massive
experimental tests for selective kinase and CA dual inhibitors are beyond the scope of this
study. Nevertheless, our data provide meaningful quantitative information. XMU-MP-1 is
much weaker in inhibiting CA XII by approximately 30-fold, and 5946 shows more potent
inhibition for CA IX. Moreover, the 192 candidates (Figure S5) can hopefully trigger the
research on selective kinase and CA dual inhibitors, particularly to find more selective
CA IX and CA XII inhibitors.

Barelier et al. classified the recognition of identical ligands in unrelated proteins
into three interactions: identical, similar, and unshared [65]. The dual inhibition by 5932,
5946, and XMU-MP-1 for kinases and CAs belongs to the unshared recognition. The key
contacts occur in the nonoverlapping parts of 5932, 5946, and XMU-MP-1. A synthetic
modification for modulating polypharmacological effects such as selectivity might be more
straightforward in these cases. Our docking protocol will help prepare the accurate poses
of designed molecules.
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Our approach minimally optimized the parameters of ML classification. Docking
simulation was applied not for screening but for understanding the binding modes of active
molecules. The physics-based docking screen can work synergistically with the informatics-
based ML classification, particularly for screening the ultra-large library comprising more
than several billion molecules [15,16]. ML is faster than conventional docking by several
hundred-fold and suited for primary crude screening. Subsequent docking can decrease
the ML-predicted candidates into manageable numbers for experimental tests. Of note, our
optimized docking protocol for CA has the potential to rule out the weak inhibitor, 6046,
by checking the docked pose. The co-use of an optimized ML and docking screen would
be a research area deserving further study [15,16]. Our data will be a notable addition to
this direction.

4. Materials and Methods

For the ML database, BindingDB [27] was used to extract inhibitors for CA I and CA II.
The method of DUD-E server [28] was employed to generate physicochemically matched
but topologically different decoys per ligand. The small molecules registered as “Approved
drugs” and “Synthetic organics” in IUPHAR and with the molecular weight smaller than
700 were extracted for validation and screening [35], respectively.

The ML classification models were prepared using the Scikit-learn (version 0.22) library
implemented in Python (version 3.7) by combining three fingerprints and seven models
with default parameters. Setting the radii as 2 and 3 Å of Morgan circular fingerprints
in RDKit (ver. 2020.03.3, http://www.rdkit.org, accessed on 1 April 2021) approximated
ECFP4 and ECFP6 fingerprints comprising 1024 bits. MACCS fingerprint judges whether
the predefined 166 patterns exist or not in a molecule, comprising 166 bits. Each bit has
the values of zero or one dependent on the absence or presence of a functional moiety.
The seven classifier models in test were K-Nearest Neighbor (KNN), Naïve Bayesian
(NB), Logistic Regression (Logit), Decision Tree (DT), Random Forest (RF), Multi-Layer
Perceptron (MLP), and Extreme Gradient Boosting (XGBoost). Once randomly dividing
the data into five blocks of equal sizes, five-fold cross-validation followed with five runs.
Here, training and validation parts in a run consisted of four and one parts. Average and
standard deviation was calculated for each metric. The final model for screening database
was prepared using all the input data.

Binary classification of ML has the four resulting classes: true positive (TP), true
negative (TN), false positive (FP), and false negative (FN). Three metrics for quantifying the
qualities of the ML model are accuracy (ACC), the area under the curve (AUC) of receiver
operating characteristic curve (ROC), and Matthews correlation coefficient (MCC). ACC
and MCC are defined as follows:

ACC = TP+TN
TP+TN+FP+FN

MCC = TP×TN−FP×FN√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

ROC is a two-dimensional expression of TP and FP ratios in the respective y- and
x-axes. AUC is defined as the area in the ROC. AUC represents the enrichment of TP
over FP.

All the reagents used for the biochemical experiments for enzyme inhibitions were
bought from Cayman (Ann Harbor, MI, USA), Sigma–Aldrich (St. Louis, MO, USA), Sino
Biological (Beijing, China), or Tokyo Chemical Industry (Tokyo, Japan). Inhibitory activities
of small molecules on CAs were measured using 4-nitrophenyl acetate as a substrate. The
conversion from the substrate into p-nitrophenol by CAs led to the optical density change
at 405 nm. The changes were measured at 96-well microplates using Epoch2 from BioTek
(Winooski, VT, USA). The slope in a time-dependent measurement was calculated by
linear regression and interpreted as the quantified activity. Each 200 µL reaction solution
comprised 5 nM enzyme and 1 mM substrate buffered using phosphate-buffered saline
containing 5% dimethyl sulfoxide and 0.01% (w/v) Triton X-100 under the absence or the

http://www.rdkit.org
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presence of inhibitor. All reactions were performed at 37 ◦C. The substrate-only solution
was used as a control to consider autohydrolysis of the substrate. The value of IC50 was
converted into Ki using the Cheng–Prusoff equation [66].

The biophysical experiments involved the binding of small molecules to CA I or CA II,
which were quantified using the Tm of DSF. The profile was generated by CFX-connect
reverse transcription-polymerase chain reaction system (BioRad, Hercules, CA, USA). The
solution contained 5× SYPRO® Orange and 0.5 µM recombinant human CA I or CA II
in the absence or presence of 200 µM inhibitor. By gradually elevating the solution’s
temperature 30 ◦C–90 ◦C with a ramping rate of 1 ◦C/min, the fluorescence signals of the
dye at 610 nm were measured upon excitation at 492 nm. The patterns were nonlinearly
fitted to the Boltzmann equation to calculate Tm [67]. Only data in the range of 40 ◦C–68 ◦C
were used for the calculation. Nonlinear curve fittings for Ki in enzyme assay and Tm in
DSF were performed using MATLAB (MathWorks, Natick, MA, USA).

For the cheminformatics and docking simulation, RDKit was employed to calculate the
pairwise TCs and to perform SEA using ECFP4 as a molecular fingerprint. For comparing
the distributions in TCs, the data from ZINC15 [68] and BindingDB [27] were used. All the
molecules more potent than 10 µM in Ki or IC50 and smaller than 500 Da were selected.
Kinase inhibitors were extracted from the ChEMBL database [53]. DOCK3.7 [48,49], Fred
from OpenEye (Santa Fe, NM, USA) [50,51], and Glide-SP from Schrödinger (New York,
NY, USA) [45,46] were used as engines for docking with the default parameter setting. All
the SMILES of ligands were converted into 3D coordinates considering tautomerization
and electrostatic charge using LigPrep and Epik from Schrödinger. An in-house script, Au-
tomated pLatform for Integrative Structure-based DOCKing (ALIS-DOCK) automated the
procedure [69,70]. OpenEye Grapheme was used to analyze the intermolecular interaction
in the protein and ligand complexes in docking and PDB-deposited structures.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ph15020236/s1, Figure S1: CA inhibitor candidates of FDA-approved small molecules
by ML classifiers, Figure S2: CA inhibitor candidates from IUPHAR-registered small molecules
by ML classifiers, Figure S3: Concentration-dependent inhibitory profiles of positive controls,
Figure S4: Data in the pre-docking stage, Figure S5: ML-derived CA inhibitor candidates of known
kinase inhibitors, Figure S6: CA inhibitor candidates reported as complex structures with kinases.
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