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Abstract: Two triterpenes, ganoaustralins A (1) and B (2), featuring unprecedented 6/6/6/5/6
scaffolds were isolated from the fruiting bodies of the mushroom Ganoderma australe. The structures
were determined by extensive NMR and HRESIMS spectroscopic analysis. The absolute configuration
of the C-25 in ganoaustralin A was assigned by the phenylglycine methyl ester (PGME) method.
The relative and absolute configurations of the polycyclic backbones were determined by NMR and
ECD calculations, respectively. The plausible biosynthetic pathways of ganoaustralins A and B were
proposed. Ganoaustralin B showed weak inhibition against β-secretase 1.

Keywords: Ganoderma australe (Fr.) Pat.; Polyporaceae; triterpenes; anti-BACE1 activity

1. Introduction

Ganoderma is a group of Polyporus fungi with hundreds of species widely distributed
in the North Hemisphere [1,2]. There are 460 records of Ganoderma on the website Index
Fungorum (http://www.indexfungorum.org, accessed on 6 December 2022). Being one of
the famous Traditional Chinese Medicines which has been used for centuries, the study of
secondary metabolites of this genus has long been a hot topic [3]. In recent years, more and
more research has demonstrated that Ganoderma is a prolific reservoir for triterpenes [4,5],
meroterpenes [6–16], sesquiterpenes [17], alkaloids [18], and steroids [17,19]. Among the
reported structures, the triterpenes account for the largest number of chemical entities,
and meroterpenes are reported to have diverse scaffolds. Notably, the triterpenes origi-
nated from Ganoderma occupy half of the proportion of the triterpenoid scaffolds reported
from fungi both in amounts and types [20]. The types of triterpenes from Ganoderma
are mainly lanostanoids and their skeletal variants with many additional modifications,
such as new C–C bond formation [21,22], C–C bond cleavage [23], migration [18,24], and
degradation [24] (Supplementary Materials, Table S1). Notably, amongst the post-skeletal
formation modifications, the new C–C bond formations are the most important ways for
the generation of unprecedented genuine skeletons. So far, only two examples have been
reported to have the additional new C–C formation based on the lanostane skeleton, the
C-1–C-10 connection in methyl ganosinensate A [22], and C-12–C-23 bond in ganorbifate
A [21].

G. australe, which mainly dwells in tropic areas, is a central species in the “G. applanatum-
australe complex” and can be distinguished from G. applanatum by possessing larger
basidiospores1. Compared to other species, the chemical composition of this fungus
has been poorly investigated. A few publications on this fungus have shed light on the
chemical types of secondary metabolites are also triterpenes and meroterpenes [25–28]. The
structural features of lanostanes from this fungus were more similar to the compounds from
G. applanatum, while less similar to those from G. lucidum. Inspired by the medicinal values
and diverse structural scaffolds found in Ganoderma, a sample of G. australe collected from
the rain forest in Yunnan Province (China) has been chemically studied by our group [29].
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We herein report the isolation, structural elucidation of ganoaustralins A (1) and B (2)
(Figure 1), and two novel triterpenes with an undescribed benzene ring from G. australe.
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Figure 1. Chemical structures of compounds 1 and 2.

2. Results
2.1. Structural Elucidation

Compound 1 was isolated as a pale-yellow gum. The molecular formula of 1 was
determined to be C30H34O7 based on the HRMS(ESI) analysis (m/z [M + Na]+ calcd
for C30H34O7Na, 529.22022; found 529.21973). The 1H NMR spectra of 1 recorded in
chloroform-d presented partially overlapped signals which were crucial for correct struc-
tural elucidation (Table 1). The 13C NMR spectra measured in pyridine-d5 clearly dis-
played 30 carbon resonances ascribable to five methyl singlets, one methyl doublet, four
methylenes, six methines (three olefinic ones), 14 proton-free carbons including five sp3

hybridized ones, and three carbonyls (Table 1). The number of carbon resonances and the
poly-methyl singlets were reminiscent of triterpenes, the main constituents of the genus
Ganoderma. Analysis of the 1H-1H COSY and HMBC spectra indicated that parts of the
signals showed resemblance to those of applanoxidic acid C, a lanostane triterpene which
was reported from G. australe and G. applanatum [30]. Specifically, the construction of A–D
rings, including the absolute configurations of the chiral centers of 1, is the same as those of
applanoxidic acid C. However, the remaining signals, which consist of two double bonds, a
carboxylic group, a doublet methyl group, a methine, and a methylene, are quite different
from those of applanoxidic acid C. Further analysis of the 2D spectra allowed the complete
structural elucidation of 1.

The relative configurations of the chiral centers of 1 except for C-25 were determined
to be the same as those of applanoxidic acid C [30], including the β orientation of the epoxy
ring of C-7 and C-8, which was evidenced by the key ROESY correlations between H-7 (δH
5.07) and H3-18 (δH 1.58) (Figure 2). The stereochemistry of C-25 was determined by the
phenylglycine methyl ester (PGME) method [31]. The C-26 (S)- and (R)-PGME derivatives
(1a and 1b) of 1 were synthesized by using the corresponding (R)- and (S)-phenylglycine
methyl esters (Figure 3A), 1H NMR data analysis of the ∆δ (δS-δR) values of the two
synthetic isomers revealed that the C-25 was S configuration (Figure 3B). Since the scaffold
of 1 was previously undescribed, the structural correctness was further corroborated by
the calculation of the 1H and 13C NMR. As shown in Figure 4A, the regression analysis
between the calculated and experimental NMR data gave the R2 value of 0.9981 for 13C
NMR data and 0.9943 for 1H NMR data (Supplementary Materials), thereby confirming
the structural solidity. The absolute configuration of 1 was assigned by ECD calculation.
As shown in Figure 4C, the calculated ECD coincides with the experimental CD both in
signs and patterns. Therefore, the structure of compound 1 was determined as shown in
Figure 3, and it was given the trivial name ganoaustralin A.
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Table 1. The NMR spectroscopic data of 1 and 2 (150/600 MHz for 13C/1H, respectively).

No.
1 a 2 b

δC, multi. δH δC, multi. δH

1 36.2, CH2
1.98, overlapped,
2H 35.8, CH2

2.35, ddd (13.8, 5.6, 2.8)
1.91, ddd (13.8, 13.8, 5.2)

2 34.2, CH2
2.70, m
2.49, m 34.5, CH2

2.82, ddd (15.3, 13.8, 5.2)
2.47, ddd (15.3, 5.6, 2.8)

3 216.1, C 214.8, C
4 46.4, C 47.5, C
5 41.5, CH 2.92, brd (12.8) 49.7, CH 1.78, dd (10.3, 5.6)

6 23.2, CH2

2.08, brd (12.8)
1.74, brdd (12.8,
12.8)

24.1, CH2 2.40, m, 2H

7 59.4, CH 5.07, brs 135.0, CH 7.56, m
8 63.3, C 134.9, C
9 166.3, C 163.2, C
10 41.1, C 38.8, C
11 130.9, CH 6.45, s 117.6, CH 5.80, s
12 198.5, C 200.5, C
13 56.7, C 54.4, C
14 55.2, C 56.0, C
15 201.3, C 203.3, C
16 124.2, C 124.8, C
17 157.2, C 156.5, C
18 31.5, CH3 1.58, s 31.9, CH3 1.35, s
19 25.1, CH3 1.09, s 21.7, CH3 1.36, s
20 112.2, CH 7.93, s 111.3, CH 7.54, d (2.0)
21 164.8, C 161.0, C
22 118.2, CH 7.30, s 116.9, CH 6.60, d (2.0)
23 145.5, C 143.9, C

24 36.3, CH2
3.62, m
3.68, m 35.9, CH2

3.26, dd (13.0, 7.1)
3.07, dd (13.0, 8.0)

25 42.2, CH 3.25, m 40.6, CH 2.80, ddd (8.0, 7.1, 7.0)
26 179.1, C 176.7, C
27 18.2, CH3 1.42, d (6.7) 17.2, CH3 1.17, d (7.0)
28 28.9, CH3 1.09, s 22.7, CH3 1.19, s
29 22.2, CH3 1.13, s 25.5, CH3 1.16, s
30 24.5, CH3 1.64, s 29.0, CH3 1.26, s
OMe 51.8, CH3 3.59, s
21-OH 6.74, brs

a Measured in C5D5N. b Measured in CDCl3.

Compound 2, a pale-yellow oil, has a molecular formula of C31H36O6 as indicated by
the HRMS(ESI) analysis (m/z [M + Na]+ calcd for C31H36O6Na, 527.24096; found 527.24017).
The 1D NMR spectra of 2 presented signals for six methyl singlets (one methoxy group),
a methyl doublet, four methylenes, two sp3 methines, four sp3 quaternary carbons, five
double bonds, and four carbonyl groups (Table 1). The above-mentioned data, along
with the 2D NMR correlation features, showed great similarity to those of compound
1, suggesting the analogous structures between 1 and 2. The structural assignment of 2
was accomplished by interpretation of the 2D NMR spectra. In the HMBC spectrum, key
correlations from the olefinic proton at δH 7.56 (H-7) to C-5 (δC 49.7), C-6 (δC 24.1), C-9
(δC 163.2), and C-14 (δC 56.0) (Figure 2) suggested that C-7 and C-8 of 2 was a double
bond instead of being an epoxy ring of 1. In addition, the HMBC correlation from the
methyl singlet at δH 3.59 to the carbonyl group at δC 176.7 (Figure 2) revealed that the
C-26 carboxylic group was methyl esterified in 2 compared to that of 1. Therefore, the
planar structure of 2 was determined, as shown in Figure 2. The relative stereochemistry
of 2 was determined to be the same as that of 1 by analysis of the ROESY spectrum,
and by consideration of the biosynthetic pathways and confirmed by 1H and 13C NMR
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calculations (Figure 4B). The absolute configuration of 2 was determined by comparison
of the calculated ECD and the experimental CD (Figure 4C). Therefore, compound 2 was
named ganoaustralin B.
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Figure 4. Regression analysis of calculated v.s. experiment 13C/1H NMR data of (A) 1, (B) 2, and
(C) ECD calculations of 1 and 2.

2.2. Proposed Biosynthetic Pathway of 1 and 2

Given that ganoaustralins A (1) and B (2) represent a new class of triterpene natu-
ral products, the plausible biosynthetic pathway was developed as shown in Scheme 1.
The structure A, an analogue of applanoxidic acid C with additional C-21 ester modifica-
tion [32,33], was proposed to be the precursor. Firstly, the enol form of A undergoes an
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intramolecular Claisen condensation to give the key intermediate B with a cyclopropanone
moiety. The abstraction of H-17 by base leads to the ring-opening of the cyclopropanone
moiety in B to obtain C. Likewise, the abstraction of H-16 of intermediate C triggers the
intramolecular aldol condensation to make the C–C bond between C-16 and C-23 in D.
Furthermore, the abstraction of H-16 again of D produces the intermediate E via an E1cb
mechanism. Finally, aromatization (enolization) of E yields compound 1, which is further
oxygenated and methyl esterified to give compound 2.
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2.3. Biological Activity Evaluation of 1 and 2

The two compounds were screened for biological activity in a panel of bioassays,
including cytotoxicity against the cancer cell lines, the inhibition on human protein tyrosine
phosphatase 1B (PTP1B), α-glucosidase, and β-secretase 1 (BACE1) (Supplementary Materi-
als, Tables S9–S12). As a result, only compound 2 showed 44.7% inhibition on BACE1 at
the concentration of 40 µM.

3. Discussion

Two unprecedented 6/6/6/5/6 polycyclic triterpenes, ganoaustralins A (1) and B
(2), were isolated and identified from the medicinal mushroom G. australe. By using
NMR elucidation, 1H, 13C, and ECD calculations, the structures as well as the absolute
configurations were unambiguously determined. The chemo-diversity of the triterpenoids
is not as varied as the natural sesquiterpenoids and diterpenoids. This can be reasoned by
the cyclization of the communal precursor squalene, which is produced by two molecules
of farnesyl pyrophosphate by tail–tail connection, is limited by the molecule size and chair-
boat conformations. However, the post-oxygenation and resultant carbon degradation,
migration, and new bond formation have increased the chemodiversity to a great extent.
The report of these two novel triterpenes opens new avenues for the potential of Ganoderma
in producing structurally intriguing triterpenoids.
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4. Materials and Methods
4.1. General Experimental Procedures

Optical rotations were obtained on an Autopol IV-T digital polarimeter (Rudolph,
Hackettstown, NJ, USA). UV spectra were recorded on a Hitachi UH5300 spectrophotome-
ter (Hitachi, Tokyo, Japan). CD spectra were measured on a Chirascan Circular Dichroism
Spectrometer (Applied Photophysics Limited, Leatherhead, Surrey, UK). In addition, 1D
and 2D spectra were obtained on Bruker Avance III 600 MHz spectrometer (Bruker Corpo-
ration, Karlsruhe, Germany). HRESIMS spectra were measured on a Q Exactive Orbitrap
mass spectrometer (Thermo Fisher Scientific, Waltham, MA, USA). Medium pressure liquid
chromatography (MPLC) was performed on an Interchim system equipping with a column
packed with RP-18 gel (40–75 µm, Fuji Silysia Chemical Ltd., Kasugai, Japan). Preparative
high performance liquid chromatography (prep-HPLC) was performed on an Agilent 1260
Infinity II liquid chromatography system equipped with a Zorbax SB-C18 column (particle
size 5 µm, dimensions 150 mm × i.d. 9.4 mm, flow rate 5 mL·min−1) and a DAD detector
(Agilent Technologies, Santa Clara, CA, US). Sephadex LH-20 (GE Healthcare, Sweden)
and silica gel (200–300 mesh, Qingdao Haiyang Chemical Co., Ltd., Qingdao, China) were
used for column chromatography (CC).

4.2. Fungal Material

The fruiting bodies of Ganoderma australe were collected in Tongbiguan Natural Re-
serve, Dehong, Yunnan Province, China, in 2016, and identified by Yu-Cheng Dai (Institute
of Microbiology, Beijing Forestry University, Beijing, China). A voucher specimen of G.
australe was deposited in the Mushroom Bioactive Natural Products Research Group in
South-Central University for Nationalities.

4.3. Extraction and Isolation

The dry fruiting bodies of Ganoderma australe (3.26 kg) were grounded and extracted
four times by CHCl3:MeOH (1:1) at room temperature to obtain a crude extract which
was further resuspended in distilled water and partitioned against ethyl acetate (EtOAc)
to afford EtOAc extract (130 g). The EtOAc extract was eluted on MPLC with a stepwise
gradient of MeOH in H2O (20%–100%) to afford eight fractions (A−H).

Fraction E was separated by Sephadex LH-20 (CHCl3:MeOH = 1:1) to afford four
subfractions (E1-E4). Subfraction E2 was separated by column chromatography (CC) on
silica gel (petroleum ether–acetone from v/v 15:1 to 1:1) to obtain 10 subfractions (E2-1–E2-10).
Compound 1 (5.2 mg, tR = 14.0 min) was purified from E2-7 by prep-HPLC (MeCN-H2O:
30:70–50:50, 25 min, 4 mL·min−1).

Fraction F was separated by Sephadex LH-20 (MeOH) to afford five subfractions (F1-
F5). Subfraction F2 was separated by column chromatography (CC) on silica gel (petroleum
ether–acetone from v/v 15:1 to 1:1) to obtain 13 subfractions (F2-1–F2-13). Compound 2
(0.8 mg, tR = 15.3 min) was purified from F2-5 by prep-HPLC (MeCN−H2O: 30:70–50:50,
25 min, 4 mL·min−1).

Ganoaustralin A (1): Pale-yellow oil; [α]25
D +503.6 (c 0.35, MeOH); UV (MeOH) λmax

(log ε) 205 (4.30), 235 (4.34); 1H NMR (600 MHz, C5D5N) data, see Table 1, 13C NMR
(150 MHz, C5D5N) data, see Table 1; HRMS(ESI) m/z [M + Na]+ Calcd for C30H34O7Na
529.22022, found 529.21937.

Ganoaustralin B (2): Pale-yellow oil; [α]25
D +234.2 (c 0.50, MeOH); UV (MeOH) λmax

(log ε) 210 (2.95), 230 (3.97), 285 (4.10); 1H NMR (600 MHz, CDCl3) data, see Table 1,
13C NMR (150 MHz, CDCl3) data, see Table 1; HRMS(ESI) m/z [M + Na]+ Calcd for
C31H36O6Na 527.24096, found 527.24017.

4.4. Biological Activity Assays

Compounds 1 and 2 were subjected to biological assays including cytotoxicity against
five human cancer cell lines [34], inhibition on human protein tyrosine phosphatase 1B
(PTP1B) [35], α-glucosidase [36], and β-secretase 1 (BACE1) [37,38]. The cancer cell lines
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used in this study were the human myeloid leukemia HL-60 (ATCC CCL-240), the human
hepatocellular carcinoma SMMC-7721, the human lung cancer A-549 (ATCC CCL-185),
the human breast cancer MCF-7 (ATCC HTB-22), and the human colon cancer SW480
(ATCC CCL-228). The SMMC-7721 cell line was bought from China Infrastructure of Cell
Line Resources (Beijing, China), and other cell lines were bought from American Type
Culture Collection (ATCC, Manassas, VA, USA). The assay procedures are the same as
previously reported.

4.5. Synthesis of the PGME Derivatives of 1

To a DMF (1.0 mL) solution of 1 (0.5 mg, 1.0 µmol), add PyBOP (12.5 mg, 24.0 µmol),
HBTU (9.3 mg, 24.5 µmol), DMAP (1.5 mg, 12.3 µmol), and (S)-PGME (5.0 mg, 30.3 µmol),
and the mixture was stirred at room temperature for 3 h. The solution was diluted with
EtOAc (1 mL) and washed with H2O. The organic layer was concentrated under reduced
pressure to obtain pale-yellow oil, which was purified by HPLC to furnish (S)-PGME amide
derivative 1a. Similarly, (R)-PGME amide derivative 1b was prepared from 1 (0.5 mg) and
(R)-PGME (5.0 mg) in the same conditions. NMR assignments of the protons for (S)- and
(R)-PGME of 1 were achieved by analysis of their 1H-1H COSY spectra.

1a: 1H NMR (600 MHz, CDCl3), δH 2.176 (1H, overlapped, H-1a), 2.029 (1H, m, H-1b),
2.727 (1H, m H-2a), 2.515 (1H, overlapped, H-2b), 2.851 (1H, dd, J = 12.8, 3.0 Hz, H-5), 2.195
(1H, overlapped, H-6a), 1.786 (1H, dd, J = 14.8, 12.8 Hz, H-6b), 4.744 (1H, d, J = 3.8 Hz, H-7),
6.177 (1H, s, H-11), 1.460 (3H, s, H-18), 1.155 (3H, overlapped, H-19), 7.361 (1H, overlapped,
H-20), 6.664 (1H, d, J = 2.2 Hz, H-22), 3.185 (1H, dd, J = 13.4, 7.5 Hz, H-24a), 3.035 (1H, dd,
J = 13.4, 6.7 Hz, H-24b), 2.523 (1H, overlapped, H-25), 1.155 (3H, overlapped, H-27), 1.138
(3H, s, H-28), 1.108 (3H, s, H-29), 1.347 (1H, s, H-30), 6.800 (1H, d, J = 6.7 Hz, NH), 5.460 (1H,
d, J = 6.7 Hz, H-2′ of PGME), 7.357 (5H, overlapped, phenyl protons of PGME), 3.700 (3H, s,
OCH3). HRMS(ESI) m/z [M + H]+ Calcd for C39H44O8N 654.30669, found 654.30615.

1b: 1H NMR (600 MHz, CDCl3), δH 2.176 (1H, overlapped, H-1a), 2.030 (1H, m, H-1b),
2.728 (1H, m H-2a), 2.500 (1H, m, H-2b), 2.854 (1H, dd, J = 12.7, 2.9 Hz, H-5), 2.228 (1H,
overlapped, H-6a), 1.808 (1H, dd, J = 14.8, 12.7 Hz, H-6b), 4.819 (1H, d, J = 3.6 Hz, H-7),
6.173 (1H, s, H-11), 1.471 (3H, s, H-18), 1.160 (3H, s, H-19), 7.313 (1H, overlapped, H-20),
6.475 (1H, d, J = 2.2 Hz, H-22), 3.014 (1H, dd, J = 12.8, 6.8 Hz, H-24a), 2.936 (1H, dd, J = 12.8,
7.9 Hz, H-24b), 2.612 (1H, m, H-25), 1.174 (3H, d, J = 7.0 Hz, H-27), 1.145 (3H, s, H-28), 1.110
(3H, s, H-29), 1.282 (1H, s, H-30), 6.788 (1H, d, J = 7.0 Hz, NH), 5.482 (1H, d, J = 7.0 Hz, H-2′

of PGME), 7.300 (3H, overlapped, phenyl protons of PGME), 7.139 (2H, overlapped, phenyl
protons of PGME), 3.701 (3H, s, OCH3). HRMS(ESI) m/z [M + H]+ Calcd for C39H44O8N
654.30669, found 654.30615.

4.6. 13C NMR and ECD Calculation of 1 and 2

Conformation searches were performed at the MMFF94s force field. The conformers
with population above 1% were optimized with density functional theory (DFT) at B3LYP/6-
31G(d) level in gas and further optimized at the M06-2X-D3/Def2-SVP level of theory in
Gaussian 16 program [39]. The conformers within 3 kcal/mol of global minimum were
selected and calculated their ECD at ωB97XD/Def2-SVP level of theory, and NMR data
at B97-2/pcSseg-1 level with IEFPCM model in chloroform. The shielding values of
tetramethylsilane were calculated by the same methods (shielding values: C 193.9312, H
31.5135). ECD data were processed with SpecDis 1.71 [40] and plotted in Microsoft Office
Excel 2019. NMR data were processed and plotted with Microsoft Office Excel 2019.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/ph15121520/s1, Figures S1–S36: NMR and MS spectra; Table S1: Triterpenoid
scaffolds from fungi; Tables S2–S8: Calculation details; Tables S9–S12: Biological activity.

https://www.mdpi.com/article/10.3390/ph15121520/s1
https://www.mdpi.com/article/10.3390/ph15121520/s1
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