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Abstract: Japanese Ardisia is widely used as a hepatoprotective and anti-inflammatory agent in China.
However, the active ingredients in Japanese Ardisia and their potential mechanisms of action in
the treatment of autoimmune hepatitis (AIH) are unknown. The pharmacodynamic substance and
mechanism of action of Japanese Ardisia in the treatment of AIH were investigated using network
pharmacology and molecular docking technology in this study. Following that, the effects of Japanese
Ardisia were evaluated using the concanavalin A (Con A)-induced acute liver injury rat model.
The active ingredients and targets of Japanese Ardisia were searched using the Traditional Chinese
Medicine Systems Pharmacology database, and hepatitis-related therapeutic targets were identified
through GeneCards and Online Mendelian Inheritance in Man databases. A compound–target
network was then constructed using Cytoscape software, and enrichment analysis was performed
using gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases.
Molecular docking technology was used to simulate the docking of key targets, and the AIH rat
model was used to validate the expression of key targets. Nineteen active chemical components
and 143 key target genes were identified. GO enrichment analysis revealed that the treatment
of AIH with Japanese Ardisia mainly involved DNA–binding transcription factor binding, RNA
polymerase II-specific DNA transcription factor binding, cytokine receptor binding, receptor-ligand
activity, ubiquitin-like protein ligase binding, and cytokine activity. In the KEGG enrichment analysis,
165 pathways were identified, including the lipid and atherosclerotic pathway, IL-17 signaling
pathway, TNF signaling pathway, hepatitis B pathway, and the AGE–RAGE signaling pathway in
diabetic complications. These pathways may be the key to effective AIH treatment with Japanese
Ardisia. Molecular docking showed that quercetin and kaempferol have good binding to AKT1, IL6,
VEGFA, and CASP3. Animal experiments demonstrated that Japanese Ardisia could increase the
expression of AKT1 and decrease the expression of CASP3 protein, as well as IL-6, in rat liver tissues.
This study identified multiple molecular targets and pathways for Japanese Ardisia in the treatment
of AIH. At the same time, the effectiveness of Japanese Ardisia in treating AIH was verified by
animal experiments.

Keywords: Japanese Ardisia; autoimmune hepatitis; network pharmacology; molecular docking;
underlying mechanism

1. Introduction

Autoimmune hepatitis (AIH) is a common liver disease worldwide, seen in both men
and women, but predominantly in women. According to epidemiological surveys, the
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incidence of AIH ranges from 0.67 to 2.0/100,000 people per year, and the prevalence ranges
from 4.0 to 42.9/100,000 [1,2]. AIH has become the second most common inflammatory
liver disease after viral hepatitis [3].

The pathogenesis of AIH is not completely understood. AIH is thought to be caused by
genetic factors, molecular mimetic mechanisms, immune damage, and a variety of physical
and chemical factors [4–11]. Prednisolone in combination with or without azathioprine
(AZA) is generally recommended as the first-line drug for AIH [12], and second-generation
alternatives, such as budesonide and tacrolimus, are recommended for this category of non-
responders or intolerant patients, but these drugs have certain side effects. Traditional Chinese
medicine has become increasingly important in the treatment of the disease in recent years.

Japanese Ardisia, known as Ardisia japonica or marlberry, is used as a medicinal plant in
traditional Chinese medicine. It grows very slowly, and its leaves have a similar appearance
to tea leaves. Bright red berries appear under the leaves in autumn, and therefore, it is also
called ‘aidicha’ or ‘yedizhu’ in Chinese. Japanese Ardisia is mainly grown in the southern
provinces of China, such as Hunan and Guangxi, where it is a popular medicinal herb used
in Chinese folk medicine. The Chinese ancient medicine book ‘Compendium of Materia
Medica’ records that A. japonica has the effect of ‘detoxification and promoting blood
circulation’. The pharmacodynamic components of A. japonica are saponins, coumarins,
benzoquinones, and flavonoids [13–15]. It has pharmacological activities, such as relieving
cough and asthma, protecting the liver, and anti-inflammatory, anti-viral, and anti-tumor
activities [16,17]. In clinical practice, A japonica is commonly used to treat chronic bronchitis,
pulmonary tuberculosis, tuberculous pleurisy, and acute icteric hepatitis. Meanwhile, A.
japonica has shown remarkable curative effects in the treatment of chronic hepatitis [14].
However, its pharmacodynamic ingredients and mechanism of action remain unclear.

Cyberpharmacology can effectively reveal the material basis and mechanism of action
of Chinese medicine by systematically and integrally exploring the relationship between
drugs and diseases [18]. Thus, the aim of this study is to systematically elucidate the
mechanism of Japanese Ardisia in the treatment of AIH through network pharmacology
and molecular docking analysis of the interaction between drug molecules and AIH-related
targets, and to provide a theoretical basis for clinical research. The specific flow chart is
shown in Figure 1.
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2. Results
2.1. Screening of Active Compounds

Oral bioavailability (OB) is the fraction of an orally administered drug that reaches
systemic circulation. This is an important consideration for bioactive molecules used as
therapeutic agents. Drug likeness (DL) qualitatively assesses the capacity of a molecule
to become an orally administered drug based on its bioavailability [19]. The main active
components of Japanese Ardisia were obtained by searching the TCMSP database. Nineteen
molecules with OB ≥ 30% and DL ≥ 0.18 were identified as bioactive compounds [20], as
shown in Table 1.

Table 1. Basic information on the active compounds of Japanese Ardisia.

MOL ID MOL Name OB DL

MOL010934 Ardisianoside K 31.98 0.63
MOL010953 Triterpenoid glycoside 1 34.11 0.63
MOL010964 Maesanin 42.77 0.35
MOL010973 Rapanone 34.15 0.24
MOL010974 Tri-O-methylnorbergenin 33.17 0.41
MOL010976 Triterpene glycoside 4 41.4 0.63
MOL010981 Triterpenoid glycoside 3 44.04 0.6
MOL010982 2,5-dihydroxy-3-[(10Z)-pentadec-10-en-1-yl][1,4] benzoquinone 34.74 0.6
MOL010983 2,5-Dihydroxy-3-[(10Z)-pentadec-10-en-1-yl] cyclohexa-2,5-diene-1,4-dione 37.3 0.32
MOL010985 2-hydroxy-5-methoxy-3-pentadecaenylbenzoquinone 41.61 0.32
MOL011002 5-ethoxy-2-hydroxy-3-[(10Z)-pentadec-10-en-1-yl][1,4] Benzoquinone 42.77 0.38
MOL011003 5-ethoxy-2-hydroxy-3-[(8Z)-tridec-8-en-1-yl][1,4] benzoquinone 43.23 0.3
MOL011019 Ardisianone A 44.22 0.25
MOL011020 Ardisianone B 60.9 0.2

MOL001663 (4aS,6aR,6aS,6bR,8aR,10R,12aR,14bS)-10-hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-
1,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydropicene-4a-carboxylic acid 32.03 0.76

MOL002879 Diop 43.59 0.39
MOL000422 Kaempferol 41.88 0.24
MOL009278 Laricitrin 35.38 0.34
MOL000098 Quercetin 46.43 0.28

OB, oral bioavailability; DL, drug-likeness.

2.2. Compound Target Interaction Network

The information on the main bioactive components and corresponding targets in
Japanese Ardisia were obtained from the TCMSP database (TCMSP, https://lsp.nwu.edu.
cn/tcmsp.php, accessed on 14 November 2021). After screening to remove invalid gene
IDs, the targets downloaded from the GeneCards (http://www.genecards.org, accessed
on 14 November 2021), OMIM databases (OMIM, http://www.omim.org, accessed on
14 November 2021), and TTD (http://db.idrblab, accessed on 14 November 2021) were
crossed with those from the TCMSP database to obtain potential targets for the treatment
of AIH in Japanese Ardisia. The obtained data are presented as a Venn diagram (Figure 2).
There were 5724 autoimmune hepatitis gene targets, of which 153 were potential targets re-
lated to the drug Japanese Ardisia. The drug-related genes and disease-specific targets were
analyzed, and 143 key target genes were identified. The targets of the active ingredients of
Japanese Ardisia are shown in Table 2.

2.3. Core Genes of the PPI Network

The common targets of Japanese Ardisia and autoimmune hepatitis were imported into
the STRING protein interaction database (https://string-db.org, accessed on 15 November
2021) to construct the PPI network (Figure 3A). The top 30 target proteins analyzed by
R software (https://www.r-project.org/ accessed on 15 November 2021) are shown in
Figure 3B. The intersections of differential genes between Japanese Ardisia active ingredient
targets and autoimmune hepatitis disease targets were imported into Cytoscape 3.7.0

https://lsp.nwu.edu.cn/tcmsp.php
https://lsp.nwu.edu.cn/tcmsp.php
http://www.genecards.org
http://www.omim.org
http://db.idrblab
https://string-db.org
https://www.r-project.org/


Pharmaceuticals 2022, 15, 1457 4 of 16

(http://www.cytoscape.org, accessed on 15 November 2021) for topological analysis. The
key targets were sorted according to the degree value, with higher degree values indicating
nodes that were more central in the network and more important. Through the PPI protein
interaction network, the disease-related targets are found, and the degree value is greater
than the median by screening twice to find key targets. Thus, the key target genes for
autoimmune hepatitis treatment mainly included AKT1, IL6, VEGFA, CASP3, JUN, MYC,
etc. (Figure 3C).
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Table 2. Possible targets for each component.

MOL ID Ingredients Drug-Acting Targets of Disease

MOL010934 Ardisianoside K NR3C1
MOL010964 Maesanin (C23H36O4) ACHE
MOL010974 Tri-O-methylnorbergenin PRSS1

MOL011003
5-ethoxy-2-hydroxy-3-[(8Z)-tridec-8-en-

1-yl][1,4]
benzoquinone

ACHE

MOL011020 Ardisianone B GABRA1, NCOA2
MOL002879 Diop CHRM3

MOL000422 Kaempferol

PTGS1, AR, PPARG, NCOA2, PRSS1, PGR, CHRM1, ACHE,
CHRM2, GABRA1, F7, RELA, IKBKB, BCL2, AHSA1, CASP3,
MAPK8, PPARG, CYP3A4, CYP1A1, ICAM1, SELE, VCAM1,

CYP1B1, ALOX5, GSTP1, AHR, PSMD3, SLC2A4, NR1I3, DIO1,
GSTM1, GSTM2, AKR1C3

MOL009278 Laricitrin ESR1, AR, PPARG, ESR2, GSK3B, PRSS1, PTGS1, NCOA2

MOL000098 Quercetin

PTGS1, AR, PPARG, NCOA2, AKR1B1, PRSS1, F7, ACHE,
GABRA1, RELA, EGFR, VEGFA, CCND1, BCL2, FOS, EIF6, CASP9,

PLAU, RB1, IL6, AHSA1, CASP3, TP63, ELK1, NFKBIA, POR,
CASP8, RAF1, PRKCA, HIF1A, RUNX1T1, ERBB2, PPARG,

ACACA, CYP3A4, CAV1, MYC, CYP1A1, ICAM1, SELE, VCAM1,
PTGER3, BIRC5, DUOX2, NOS3, HSPB1, MGAM, CYP1B1, CCNB1,
ALOX5, GSTP1, NFE2L2, NQO1, PARP1, AHR, PSMD3, SLC2A4,
COL3A1, DCAF5, NR1I3, CHEK2, HSF1, CRP, RUNX2, RASSF1,
CTSD, IGFBP3, IGF2, IRF1, ERBB3, PON1, DIO1, NPEPPS, HK2,

RASA1, GSTM1, GSTM2

http://www.cytoscape.org
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2.4. Network Pharmacology Visualization of Japanese Ardisia

The target PPI information obtained from the STRING protein interaction database
was imported into Cytoscape 3.7.0 software (http://www.cytoscape.org, accessed on
15 November 2021), and the common targets between Japanese Ardisia, its active compo-
nents, and autoimmune hepatitis were visualized. The data were merged into a component-
target network diagram via the merge function in Cytoscape 3.7.0 to obtain the network
diagram of ‘Japanese Ardisia–component–gene–autoimmune hepatitis’ (Figure 4).

2.5. GO Functional Enrichment Analysis

The 20 GO nodes with the greatest number of annotated proteins were selected for
display. These nodes mainly involved DNA–binding transcription factor binding, RNA
polymerase II-specific DNA binding, cytokine receptor binding, receptor-ligand activity,
ubiquitin-like protein ligase binding, cytokine activity, ubiquitin–protein ligase binding,
nuclear receptor activity, ligand-activated transcription factor activity, and kinase regulatory
activity. The p-values were arranged from largest to smallest, and visual analysis was
performed using an advanced bubble graph (Figure 5). DNA–binding transcription factor
binding had the most obvious effect, and the greatest number of genes, followed by RNA

http://www.cytoscape.org
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polymerase II-specific DNA binding, cytokine receptor binding, receptor-ligand activity,
ubiquitin-like protein ligase binding, cytokine activity, and ubiquitin–protein ligase binding.
Meanwhile, nuclear receptor activity, ligand-activated transcription factor activity, kinase
regulator activity, and other pathways indirectly affected a series of signaling pathways,
eventually causing changes in biological processes.
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2.6. KEGG Pathway Enrichment Analysis

One hundred and sixty-three pathways were identified in the KEGG enrichment
analysis. The top 20 signaling pathways mainly involved the lipid and atherosclerosis
pathway, Kaposi sarcoma-associated pathway, human cytomegalovirus infection pathway,
IL-17 signaling pathway, TNF signaling pathway, hepatitis B pathway, and the AGE-RAGE
signaling pathway were involved in diabetic complications (Figure 6). The results suggest
that Japanese Ardisia can be used to treat autoimmune hepatitis through multi-target and
multi-pathway regulation.
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2.7. Molecular Docking

The X-ray crystal structures of the target molecules AKT1, IL6, VEGFA, and CASP3
were obtained from the PDB protein structure database. PyMOL 2.5 was then used to
remove water molecules and small molecules with ligand affinity. Subsequently, the protein
receptor and ligand files were converted into PDBQT format using AutoDock Tools 1.5.6.
AutoDock Vina 1.1.2 was used to characterize the molecular docking and calculate its
affinity. The conformation with the highest affinity was selected as the final docking
conformation, and PyMOL (https://pymol.org/2/ accessed on 16 November 2021) and
AutoDock software (https://autodock.scripps.edu/ accessed on 16 November 2021) were
used to visualize the docking results in the form of two-dimensional and three-dimensional
diagrams (Figure 7). If the binding energy between the molecule and the target protein
is negative, the ligand and receptor can spontaneously bind, and if the binding energy is
less than −5 kcal/mol, a stable docking structure can be formed [21]. The docking binding
energies between quercetin and AKT1, IL6, VEGFA, and CASP3 were −4.91, −5.75, −4.86,

https://pymol.org/2/
https://autodock.scripps.edu/
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and −5.89 kcal/mol, respectively. The docking binding energies between kaempferol and
AKT1, IL6, VEGFA, and CASP3 were −5.6, −6.42, −5.04, and −5.12 kcal/mol, respectively.
The details are shown in Table 3. The Japanese Ardisia active ingredients quercetin and
kaempferol had a good binding ability with the four key targets.
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Figure 7. Molecular docking of quercetin and kaempferol with AKT1, IL6, VEGFA and CASP3.
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Table 3. Docking and binding energy of main components of Japanese Ardisia and core targets
(kcal·mol−1).

Target Molecules AKT1 IL6 VEGFA CASP3

MOL000098 (Quercetin) −4.91 −5.75 −4.86 −5.89
MOL000422 (Kaempferol) −5.6 −6.42 −5.04 −5.12

2.8. Animal Experiments
2.8.1. Validation of the Therapeutic Effectiveness of Japanese Ardisia

To investigate the efficacy of Japanese Ardisia in the treatment of AIH, we established
a Con A-induced immunological liver injury model (Figure 8A). Firstly, we found that Con
A caused changes in body weight, liver weight, and liver coefficients in rats after ten days,
with some reversal effect after preadministration of Japanese Ardisia (Figure 8B). The rats’
liver tissue was then taken out and checked for cholestasis. Con A group showed signs
of cholestasis and inflammation, and there was some relief from cholestasis after the drug
was administered (Figure 8C). By testing serum markers of liver injury (ALT and AST), the
results showed that Con A-induced acute liver injury resulted in a significant increase in
ALT and AST levels. In contrast, preadministration of Japanese Ardisia was able to alleviate
the altered biochemical levels. (Figure 8D).

Furthermore, HE staining of liver tissues showed that the model group had a large
infiltration of inflammatory cells and a large amount of vacuolar-like degeneration of
hepatocytes compared to the control group. Liver tissue damage was alleviated after
preadministration of Japanese Ardisia (Figure 8E,F), indicating that the pre-administration
of the drug was able to slow down the con A-induced histopathological damage to
the liver.
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2.8.2. The Effect of Japanese Ardisia on AKT1, CASP3, and IL-6 Protein Levels

Western blot analyses are shown in Figure 9, which revealed that CASP3 and IL-6
protein expression levels were significantly higher (p < 0.01), and AKT1 expression levels
were significantly lower (p < 0.01) in the model group compared to the normal control group.
CASP3 protein expression was significantly lower (p < 0.01), AKT1 protein expression was
significantly higher (p < 0.05), and IL-6 protein expression was significantly lower (p < 0.05)
in the Japanese Ardisia administration group after 10 days compared to the model group.
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Figure 8. (A) Description of the rat model of acute immune liver injury used in this study. (B) Body
weight, liver weight, and liver coefficient changes in rats 10 days after EJA treatment. Compared
with normal group, ** p < 0.01, * p < 0.05; Compared with model group, # p < 0.05. Note: EJA is
an extract of Japanese Ardisia. Data were shown as mean ± SEM (n = 6 per group). (C) Rat liver
treated with EJA. (D) Effect of EJA on serum ALT and AST levels. Compared with normal group,
** p < 0.01; Compared with model group, # p < 0.05. Note: EJA: an extract of Japanese Ardisia.
Data were shown as mean ± SEM (n = 3 per group). (E) Histopathological sections of rat liver (HE
staining, 200× 400×). (F) Effect of Japanese Ardisia pretreatment on the scoring of liver pathological
sections of rats with con A-induced liver injury. Compared with normal group, ** p < 0.01; compared
with model group, ## p < 0.01. Note: EJA is an extract of Japanese Ardisia. Data were shown as
mean ± SEM (n = 6 per group). Scoring criteria: 0—no necrosis; 1—individual cell necrosis; 2—less
than 30% necrosis; 3—30–60% necrosis; 4—greater than 60% necrosis [22].
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(n = 3 per group). Note: EJA is an extract of Japanese Ardisia.

3. Discussion

AIH is a chronic inflammatory disease characterized by abnormally high levels of
serum autoantibodies, hypergammaglobulinemia, and serum transaminases [23]. With the
advancement of medical technology in recent years, AIH has received widespread attention
and has gradually become a research hotspot.

Chinese medicine’s multi-component and multi-target properties, and thus its holistic
and systemic action characteristics, make it unique in its advantages and potential for
complex diseases, but this complexity has also limited its application and development.

Cyberpharmacology analyzes drug action at the systemic level and reveals the syner-
gistic mechanism of drug action on the human body, which fits well with the dialectical
and holistic view of Chinese medicine theory, and it is expected to bring a breakthrough to
Chinese medicine research characterized by a holistic approach, providing new method-
ological support for Chinese medicine to move from empirical to theoretical science [24–26].
We used network pharmacology to create a component-shared target network map in this
study to systematically reveal the material basis and molecular mechanism of Japanese
Ardisia for the treatment of AIH.

This study provides key information about the anti-hepatitis effect of Japanese Ardisia.
The TCMSP database analysis resulted in the screening of 19 active ingredients. 143 effective
targets for the treatment of autoimmune diseases were identified using databases, such as
GeneCards and OMIM. According to the results of the component–target network analysis,
150 target genes were associated with the drug-disease target intersection. The core genes
were AKT1, IL6, VEGFA, and CASP3. AKT1, also known as protein kinase B, regulates a
wide variety of cellular functions, including cell proliferation, survival, metabolism, and
angiogenesis, in both normal and malignant cells [27]. IL6 is a pro-inflammatory cytokine
with a wide variety of biological functions. It is involved in physiological activities such
as the inflammatory response, cellular immunity, and hematopoietic regulation. IL6 plays
major roles in the differentiation of B cells into immunoglobulin-secreting cells and antibody
production, the activation of T cell proliferation and differentiation, the immune response,
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and the promotion of inflammatory reactions [28]. IL6 is rapidly synthesized in response to
tissue injury or an inflammatory infection. This promotes the body’s defense function by
stimulating the acute immune response and the hematopoietic system. When the tissue
recovers its homeostasis, IL6 synthesis is discontinued [29]. The continuous activation of
the IL6 pathway is associated with liver injury and hepatocellular carcinoma [30]. VEGFA
induces endothelial cell proliferation, promotes cell migration, inhibits apoptosis, and
induces the permeabilization of blood vessels. It is essential for both physiological and
pathological angiogenesis. CASP3 is a cysteine aspartate protease that participates in the
activation cascade of cysteine proteases. CASP3 plays an important role in inflammation
and tumor progression [31]. It is highly expressed in patients with hepatitis B [32], and it
regulates cell proliferation and apoptosis [33] and tumor invasion and metastasis [34].

Japanese Ardisia has a therapeutic effect on hepatitis via a mechanism that may be
related to key molecules involved in the regulation of autoimmune hepatitis. It inhibits asso-
ciated inflammatory factors by regulating various signaling pathways, downregulating the
concentrations of serum hyaluronic acid and tumor necrosis factor, protecting hepatocytes
from injury, reducing liver inflammation, and protecting against lipid peroxidation [35].
Inflammatory stimulation is the cause of many chronic diseases [36]. GO enrichment analy-
sis showed that the anti-hepatitis effect of Japanese Ardisia is related to the inflammatory
response, cell cycle regulation, and hormone metabolism. In the KEGG enrichment analysis,
163 pathways were identified, including the lipid and atherosclerosis pathway, IL-17 sig-
naling pathway, TNF signaling pathway, human cytomegalovirus infection pathway, fluid
shear stress and atherosclerosis pathway, hepatitis B pathway, and AGE–RAGE signaling
pathway in diabetic complications. It can be seen that the pathway is mainly related to
oxidative stress, immune regulation, and inflammatory responses, with the AGE-RAGE
signaling pathway being closely related to inflammation, which activates the MAPK and
NF-KB pathways and interferes with immune and oxidative stress responses [37]. TNF is a
key regulator of the inflammatory response, and its receptors TNFR1 and TNFR2 activate
complex signaling pathways that lead to a series of inflammatory responses in the vascular
endothelium, including thrombosis, leukocyte adhesion, and vascular leakage [38]. The
IL-17 signaling pathway is involved in neutrophil infiltration and inflammatory responses
and can be restricted by the ACE2 downregulation of the STAT3 pathway, thereby slowing
down neutrophil infiltration and inflammation. These pathways may be the key to effective
autoimmune hepatitis treatment with Japanese Ardisia, which affects the secretion of certain
substances by acting on specific receptors or enzymes, to achieve its therapeutic effect.

The binding interaction between each compound and its receptor was scored by the
molecular docking program. A lower score indicated more stable binding between the
ligand and its receptor [39,40]. Through the molecular docking of quercetin and kaempferol,
the effective components of Japanese Ardisia, with the key targets AKT1, IL6, VEGFA, and
CASP3, the docking binding energy and the number of intermolecular hydrogen bonds were
obtained. The results showed that quercetin and kaempferol had a good binding ability
with the key targets and can spontaneously bind to form a stable binding conformation.

Animal studies have shown that Japanese Ardisia is effective in the treatment of AIH.
Western blot analysis revealed that Japanese Ardisia could reduce the expression of CASP3
and IL-6 while increasing the expression of AKT1. These proteins are involved in the
AGE–RAGE signaling pathway in diabetic complications. According to this, the Japanese
Ardisia may be able to modulate these key targets to achieve therapeutic effects on immune
liver injury.

Additionally, there are also limitations to the research at this stage, as network phar-
macology techniques can only predict drug composition and targets qualitatively. High-
performance liquid chromatography (HPLC) or ultraviolet spectrophotometry (UV) should
be used to determine the plausibility of the screened active ingredients, and this should
be combined with pharmacology, pharmacodynamics, and pharmacokinetics to make the
screened active ingredients and mechanism of action more convincing.
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4. Materials and Methods
4.1. Databases

The Traditional Chinese Medicine Systems Pharmacology (TCMSP) database, an analy-
sis platform (http://tcmspw.com/tcmsp.php (accessed on 14 November 2021)), GeneCards
(http://www.genecards.org (accessed on 14 November 2021)), Online Mendelian Inher-
itance in Man (OMIM, http://www.omim.org (accessed on 14 November 2021)), the
Therapeutic Target Database (TTD; http://db.idrblab), the Search Tool for Retrieval of In-
teracting Genes (STRING) protein interaction database (https://string-db.org (accessed on
15 November 2021)), Cytoscape 3.7.0 (http://www.cytoscape.org (accessed on
15 November 2021)), and the Protein Data Bank (PDB) protein structure database (https:
//www.rcsb.org/pdb (accessed on 16 November 2021)) were used in this study.

4.2. Screening of Active Ingredients of Japanese Ardisia

The components of Japanese Ardisia were searched in TCMSP (TCMSP, https://lsp.
nwu.edu.cn/tcmsp.php, accessed on 14 November 2021) and screened for active com-
pounds by oral bioavailability (OB) and drug similarity (DL), as well as potential targets of
action for activity, the active compounds obtained from the screening are presented in the
form of a list.

4.3. Screening of Target Diseases

GeneCards, OMIM, and TTD were used to identify hepatitis-related gene targets.
Specific search parameters, such as the keyword ‘autoimmune hepatitis’, were used for data
collection. Using R 4.0.4 software (https://www.r-project.org/ accessed on 15 November
2021) to remove duplicate regions of gene targets, the intersection of the active ingredient
and disease target was obtained and plotted as a Venn diagram.

4.4. Target Protein Localization and Interaction Analysis

The cross-targets of Japanese Ardisia in autoimmune hepatitis treatment and preven-
tion were imported into the STRING protein interaction database for analysis. The PPI
network was mapped using the Cytoscape 3.7.0 software. A protein–protein interaction
(PPI) network was constructed according to proximity centrality, intermediate centrality,
and degree value, and the key targets were screened using Cytoscape 3.7.0.

4.5. Construction of a Component-Target-Disease Interaction Network of Japanese Ardisia with
Autoimmune Hepatitis

The previously acquired common genes and the associated active ingredients were
visualized and analyzed using Cytoscape 3.7.0 software.

4.6. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes Pathway Enrichment Analysis

The potential targets of Japanese Ardisia for autoimmune hepatitis treatment were
imported into the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) databases. GO was selected for enrichment analysis, KEGG was selected for
pathway analysis, and the p-value threshold was set at <0.05 to determine the enrichment
pathways of key targets. An advanced bubble diagram was constructed from the enrich-
ment results: the smaller the p-value, the higher the enrichment; the larger the bubble, the
richer the genes were.

4.7. Molecular Docking

The two-dimensional structures of quercetin, kaempferol, and laricitrin were ob-
tained from the TCMSP database and saved as a Mol2 file. AKT serine/threonine kinase
1 (AKT1), interleukin 6 (IL6), vascular endothelial growth factor A (VEGFA), and caspase
3 (CASP3) were selected as the target proteins for molecular docking experiments. The
three-dimensional structures of AKT1, IL6, VEGFA, and CASP3 were downloaded from
the PDB protein structure database and saved in PDB format [41]. Crystal structures

http://tcmspw.com/tcmsp.php
http://www.genecards.org
http://www.omim.org
http://db.idrblab
https://string-db.org
http://www.cytoscape.org
https://www.rcsb.org/pdb
https://www.rcsb.org/pdb
https://lsp.nwu.edu.cn/tcmsp.php
https://lsp.nwu.edu.cn/tcmsp.php
https://www.r-project.org/
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with high resolution and corresponding bioactive ligand complexes were preferentially
selected [42]. The structures of the protein macromolecules and small-molecule compounds
were imported into AutoDock 4.2.6 software (https://autodock.scripps.edu/ accessed on
16 November 2021) for molecular docking, and the docking results were analyzed using
the PyMOL (https://pymol.org/2/ accessed on 16 November 2021) visualization tool.

4.8. Animal Experiments
4.8.1. Drug

The whole herb of Japanese Ardisia was ground into a coarse powder and kept in
a dry, cool environment. A weighed amount of coarse powder was soaked in ten times
the amount of water for one night before being decocted twice for 1.5 h each time. The
decoctions were combined and concentrated to 1 g/mL (1 mL equals 1 g raw material), the
concentrate was centrifuged at 5000 rpm for 15 min, the supernatant was collected and
concentrated to 1.5 g/mL (1 mL equals 1.5 g raw material), and the obtained concentrate
was refrigerated at 4 ◦C [43,44].

4.8.2. Animal Grouping and Drug Administration

SPF-grade male SD (Sprague-Dawley) rats, weighing (200 ± 10) g, with six animals per
cage were housed in specific pathogen-free facility with a 12 h light and 12 h dark cycle at
22 ◦C. All mice were randomly divided into three groups, control group (n = 6), con A group
(n = 6), and extract of Japanese Ardisia (EJA) (n = 6) groups after being fed adaptively for a
week. The control and model groups were given saline, while the administration group
was given 36 g/kg of Japanese Ardisia by gavage once daily for 10 days. One hour after
the last dose, all groups were given 25 mg/kg con A in the tail vein, except for the control
group which was given an equal amount of saline in the tail vein, rats were euthanized
12 h after con A treatment, and their livers were dissected from the rats.

The kits purchased from Nanjing Jiancheng Institute of Biological Engineering were
used, and the alanine transaminase (ALT) (Cat.No.C009-2-1) and aspartate transaminase
(AST) (Cat.No.C010-1-1) measurements were performed according to the instructions
provided by the kit supplier.

All the animals were provided by Hunan Sleek Jingda Laboratory Animal Co. License
No. SCXK (Xiang) 2019-0005. Animal welfare and experimental procedures followed the
regulations of the Animal Ethics Committee of Guilin Medical College.

4.8.3. Histopathological Section Analysis of Liver

Tissue removed from 2.8.2 was fixed in 4% paraformaldehyde, paraffin sections were
embedded, and, finally, the pathological sections were observed by HE staining, and the
pathological changes of liver tissues were observed under an electron microscope.

4.8.4. Western Blot

To verify the protein expression level, we extracted protein from rat liver tissue,
weighed a certain amount of liver tissue, fully lysed it with RIPA lysis solution (Solarbio,
Beijing, China), used SDS-PAGE electrophoresis, and then transferred it to PVDF (Solarbio,
Beijing, China) membrane. We then blotted and closed them at room temperature for
one hour, and then we incubated them with AKT1 (60203-2, proteintech, Wuhan, China),
CASP3 (ab184787, Abcam, Cambridge, UK), IL-6 (ab259341, Abcam, Cambridge, UK),
β-actin antibody (66,009, proteintech, Wuhan, China), and incubated them overnight at
4 ◦C. Then, we incubated them with goat anti-rabbit IgG (H + L) and goat anti-mouse Ig
G (H + L) for 1 h at room temperature. The protein bands were visualized using an ECL
chemiluminescence kit (Beyotime, Shanghai, China) and quantified under Image J system,
version 6.0.

https://autodock.scripps.edu/
https://pymol.org/2/
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4.9. Statistical Analysis

The experimental results are presented as mean ± SEM for each group, with at least
three independent experiments. The differences between the treatment and normal groups
were analyzed by a one-way analysis of variance using GraphPad Prism 8.0 (GraphPad
Software Inc., San Diego, CA, USA). p < 0.05 was used to indicate statistical significance.

5. Conclusions

In summary, we first performed a network pharmacology and molecular docking
approach to elucidate the anti-AIH effects and potential mechanisms of Japanese Ardisia,
and finally determined the effect of Japanese Ardisia anti-AIH on the expression of key
target proteins by Western blotting analysis. Japanese Ardisia tends to work through the
IL-17 signaling pathway, the TNF signaling pathway, the AGE–RAGE signaling pathway
in diabetic complications, and other targets such as AKT1, IL-6, and CASP3 to exert drug
effects. The potential signaling pathways uncovered in this study lay the theoretical
groundwork and point the way for future experimental validation.
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