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Abstract: In this paper, we fabricated semi-interpenetrating polymeric network (semi-IPN) of
hydroxypropyl-β-cyclodextrin-grafted-poly(acrylic acid)/poly(vinyl pyrrolidone) (HP-β-CD-g-
poly(AA)/PVP) by the free radical polymerization technique, intended for colon specific release
of dexamethasone sodium phosphate (DSP). Different proportions of polyvinyl pyrrolidone (PVP),
acrylic acid (AA), and hydroxypropyl-beta-cyclodextrin (HP-β-CD) were reacted along with ammo-
nium persulphate (APS) as initiator and methylene-bis-acrylamide (MBA) as crosslinker to develop
a hydrogel system with optimum swelling at distal intestinal pH. Initially, all formulations were
screened for swelling behavior and AP-8 was chosen as optimum formulation. This formulation was
capable of releasing a small amount of drug at acidic pH (1.2), while a maximum amount of drug was
released at colonic pH (7.4) by the non-Fickian diffusion mechanism. Fourier transformed infrared
spectroscopy (FTIR) revealed successful grafting of components and development of semi-IPN struc-
ture without any interaction with DSP. Thermogravimetric analysis (TGA) confirmed the thermal
stability of developed semi-IPN. X-ray diffraction (XRD) revealed reduction in crystallinity of DSP
upon loading in the hydrogel. The scanning electron microscopic (SEM) images revealed a rough and
porous hydrogel surface. The toxicological evaluation of semi-IPN hydrogels confirmed their bio-
safety and hemocompatibility. Therefore, the prepared hydrogels were pH sensitive, biocompatible,
showed good swelling, mechanical properties, and were efficient in releasing the drug in the colonic
environment. Therefore, AP-8 can be deemed as a potential carrier for targeted delivery of DSP to
treat inflammatory bowel diseases.

Keywords: sustainability of natural resources; semi-interpenetrating; pH-sensitive networks; acrylic
acid; poly(vinyl pyrrolidone); hydroxypropyl-β-cyclodextrin; dexamethasone
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1. Introduction

Hydrogels are three-dimensional crosslinked polymeric structures with an excellent
capability to hold water and biological fluids within the network [1,2]. In the last two
decades, they have gained remarkable reputation as drug carriers for various applications
owing to their remarkable features. They can act as a stimuli-sensitive drug delivery system
by responding to various stimuli such as pressure, pH, ionic strength, and temperature [3–5].
However, low mechanical strength, difficulty in drug loading, and premature drug release
are the few drawbacks associated with simple hydrogels. These shortcomings can be
overcome by using the interpenetrating polymer network (IPN). IPN is an admixture of
two or more crosslinked polymers, noticeably one of which is synthesized or crosslinked in
the instant presence of other polymer without any covalent bond between polymer chains
and cannot be separated unless chemical bonds are broken [6]. When a linear polymer is
entrapped in the matrix, it is labeled as semi-IPN [7]. Semi-IPN hydrogels are composed
of synthetic or natural polymers and are significantly better than simple hydrogels in
terms of mechanical and swelling properties [8]. They not only improve drug diffusion and
loading, but also impart mechanical strength when equated with conventional hydrogels [9].
Moreover, the stimuli-sensitive behavior of semi-IPN hydrogels have been developed for
numerous applications in drug delivery and biomedicine [10,11].

PVP is a hydrophilic, nontoxic, biocompatible, and biodegradable synthetic poly-
mer, which makes it a suitable contender with other polymers for synthesizing IPN or
semi-IPN hydrogels [12]. Individually, it has an appreciable mechanical strength but infe-
rior swelling characteristic, which can be improved by copolymerization with a suitable
monomer, such as vinyl monomers, AA or methacrylate [3]. Previously, PVP had been
used along with carboxymethylcellulose [13], sodium alginate [14], poly(vinyl alcohol) [15],
chitosan [16], etc. for hydrogel-based carriers for delivery of numerous active ingredients
and biomedical applications.

AA contains carboxylic (–COOH) [17,18], which makes it a suitable candidate for the
development of hydrogels, which are sensitive to ionic strength and pH of media [19]. AA
had been used with gelatin [20], PVP [3], vinylsulfonic acid [4], chitosan [21], guar gum [22],
poly(vinyl alcohol) [23], etc. to develop pH-sensitive hydrogels.

Cyclodextrins (CDs) are torus-like oligosaccharides comprising of six to eight glucopy-
ranose units linked byα-1,4-glycosidic bonds and are known asα, β, and γ-cyclodextrin [24].
CDs make inclusion complexes with organic molecules through host-guest interactions [25].
The efficiency of CDs can be increased by incorporating them with an insoluble three-
dimensional polymeric structure [26]. In these cases, attached cyclodextrins form com-
plexes with hydrophobic drugs of suitable size or, in the case of hydrophilic drugs, form
complexes with an accessible hydrophobic portion [27]. Moreover, the addition of CDs to
the polymer matrix structure provides (i) an affinity-based mechanism of drug loading and
controlled drug release, and (ii) enhanced hydrophilicity of polymer matrix.

Among various CDs, HP-β-CD is highly successful in promoting the dissolution of
water insoluble active ingredients [28]. It has strong absorption and solubilizing power with
maximum stability and minimum toxicity [29]. Furthermore, it increases the bioavailability
of complex compounds [30] and forms complexes with several hydrophilic polymers, such
as PVP [31], hydroxypropyl methylcellulose (HPMC), and polyethylene glycol (PEG) [32]
to modify physiochemical properties, improve stability, biocompatibility, drug loading, and
drug release. Therefore, this makes it useful for various drug delivery applications [33,34].
The presence of HP-β-CD in free or covalently-linked IPN hydrogels improves the release
rate of entrapped drug by enhancing the dissolution and diffusion of the drug [35].

Dexamethasone sodium phosphate (DSP) is a water-soluble anti-inflammatory deriva-
tive of dexamethasone [36]. It has been extensively used to treat colonic diseases, such as
bowel diseases, ulcerative colitis [37], Crohn’s disease, amoebiasis, colonic cancer, etc.

In literature, numerous hydrogels were developed for drug delivery applications using
the above-mentioned components in various combinations. For example, PVP/AA with traga-
canth gum [38], PVP/poly(ethyleneglycol)-dimethacrylate with CD [35], PVP-poly(ethylene
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glycol) containing inclusion complexes of ibuprofen in β-cyclodextrin [39], as well as pH-
responsive hydrogel based on guar gum, poly(acrylic acid), and β-cyclodextrin [40]. To the
best of our knowledge, AA, PVP, and HP-β-CD have never been blended to develop the
semi-IPN hydrogel.

In the present work, we emphasized on the design of an optimized vehicle for loading
and delivery of DSP to colonic region. The synthesized pH-sensitive semi-IPN matri-
ces were characterized by several in vitro assessments and in vivo toxicological tests for
possible colonic delivery of DSP to treat ulcerative colitis and Crohn’s disease.

2. Results and Discussion

Initially, we developed eighteen semi-IPN hydrogel formulations with variations of
AA and PVP (Table 1), and a possible structure is shown in Figure 1. All these formulations
were tested for sol-gel behavior and swelling behavior as a function of pH. Concentrations
of AA and PVP were varied to select the optimum formulation for further testing.

Table 1. Ingredients of HP-β-CD-g-poly(AA)/PVP semi-IPN hydrogel matrices.

Trial Code AA g/100 g PVP g/100 g Formulation
Code AA g/100 g PVP g/100 g Formulation

Code AA g/100 g PVP g/100 g

AP-1 * 0

0.3

AP-7 * 0

1.33

AP-13 * 0

2.66

AP-2 16.66 AP-8 16.66 AP-14 16.66
AP-3 33.33 AP-9 33.33 AP-15 33.33
AP-4 50 AP-10 50 AP-16 50
AP-5 66.66 AP-11 66.66 AP-17 66.66
AP-6 83.33 AP-12 83.33 AP-18 + 83.33

* No gel formed, + Gel burst. HP-β-CD and MBA remained constant, i.e., 0.3 g/100 g, while APS was 0.16 g/100 g
in all formulations.

2.1. Swelling Studies

Swelling is an intrinsic property of hydrogels, whereby they are enlarged due to liquid
penetration and retention in void spaces among polymeric chains. This property directly
affects drug loading and release characteristics of hydrogels. Swelling of hydrogels are
affected by pH of media, presence of pH-sensitive groups, interpenetrating polymer, and
crosslinking density [5]. As the crosslinker concentration remained constant, we assessed
the effect of concentrations of PVP and AA, as well as variations of pH on the swelling
behavior of hydrogels as discussed below.

2.1.1. The pH of Medium

The swelling study determines the time-dependent swelling behavior of semi-IPN
hydrogels. The pH of medium significantly affects the physical properties and swelling
kinetics of hydrogels. At pH 1.2, hydrogels exhibited a low swelling ratio, when equated
with swelling at pH 7.4 as depicted in Figure 2.

Swelling of semi-IPN hydrogels is affected by the presence of carboxylic group
(–COOH) of AA. At low pH, hydrogels remained unionized owing to the protonation
of –COOH group, which resulted in collapsed hydrogels, thus minimal to no swelling was
observed. However, when hydrogels were dipped in simulated intestinal pH, a dramatic
surge in swelling ratio was witnessed as shown in Figure 2. This was due to the pH of the
surrounding medium, which was above the pKa of AA (4.28) [41]. At this pH, carboxylic
groups are easily deprotonated, which results in an increase in electrostatic repulsion and
swelling of polymeric network. This difference in the swelling behavior of hydrogels at
two different pH values can be visualized in Figure 3f. Moreover, previous studies support
our observations. For e.g., Khan and Anwar developed pH-sensitive IPN hydrogels and
observed higher swelling at higher pH (7.4) and vice versa [22].
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2.1.2. Effect of AA

After confirming the influence of pH on semi-IPN hydrogels swelling, we explored
the swelling behavior with respect to monomer concentration. Here, the swelling ratio
declined with the increasing concentration of AA from 16.66 to 66.66 weight % as depicted
in Figure 4a–c.
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This behavior could stem from the fact that AA is a small entity and hydrogels
synthesized with a low AA concentration have greater room for penetration of buffer. In
comparison, higher AA content leads to a compact structure that restrains the expansion of
network leading to a lesser accessibility of the solvent molecules, thereby exhibiting reduced
swelling [22,42]. Our results are in close agreement with the previous studies highlighting
decreased swelling with an increasing AA concentration in semi-IPN hydrogels [43,44].
Moreover, as observed in Figure 4a, AP-6 with maximum AA (83.33 weight %) content
displayed an abrupt increase in equilibrium swelling (35.08 g/g) at 48 h. At high AA content,
low molecular weight polymers are produced by popcorn polymerization that compromise
the gel strength leading to rapid swelling as previously observed by Huang et al. [45].
Furthermore, AP-6 was weak and broke easily when immersed in water with a spongy
surface. It was sticky after swelling and thus deemed unacceptable. When we compared
all formulations, AP-8 showed maximum equilibrium swelling with excellent physical
appearance (Figure 4b,d).

2.1.3. Effect of PVP

With the increasing concentration of PVP from 0.3–1.33 weight %, the swelling of
hydrogels also increased. This could be described by the following facts. (a) Incorporation
of non-ionic PVP increases non-ionic groups in the polymeric matrix. However, it is
reported that the collaborative fluid absorption effect of –C=O(N), –COOH, and –COO–

groups is significantly better than the individual groups. (b) PVP acts as a dispersant
during the reaction to form a consistent network. (c) Hydrophobic alkyl polymeric chain
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ends of PVP develop tiny hydrophobic regions that facilitate the formation of regular
polymeric network [14], which increases the absorption of media. When the PVP content
was further increased from 1.33 to 2.66 weight %, polymeric chains were tangled in the
network to promote physical crosslinking. This led to the decreased expansion of polymeric
network and reduced swelling as observed in Figure 3. Another possible reason could
be that after achieving the optimum pore size, further increase in PVP concentration
could increase the crosslinking density and restrict the penetration of buffer medium into
the polymeric network [46]. Consequently, a decline in hydrogel swelling was witnessed
(Figure 3). Similar observations were reported by Wang et al. who developed pH-responsive
semi-IPN carboxy methyl cellulose (CMC)-g-poly sodium acrylate/PVP hydrogels. They
witnessed increased swelling up to 15 wt%, which decreased with further increase in the
concentration of PVP [13]. Similarly, Singh and Sharma also reported a similar effect of
PVP on the swelling behavior of PVP-co-poly(2-acrylamido-2-methylpropane sulfonic
acid) hydrogels [46]. Initially, swelling increased with the increasing PVP up to 4% and
then decreased with further increase in PVP content. Therefore, we can infer that a low
concentration of PVP in hydrogel is suitable for achieving optimum strength and swelling.
At higher concentrations, PVP not only develops structures that are more resilient, but also
increases crosslinking density and reduces pore dimension, which restrict the ingression of
dissolution media and swelling.

2.2. Sol-Gel Fraction

Sol-gel fraction helps in the estimation of the soluble and insoluble fraction of semi-
IPN matrices. Here, a non-crosslinked or soluble portion is referred as a sol, while a
crosslinked or insoluble portion is referred as gel fraction hydrogel. Therefore, it helps
in the determination of the extent of monomer or polymer utilized for the synthesis of
hydrogels [2]. Table 2 demonstrates that increasing the concentration of monomer inversely
affects the gel fraction while directly affecting the sol fraction in semi-IPN hydrogels,
except for AP-6 as discussed in Section 2.1.2. Similar findings were observed by Abad
et al., where the gel fraction decreased with the increasing monomer content for PVP and
kappa-carrageenan-based hydrogels [47]. Our results indicate that most of the reactants
were available for synthesis of hydrogels under test conditions. Moreover, a small portion
of unreacted reactants can be easily extracted as a sol part during washing of hydrogels.

Table 2. Sol-gel fraction of semi-IPN hydrogel matrices (n = 3).

Sr No Trial Code Gel (%) Sol (%) Code Gel (%) Sol (%) Code Gel (%) Sol (%)

1 AP-1 * - - AP-7 * - - AP-13 * - -
2 AP-2 95.68 4.31 AP-8 99.59 0.40 AP-14 96.66 3.33
3 AP-3 92.41 7.58 AP-9 93.48 6.51 AP-15 92.45 7.54
4 AP-4 92.37 7.62 AP-10 93.41 6.58 AP-16 90.27 9.72
5 AP-5 94.21 5.78 AP-11 93.33 6.66 AP-17 89.88 10.11
6 AP-6 97.23 2.76 AP-12 93.28 6.71 AP-18 + - -

* No gel formed, + Gel burst.

It is noteworthy that the AP-8 formulation had the highest gel fraction and displayed
maximum equilibrium swelling when compared with the rest of the formulations. Con-
sequently, a low concentration of AA and intermediate concentration of PVP provided
superior properties than its counterpart formulations.

2.3. Solid-State Characterization

Solid-state characterization of hydrogels can not only help in the elucidation of net-
work, but it can also predict the purity and stability of formulation. Based on swelling
and sol-gel data, AP-8 was chosen as an optimized formulation and deemed suitable for
further studies.
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2.3.1. FTIR

FTIR is an easy-to-use, fast, sensitive, and nondestructive analytical technique for
pharmaceutical analysis and quality control. It is equally helpful in the identification of
functional groups in polymers, plastics, resins, etc. Therefore, we can use this technique for
all phases of the pharmaceutical product lifecycle, i.e., design, manufacture, quality control,
and failure analysis. In the current research, we employed this technique to confirm the
structure of semi-IPN hydrogels and rule out any possible interaction between the loaded
drug and hydrogel components. For this purpose, we analyzed the FTIR spectra of DSP,
blank, and DSP-loaded semi-IPN hydrogels (Figure 5).
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Figure 5. FTIR spectrums of DSP, blank, and drug-loaded semi-IPN hydrogels (AP-8). Blank refers to
AP-8 semi-IPN hydrogels without DSP.

In literature, it is reported that AA displays a peak corresponding to the hydroxyl
group (–OH) at 3380 cm−1, methylene group (–CH2) peak at 2973 cm−1, carbonyl group
(–C=O) peaks at 1718 and 1750 cm−1, –C-C group peak at 1709 cm−1, –C=C group peak at
1637 cm−1, and –C-O-C group peak at 1173 cm−1 [3,48–50]. HP-β-CD shows the –OH group
band at 3414 cm−1, –CH group peak at 2995 cm−1, –C-O group peak at 1158 cm−1, and
–C-O-C group band at 1048 cm−1 [51]. PVP is reported to show the –CH group stretching
band at 2924 cm−1, –C=O group stretching peaks between 1650 and 1659 cm−1 [48], and
–C-N group peak at 1290 cm−1 [3,52].

In the prepared networks, we observed the characteristic functional group peaks of
individual components with little or no modification, which include appearance, shifting
or disappearance of peaks, indicating the successful involvement of all components in
the formed network. In blank semi-IPN hydrogels spectrum, the strong –OH group peak
of HP-β-CD at 3410 cm−1 became weaker showing the involvement of –OH groups of
HP-β-CD in prepared semi-IPN hydrogels. Small peaks at 1158 and 1048 cm−1 may be
due to the –C-O and –C-O-C groups of HP-β-CD, respectively. In semi-IPN hydrogels,
we observed an important absorption band at 937 cm−1 owing to the glucopyranose
ring of HP-β-CD, which indicates its successful grafting onto the polymeric network as
reported previously [53]. A stretching vibrational peak at 1700 cm−1 is due to the shifting
of carbonyl group (–C=O) peaks of AA (1690 cm−1) and PVP (1650 and 1680 cm−1) in
the blank hydrogels spectra showing the formation of –C-C bonding, thus showing the
networking between PVP and poly(AA). The –N-H- stretching band between 3330 and
3060 cm−1 and –C-N stretching peak at 1650 cm−1 show the integration of crosslinker,
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i.e., MBA [3] in hydrogel matrices. Panahi et al. prepared superabsorbent semi-IPN
hydrogel nanocomposites of sodium alginate-g-poly(AA)/PVP [12], and Jin et al. prepared
semi-IPN hydrogels of PVP and poly(AA) [48] and found similar results as reported in
this study.

Spectrum of DSP depicted the characteristic stretching vibrations of –C=O bonds at
1707, 1666, and 1624 cm−1 [54]. Phosphate anion of DSP shows vibrational peaks at 1299
and 1103 cm−1 [55]. Small vibrational peaks at 989 and 891 cm−1 show axial deformation
of C-F group of DSP [56]. In drug-loaded semi-IPN hydrogel spectrum, one can observe
all the distinguishing peaks of pure DSP from 2000 to 700 cm−1. In drug-loaded semi-IPN
hydrogel, the phosphate anion peak of DSP merged and appeared at 1036 cm−1. Band
of C-F group of DSP appeared at 998 cm−1, thus indicating the presence of DSP in the
semi-IPN hydrogels. As there is little difference between the spectra of DSP-loaded and
blank semi-IPN networks, we can conclude that free radical polymerization resulted in the
successful formation of polymeric network and hints toward successful drug loading.

2.3.2. TGA

In TGA analysis, the weight change in material under testing was calculated as a
function of temperature. TGA analysis is widely used to study the thermal stability
and decomposition pattern of the polymers in various drug delivery systems including
hydrogels. To assess the impact of thermal stress, pure drug, blank, and drug-loaded
semi-IPN hydrogel matrices were subjected to thermal analysis as shown in Figure 6.
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ces (AP-8).

In literature, TGA curve of HP-β-CD showed two weight loss steps. The first weight
loss occurred below 100 ◦C, which was due to water loss, and the second weight loss
event occurred from 300–425 ◦C, which was due to the decomposition [57]. TGA curve
of blank hydrogel displayed two stages, i.e., the first phase commenced from ambient
temperature to 180 ◦C, and the second stage started from 180 ◦C onwards. Here, the first
phase represents the evaporation of water molecules as observed in a previous study by
Fujiyoshi et al. [24], which involved the development of IPN hydrogels using β-CD and N
vinyl pyrrolidone (NVP). The second stage may be attributed to the degradation of PVP
above 200 ◦C [58]. The DSP TGA curve displays different stages of weight loss (%), i.e., the
first stage started from 50 to 100 ◦C and the second from 200 ◦C onwards. We attributed this
weight loss to the thermal degradation of drug molecules since DSP melts at 225 ◦C [59].
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As seen in the TGA curve of drug-loaded semi-IPN hydrogels, the results were com-
parable to blank hydrogels. Here, weight loss started from 150 ◦C, which may possibly be
due to the thermal degradation of PVP and DSP, but weight loss after 225 ◦C was majorly
due to the melting of DSP. Kamyar et al. prepared Zn/Al-CO3 layered double hydroxide
(LDH) with various ratios of dexamethasone. TGA analysis of dexamethasone encapsu-
lated LDH presented a mass loss between 200 and 400 ◦C [59]. Therefore, it is concluded
that the prepared networks remained stable over a wide temperature range. Furthermore,
incorporation of DSP did not affect the stability of our formulation.

2.3.3. XRD

XRD is employed during new drug development, manufacturing, and quality control
of various dosage forms. It is a fast, nondestructive technique that provides valuable
information on polymorphism, crystallinity, and amorphicity of drug molecules in solid
dosage forms including semi-IPN networks. As the majority of active ingredients are often
obtained as crystalline powders, scientists can use these patterns as a readily obtainable
fingerprint to determine the structural type. Figure 7 shows characteristics of diffraction
peaks of DSP at 12.1◦, 14◦, 14.5◦, 16.9◦, 18.1◦, and 19.9◦, which indicates its crystalline
structure [37]. Poly(AA) is amorphous in nature [60], while the amorphous nature of
HP-β-CD was shown by two broad peaks from 5–15◦ and 15–25◦ (2θ) [51,61].
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Blank hydrogel spectrum did not show any characteristic peak and thus represented
an amorphous state of hydrogels [54]. However, the reduction in crystallinity of DSP
was observed in XRD spectrum of drug-loaded semi-IPN hydrogels. A slight change
in behavior of semi-IPN hydrogel matrices was attributed to DSP loading as reported
earlier [3]. Therefore, the amorphous nature of semi-IPN hydrogel matrices could facilitate
water uptake, swelling, and drug release [62].

2.3.4. SEM

This technique is extensively employed by scientists to investigate the microstructure,
surface topography, and chemistry of various organic and inorganic ingredients. It provides
visual information of micrometer and sub-micrometer structures of semi-IPN hydrogels.
SEM pictures of DSP, blank, and DSP-loaded hydrogels (Figure 8) were obtained to observe
the morphological changes in hydrogels before and after drug loading.
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DSP demonstrated crystalline particles, which validates the XRD observation as dis-
cussed in the previous section. The blank semi-IPN hydrogel image shows a loose, coarse,
irregular, and porous surface (Figure 8b,c). These micron size pores could arise from
the interactions between PVP chains and main polymeric structure. Therefore, they can
facilitate the diffusion of dissolution media into the polymeric network. Similar results
were observed by Panahi et al. [12], in which the authors synthesized semi-IPN hydrogel
nanocomposites of chitosan, acrylamide, AA, and PVP that were porous in nature. In
another study, xanthan gum/PVP-co-poly(AA) IPN hydrogels were prepared and the
hydrogels showed a rough microporous structure [9]. In the case of DSP-loaded hydrogels,
a relatively smooth surface with fewer pores was observed, which might indicate the filling
of pores with drugs (Figure 8d,e). Furthermore, these drug-loaded hydrogels showed small
particles on their surface. These could be drug molecules, which have migrated to the
surface during slow drying. These surface adhered molecules could have contributed to
the initial DSP release at pH 1.2 as observed during the in vitro drug dissolution study.

2.4. DSP Loading and In Vitro Dissolution Study

DSP loading was executed in PBS of pH 7.4 as our gels showed maximum swelling at
basic pH. Thereafter, drug release was studied in simulated gastrointestinal media using
AP-8 containing 221 ± 5.40 mg of DSP per 0.3 g of gel. We observed a marked improvement
in drug loading after HP-β-CD grafting, when compared to pectin-g-poly(AA)/PVP semi-
IPN hydrogel, where 170.54 ± 1.75 mg of DSP was loaded in a similar-sized disc [63].
Although CDs are widely used to enhance the solubility of hydrophobic drugs even when
attached to the polymeric network, they also improve the solubility of hydrophilic drugs
by forming complexes with accessible hydrophobic groups or portions [27].

Figure 9 shows the percentage cumulative DSP dissolved from the semi-IPN network
at pH 1.2 for the first 2 h and then at pH 7.4 for the following 70 h. These conditions
represent the pH values and transient time of GIT. An ideal colon targeted carrier should
release a minimum amount of drug in the stomach but a maximum amount in the colon [64].

On estimation of the plot, we concluded that the pH had a huge impact on the
DSP dissolved from the developed semi-IPN hydrogel matrices. During the first 2 h (at
pH 1.2), these semi-IPNs merely released 16% of drug, thus showing an insignificant drug
release in simulated gastric environment. This minute release was attributed to (a) surface-
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adhered drug molecules as observed in SEM image, (b) in semi-IPN network, where the
–COOH groups remained intact by making hydrogen bonding with chains of semi-IPN
hydrogels [37]. As a result, these hydrogels swelled slowly and released a minimum
amount of the drug at pH 1.2. As the pH of media increased from 1.2 to 7.4, a large amount
of the drug (94%) was released in a controlled manner. It highlights the fact that when the
pH of media is above the pka of semi-IPN network, hydrogen bonds break and –COOH
ionizes, which leads to the development of electrostatic repulsion and expansion of network.
This leads to the increased swelling with higher drug release rate at colonic pH. These
features endorse the feasibility of this formulation in treating inflammatory bowel diseases
with potentially reduced side effects of DSP even after prolonged use. Corticosteroids are
generally recommended for mild to moderate inflammatory bowel disease, which do not
respond to aminosalicylate therapy. Systemically administered corticosteroids are reported
to be less effective to maintain drug levels and thus lead to relapse, and their long-term use
is associated with immune suppression, infections, diabetes, bone disease, etc. A previous
study reported the preparation of pH-responsive hydrogels based on guar gum, poly(AA),
and β-CD for controlled intestinal delivery of dexamethasone [40]. Our results suggest that
DSP-loaded hydrogels are suitable for colonic delivery by exhibiting less than 16% of drug
release at 1.2 pH and a maximum amount at 7.4 pH.
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2.5. Drug Release Kinetics

Generally, the Korsmeyer-Peppas model is employed to analyze the drug release
from drug carriers where the mechanism is not well recognized or a multiple release
phenomenon is involved [3]. A value of correlation coefficient (R2) near “1” explains the
suitability of the model, whereas “k” is the constant-associated network structure. Here,
“n” is referred to as the diffusion exponent that elucidates the mechanisms involved in
drug release. If n < 0.45, it denotes Fickian diffusion, 0.45 < n < 0.89 denotes non-Fickian
diffusion, and when n > 0.89, it refers to the case II transport [65]. In this study, values of
“n” and “k” were determined in the range of Mt/Mo 0–60%. For AP-8, “n” value (Table 3)
was above 0.45, which indicates that the DSP release mainly followed non-Fickian diffusion
or anomalous transport where diffusion and chain relaxation are simultaneously involved.
This is due to the fact that drug-loaded hydrogels are normally stored in a dry glassy
state. After ingression of dissolution media, the polymeric network swells and its glass
transition temperature is lowered. Concurrently, the dissolved DSP diffuses to external
media through a swollen rubbery region [66]. Banarjee et al. [67] prepared controlled
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release IPN hydrogel microparticles of sodium carboxy methyl cellulose and poly vinyl
alcohol for diclofenac sodium and reported non-Fickian drug release.

Table 3. DSP dissolution kinetics from AP-8 using the Korsmeyer-Peppas model.

Model Parameter Value

Korsmeyer-Peppas
Release rate constant (K) 11.799
Diffusion exponent (n) 0.472

Correlation coefficient (R2) 0.9800

2.6. Hemocompatibility Study

Hemocompatibility test was used to assess the compatibility of the hydrogels with the
biological system [68]. Hydrogels with HR above 5% are regarded as hemolytic, between
5 and 2% as slightly hemolytic, and less than 2% as non-hemolytic [69,70]. HR induced
by blank and drug-loaded semi-IPN hydrogels was below 2% as shown in Figure 10.
Therefore, AP-8 can be considered as non-hemolytic and can be safely used as a carrier
for colon targeting. Our results are in agreement with the previously reported findings of
Ghosh et al. [70], where the HR of prepared semi-IPN hydrogels of carboxy methyl guar
gum and gelatin was less than 2%.
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2.7. Toxicity Testing
2.7.1. Monitoring the General Conditions of Rabbits

During acute oral toxicity testing, all clinical findings were observed prior to the study,
on the 7th and 14th day of study. We did not notice any significant variation in body weight,
water, and food consumption (Table 4) during this study [71]. No toxic response and deaths
were observed during the 14 days of study. The animals displayed normal behavior, no
signs of illness, no salivation or vomit, no diarrhea, and no dermal and ocular irritation.

Table 4. Clinical findings of all groups (n = 6).

Parameters Control Treated

Signs of illness None None
Dermal toxicity None None
Ocular toxicity None None
Mortality rate None None
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Table 4. Cont.

Parameters Control Treated

Body weight (kg)
Pretreatment 1.36 ± 0.05 1.33 ± 0.05

1st day 1.33 ± 0.11 1.30 ± 0.1
7th day 1.23 ± 0.11 1.34 ± 0.23
14th day 1.33 ± 0.15 1.36 ± 0.15

Water Intake (mL)
Pretreatment 183.66 ± 3.05 192 ± 2.64

1st day 181.33 ± 3.21 186 ± 1.73
7th day 185.66 ± 2.08 190 ± 1.73
14th day 189 ± 1.73 193 ± 1.52

Food Intake (g)
Pretreatment 65.55 ± 1.52 60.33 ± 1.52

1st day 68 ± 2.64 58.33 ± 1.52
7th day 65.3 ± 3.05 63 ± 1
14th day 68 ± 1.73 65.66 ± 1.15

2.7.2. Hematological and Biochemical Analysis

Tables 5 and 6 show that no major variations were present between hematological
and biochemical profiles of the control and treated group and that they were within a
normal range. Hemoglobin of both groups showed normal values. Liver and kidneys were
functioning normally in both groups as observed previously [72]. These results demonstrate
that the developed semi-IPN hydrogels are highly biocompatible and can be recommended
for in vivo applications.

Table 5. Biochemical analysis of blood.

Hematology Control Treated

Hemoglobin (10–15 g/dL) 12.8 ± 0.55 12.6 ± 0.05
TLC (4.5–11 × 109 L−1) 3.86 ± 0.56 3.7 ± 0.3

Red Blood Cells (4.2–5.9 × 1012 L−1) 5.55 ± 0.22 5.67 ± 0.01
Platelets (150–400 × 109 L−1) 159 ± 01 358 ± 13.11

Monocytes (2–8%) 3.66 ± 0.57 3.66 ± 0.57
Neutrophils (40–60%) 52 ± 1 20 ± 4

Lymphocytes (20–40%) 78.3 ± 0.57 79 ± 1
Eosinophils (1–4%) 2.33 ± 0.57 2 ± 1

Mean Corpuscular Volume (80–96 fL) 62.96 ± 0.55 61.16 ± 1.4
Mean Corpuscular Hemoglobin (27–32 pg) 22.4 ± 0.62 23.36 ± 0.97

Mean Corpuscular Hemoglobin Concentration (32–36%) 34.9 ± 0.26 38.26 ± 0.90

Table 6. Liver, kidney, and lipid profiles of control and treated group.

Biochemical Analysis Control Treated

Liver profile
Alanine aminotransferase (17–77 IU/L) 91 ± 1 37 ± 3

Aspartate aminotransferase (54–298 IU/L) 114.33 ± 1.52 53 ± 2.64
Renal profile

Creatinine (0.2–0.9 mg/dL) 0.56 ± 0.04 0.62 ± 0.16
Urea (10–50 mg/dL) 16 ± 2 19 ± 3

Uric acid (3.4–7.1 mg/dL) 3.8 ± 0.1 4.93 ± 0.80
Lipid profile

Cholesterol (10–80 mg/dL) 66.48 ± 1.15 68.3 ± 2.08
Triglycerides (46–68 mg/dL) 54.73 ± 1.48 54.3 ± 0.57
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2.7.3. Histopathological Evaluation

Histopathological study provides evidence for any signs of acute toxicity of drug-
loaded hydrogels (Ap-8) on vital organs. For this, rabbits were sacrificed and their vital
organs were excised and weighed. Weight variation was not significant among the tested
groups (Table 7). In a previous study, acute toxicity of bacterial cellulose/acrylamide
hydrogels was tested on mice with negligible variation in the weight of vital organs among
the control and treated groups [73].

Table 7. Weight variation of vital organs after oral administration of hydrogels. All values are
expressed in the standard deviation (n = 6).

Group Heart (g) Kidney (g) Liver (g) Lung (g) Stomach (g)

Control 3.68 ± 0.07 9.18 ± 1.52 35.01 ± 1.99 16.56 ± 2.65 12.25 ± 1.93
Treated 3.06 ± 0.25 6.90 ± 0.29 28.48 ± 1.01 7.39 ± 0.46 8.42 ± 0.97

After weighing, vital organs remained in phosphate buffered neutral formalin (10%
v/v). Micro sections of tissues were developed and observed under optical microscope
and images were obtained. No significant changes were observed between the control and
treated group (Figure 11). Heart micrographs showed that cardiac myocytes are normal,
clear, arranged in good order, and nuclei were present centrally without any signs of
hemorrhage or necrosis. Kidneys and liver did not show any inflammation, degradation,
necrosis, and bleeding. Glomeruli showed a normal shape and portal triad was visible,
while liver hepatocytes were organized into cords around the central vein [74,75]. In lungs,
structures appeared normal without any collapsed alveolar sacs. Stomach micrographs
showed normal stomach mucosa without any signs of ulcer. Therefore, we did not observe
any noticeable pathological changes in the treated group that indicate nontoxicity and
suitability of the developed formulation. Similar findings were observed previously [74],
wherein gelatin-based hydrogels were prepared for colonic delivery of oxaliplatin and it was
found that the prepared hydrogels were biocompatible. Furthermore, no histopathological
and hematological changes were observed in rabbits. Similarly, Zhu et al. developed
peptide-based bis-acrylate/AA hybrid hydrogels, which were biocompatible and non-toxic
to vital organs and thus were deemed suitable for wound dressing [76].
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3. Materials and Methods
3.1. Chemicals

Acrylic acid (AA), poly(vinyl pyrrolidone) K30 (PVP), and ammonium persulphate
(APS) were procured from Daejung chemicals & metals Co, Ltd., Nakdong-daero, Sasang-
gu, Busan, Korea. Hydroxylpropyl β cyclodextrin (HP-β-CD) was received from Roquette
France as a gift sample. Ethanol and N, as well as N-methylene-bis-acrylamide (MBA)
were acquired from Merck and Alfa Aesar, respectively. Remington Pharmaceutical Lahore,
Pakistan gifted the dexamethasone sodium phosphate (DSP). The rest of the reagents
employed were of analytical grade and used as received.

3.2. Fabrication of HP-β-CD-g-Poly(AA)/PVP

Free radical polymerization technique was used to develop semi-IPN hydrogels
(Table 1). Initially, solutions of PVP and HP-β-CD were prepared and then mixed un-
der constant stirring. Similarly, another solution was prepared by dissolving APS into AA
and then MBA was added. The resultant solution was added to the polymeric solution
under constant stirring. Nitrogen was purged for 30 min to eliminate any dissolved oxy-
gen. Consequently, the resulting solution was decanted in glass test tubes and set in a
temperature-controlled water bath at 45 ◦C for 1 h, 50 ◦C for 2 h, 55 ◦C for 3 h, 60 ◦C for
15 h, and 65 ◦C for 3 h. Then, hydrogel cylinders were cautiously pulled out from the test
tubes after cooling to room temperature. The cylindrical hydrogels were cut into 6 mm
discs, rinsed with an ethanol and water mixture (50:50 v/v) to remove traces of unreacted
monomers. Thereafter, discs were dried in an oven for 24 h at 45 ◦C. Resultant discs were
stored in airtight containers until further analysis.

3.3. Swelling Studies

Swelling behavior was assessed by dipping the pre-weighed dried hydrogel discs in a
buffer solution of pH 1.2 or 7.4. These discs were allowed to swell in a medium until they
achieved a constant weight. Surface water from the swollen discs was wiped with a filter
paper and the weight was recorded after regular time intervals (0, 1, 2, 4, 6, 8, 24, 48, 72, 96,
120, 144 h) until equilibrium. Then, the swelling ratio of each formulation was determined
as follows [77]:

Swelling ratio = [We − Wd/Wd] × 100 (1)

where We is the weight of semi-IPN hydrogel after swelling and Wd is the weight of dried
semi-IPN hydrogel before swelling.

3.4. Analysis of Sol-Gel Fraction

To analyze the sol-gel fraction, freshly fabricated hydrogel cylinders were cut into 6
mm discs and dried to constant weight in an oven at 45 ◦C. Then, traces of non-crosslinked
monomers were extracted by exposing these discs to distilled water for 48 h [78]. These
extracted gels were dried to constant weight at 45 ◦C. Finally, the sol-gel fraction was
analyzed as follows [79]:

% Gel fraction =
Wo
W1

× 100 (2)

% Sol fraction = 100 − Gel fraction (3)

where Wo is the weight of dried extracted semi-IPN hydrogels and W1 is the weight of
non-extracted semi-IPN hydrogels after drying.

3.5. Drug Loading

DSP was loaded using the diffusion-assisted swelling method in optimized hydrogels,
i.e., with maximum swelling. Pre-weighed dried hydrogels (AP-8) were swelled in 1% w/w
DSP solution in PBS of pH 7.4 and maintained at 37 ◦C for 48 h [80]. After removal from the
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solution, excess surface water was blotted with a filter paper and dried to constant weight
in an oven at 45 ◦C. The weight method was used to estimate drug loading as follows [20]:

Amount of drug = WD − Wd (4)

Percentage drug loading was determined as follows:

Drug Loading (%) =

[
WD − Wd

Wd

]
× 100 (5)

where WD is the weight of dried semi-IPN hydrogels after loading and Wd is the weight of
dried semi-IPN hydrogels before loading.

3.6. Solid-State Characterization

FTIR was used to elucidate possible chemical structures and interactions of DSP
with hydrogel matrices and were scanned in the range of 4000–500 cm−1. SDT Q 600
TA Universal was used to acquire TGA curves of DSP, blank, and drug-loaded semi-IPN
hydrogel matrices. About 5 mg of the test sample was heated up to 300 ◦C at a heating rate
of 10 ◦C/min under a constant stream of nitrogen in sealed aluminum pans. X’pert PRO,
PANalytical, Netherlands was used to record XRD patterns of DSP, blank, and DSP-loaded
semi-IPN hydrogel matrices. Finally, the morphology of DSP, blank, and DSP-loaded
HP-β-CD-g-poly(AA)/PVP semi-IPN hydrogels was observed by SEM. Hydrogels were
sputter-coated with gold and examined using FEI Quanta 250 SEM (Hillsboro, OR, USA) at
different resolutions [81,82].

3.7. In Vitro DSP Dissolution

DSP dissolution from the optimized semi-IPN hydrogel (AP-8) was determined using
the paddle apparatus (Tianjin Guoming Medicinal Equipment Co. Ltd. Tianjin, China),
maintained at 37 ± 0.5 ◦C with a paddle rotation set at 50 rpm. Each hydrogel disc was
immersed in a vessel containing 0.1 N HCl (500 mL with pH 1.2) for 2 h to create simulated
gastric conditions and then transferred to PBS (500 mL with pH 7.4) for the next 70 h to
create simulated intestinal conditions. At suitable intervals, 5 mL of dissolution media was
sampled and immediately replaced with a similar volume of fresh media to maintain sink
conditions. Collected samples were filtered (0.45 µm syringe filters) and the filtrate was
analyzed at 242 nm by spectrophotometry (Agilent, Model 8453). For each run, the percent
cumulative drug dissolved was determined by Equation (6) [83]. The experiment was
repeated in triplicate, and the average was obtained to draw the release curve as follows:

% drug release =
Mt
Mn

× 100 (6)

where Mt represents the amount of drug released at any given time “t” and Mn signifies
the amount of drug loaded in semi-IPN hydrogel matrices. Mt was obtained by placing
absorbance values in a calibration curve equation (y = 0.026x + 0.004). After drug release
studies, the Korsmeyer-Peppas model was used to assess the drug release mechanism as
shown [82] below:

Mt/Mo = kKP tn (7)

where Mt is the amount of drug released in time “t”, Mo is the quantity of DSP released at
infinity, KKP is the release rate constant, and n is the diffusional coefficient.

3.8. Hemocompatibility Study

Hemocompatibility test was performed on the optimized semi-IPN hydrogel formula-
tion (AP-8) by a minor adjustment of the previously reported method [70]. Briefly, hydrogel
disc was dipped in isotonic saline solution (0.9% NaCl) and equilibrated at 37 ◦C for 24 h.
Then, 2 mL of anticoagulated human blood (with EDTA 1% w/v) was obtained from healthy
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donors and the hydrogel sample with 5 mL of PBS (7.4 pH) was added to the test sample.
Blood with buffer or distilled water remained in screw-capped tubes as negative and posi-
tive controls, respectively. Then, these tubes were incubated for 60 min at 37 ◦C. Thereafter,
the sample was centrifuged at 2500 rpm for 20 min, and the absorbance of supernatant was
recorded at 575 nm by UV visible spectrophotometer (Agilent, Model 8453). The test was
performed in triplicate and the hemolysis ratio (%) was recorded as follows [84]:

Hemolysis ratio (HR) (%) =
AS − ANC

APC − ANC
× 100 (8)

where AS is the absorbance of test sample, ANC is the absorbance of negative control, and
APC is the absorbance of positive control.

3.9. Toxicity Testing

This study was conducted according to the fixed dose guideline number 420, set by
The Organization for Economic Co-Operation and Development (OECD). All protocols
were approved by the Ethical Committee of GCUF vide letter number GCUF/ERC/2153.
Herein, we obtained twelve rabbits from an in-house facility and organized them into two
groups. Here, Group I (control) only received water and food, while Group II (treated
group) received 2 g/kg of DSP-loaded semi-IPN hydrogels (AP-8) [85]. These animals
were carefully observed for any physical changes, mortality rate, body weight changes,
water and food consumption during the period of study. After 14 days, a blood sample was
obtained for assessment of hematological and biochemical parameters, and the rabbits were
sacrificed to obtain vital organs. These organs were fixed in 10% (v/v) phosphate buffered
neutral formalin and stained with hematoxylin and eosin (H&E) for histopathological
analysis [9].

4. Conclusions

HP-β-CD-g-poly(AA)/PVP semi-IPN hydrogel matrices were successfully developed
by employing the free radical polymerization technique. Herein, we found that the for-
mulation (AP-8) with PVP (1.33%) and AA (16.66%) was mechanically strong, elegant
in appearance, and pH-responsive with excellent swelling at pH 7.4. The structure and
morphology of HP-β-CD-g-poly(AA)/PVP networks were probed by FTIR and SEM, re-
spectively. FTIR results confirmed the accomplishment of polymerization reaction and the
absence of interaction between DSP and semi-IPN hydrogels, while SEM results indicated
the rough porous surface and crystalline nature of DSP, which was further confirmed by
XRD. The optimized hydrogel formulation (AP-8) restricted the DSP release at pH 1.2, while
providing the controlled delivery of DSP at colonic pH over an extended time. Release
kinetics revealed the non-Fickian diffusion mechanism for DSP release. The prepared
semi-IPN hydrogels were hemocompatible and nontoxic and thus can be considered safe
for biological systems. Based on our findings, with the ever-increasing demand for new
biocompatible materials for tissue repair and drug delivery, we conclude that the fabri-
cated semi-IPN network has potential for colonic delivery of DSP to treat inflammatory
bowel diseases. Moreover, in future, the semi-IPN network could be equally used for other
biomedical applications.
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