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Abstract: Dehydrodiisoeugenol (DHIE) is a neolignan found in more than 17 plant species, including
herbs, fruit, and root. DHIE was, for the first time, isolated from Myristica fragrans bark in 1973. Since
then, many methodologies have been used for the obtention of DHIE, including classical chemistry
synthesis using metal catalysts and biocatalytic synthesis; employing horseradish peroxidase; peroxi-
dase from Cocos nucifera; laccase; culture cells of plants; and microorganisms. Increasing evidence
has indicated that DHIE has a wide range of biological activities: anti-inflammatory, anti-oxidant,
anti-cancerogenic, and anti-microbial properties. However, evidence in vivo and in human beings is
still lacking to support the usefulness potential of DHIE as a therapeutic agent. This study’s review
was created by searching for relevant DHIE material on websites such as Google Scholar, PubMed,
SciFinder, Scholar, Science Direct, and others. This reviews the current state of knowledge regarding
the different synthetical routes and biological applications of DHIE.
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1. Introduction

Lignans and neolignans are secondary metabolites found in plants and animals. These
compounds play an essential role in plants’ defenses against microorganisms [1] and
phytophagous animals and insects [2]. Neolignans are dimers of phenylpropane originating
from the shikimic acid pathway [3], and deamination of phenylalanine leads to caffeic
acid (Figure 1). Lignans are dimers of phenylpropanoid units linked via their β-carbon
atoms [4]. When the phenylpropanoid units are coupled via other linkages, they are named
neolignans [5]. Many neolignans show different biological activities, such as cytotoxicity,
anti-oxidant, anti-inflammatory, and anti-parasitic, among others [6].
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1. Introduction 
Lignans and neolignans are secondary metabolites found in plants and animals. 

These compounds play an essential role in plants’ defenses against microorganisms [1] 
and phytophagous animals and insects [2]. Neolignans are dimers of phenylpropane orig-
inating from the shikimic acid pathway [3], and deamination of phenylalanine leads to 
caffeic acid (Figure 1). Lignans are dimers of phenylpropanoid units linked via their β-
carbon atoms [4]. When the phenylpropanoid units are coupled via other linkages, they 
are named neolignans [5]. Many neolignans show different biological activities, such as 
cytotoxicity, anti-oxidant, anti-inflammatory, and anti-parasitic, among others [6]. 
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Figure 1. Shikimic acid pathway neolignans biosynthesis. 

Citation: Godínez-Chaparro, B.;  

Pérez-Gutiérrez, S.; Pérez-Ramos, J.; 

Heyerdahl-Viau, I.;  

Hernández-Vázquez, L. Synthesis 

and Biological Activities of  

Dehydrodiisoeugenol: A Review. 

Pharmaceuticals 2022, 15, x. 

https://doi.org/10.3390/xxxxx 

Academic Editors: Dejan Stojković 

and Marina Soković 

Received: 4 October 2022 

Accepted: 27 October 2022 

Published: 1 November 2022 

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional 

claims in published maps and institu-

tional affiliations. 

 

Copyright: © 2022 by the authors. 

Submitted for possible open access 

publication under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://cre-

ativecommons.org/licenses/by/4.0/). Figure 1. Shikimic acid pathway neolignans biosynthesis.

One of these neolignans is dehydrodiisoeugenol (DHIE). In 1973, this compound
was isolated for the first time from Myristica fragrans bark [7]; later, DHIE was separated
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from the wood of Licaria aritu [8]. Nevertheless, DHIE had already been obtained by
isoeugenol (IE) oxidation, and its structure was determined before it was isolated from a
natural source (Figure 2) [7]. Several studies have demonstrated that DHIE shows a wide
range of biological actions such as anti-bacterial [9], antiprotozoal [10], anticancer [11],
anti-oxidant [12], and anti-inflammatory [12].

This study’s review was created by searching for relevant DHIE material on websites
such as Google Scholar, PubMed, SciFinder Scholar, Science Direct, and others. This study
reviews the current state of knowledge regarding the different via produced synthetically
and the multidirectional action and application of DHIE.
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Figure 2. Structure of DHIE and IE.

2. Characteristics of DHIE

DHIE (C20H22O4), also known as licarin A, is a neolignan belonging to the phenols
group. It is commonly obtained from different plant families such as Aristolochiaceae,
Lauraceae, Magnoliaceae, and Piperaceae, although it is well known that the compound can be
found in various concentrations (ranging from 0.08–0.53 mg/g plant) depending on the
species (Table 1). DHIE is a colourless crystal with a melting point of 132–133 ◦C and an
intense aroma [7]. This compound is sparingly soluble in water and well soluble in organic
solvents such as ethyl acetate and dichloromethane. There are two ways to synthesize
DHIE: classical chemistry and biocatalysis.

Table 1. Natural sources of DHIE.

Plant Part Ref

Aristolochia taliscana Roots [13]
Aristolochia elegans Wild roots [14]

Nectandra glabrescens Fruits [15]
Nectandra rigida Bark and stems [16]

Nectandra oppositifolia Leaves [17,18]
Machilus thunbergii Bark [19]
Myristica fragrans Aril [20,21]
Eupomatia laurina Bark [22]

Magnolia kachirachirai Leaves [23]
Piper kadsura Aerial parts [24]
Piper wallichii Aerial parts [25]
Piper capense Fruits [26]
Licaria aritu Wood [8]

Machilius odoratissima Bark [27]
Machilus obovatifolia Root [28]

Magnolia ovata Unripe fruits
Leaves

[29]
[30]

Saururus chinensis Aerial parts [31]
Urbanodendron verrucosum Branch wood [32]

Nardostachys chinensis Roots and rhizomes [33]
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3. Classical Synthesis of DHIE

DHIE is isolated from different plant species with yield low. Therefore, the synthesis of
DHIE is an alternative for obtaining significant quantities. In this sense, classical chemical
synthesis from IE produces the best yields. Moreover, various catalysts have been used
for this purpose; these methodologies are described in the following. In 1950, Leopold
synthesized DHIE by IE, using ethanol-water as the solvent and ferric chloride as the
catalyst and obtaining a yield of 30% [34]. The reaction mechanism of oxidative dimeriza-
tion of isoeugenol is shown in Figure 3. This method was later modified by Levita et al.,
decreasing the amount of catalyst and yield [35].
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Liu et al. used the radical dimerization reaction of IE, employing Ag2O as the catalyst,
in toluene and acetone at room temperature to yield 40% of DHIE [36]. Chen et al. devel-
oped a new method for the diastereoselective oxidative dimerization of isoeugenol under
different reaction conditions. For example, when they used 1.5 mol of cerium ammonium
nitrate (CAN) in tetrahydrofuran and had a 0.5 h reaction time, the yield of DHIE was
81% [37]. Juhász et al. developed a method using isoeugenol and iodobenzene diacetate
(IDA) in dichloromethane at room temperature and obtaining a yield of 35% [38]. Table 2
compares the reaction conditions for radical dimerization of IE.

Table 2. Condition for radical dimerization of IE for obtained DHIE.

Catalyst Mol-Ratio Solvent T
(◦C)

Reaction Time
(h)

Yield
(%) Reference

FeCl3 1.4 water-ethanol 4 24 30 [34]
FeCl3 0.5 water-ethanol 5 24 22 [35]
Ag2O 0.5 toluene-acetone −70 48 40 [36]
CAN 1.5 tetrahydrofuran room temp 0.5 81 [37]
IDA 0.62 dichloromethane room temp 48 35 [38]

4. Biocatalytic Synthesis of DHIE

The synthesis of DHIE by biocatalysis employed different sources for enzymes as
catalysts in mild and environmentally friendly reaction conditions and produced a yield of
range 20 to 98%. This method did not use metal catalysts; for these reasons, biocatalysis is
an excellent option to obtain DHIE. The obtaining of DHIE proceeds via oxidative processes
catalyzed by enzymes such as peroxidase and laccase, which convert the phenol to phenoxy
radical by an electron abstraction followed by carbon-carbon and carbon-oxygen bond
formation [39].
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4.1. Horseradish Peroxidase for Synthesis of DHIE

Krawczyk et al. synthetized DHIE for the first time from IE using horseradish peroxi-
dase (HRP) and hydrogen peroxide, with a 25 h of reaction time and a pH of 6, which re-
sulted in a 22% yield in methanol-buffer [40]. Chioccara et al. studied the effect of methanol
ratio in the reaction mixture and pH for the DHIE synthesis, finding that the highest yield
was obtained with 10% methanol at pH 3 (Table 3) [39]. Nascimento et al. used HPR and
H2O2 to transform isoeugenol to DHIE with a 99% yield. They obtained both enantiomers;
subsequently, they were transformed to the α-methoxy-α-trifluoromethylphenylacetate
derivatives, and these diastereomers were separated by HPLC, and they were transformed
to (+)-DHIE and (−)-DHIE [41].

Table 3. Synthesis of DHIE from IE with HPR.

IE
(mmol)

Methanol/Buffer
(%) U H2O2

(mmol)
T

(h) DHIE Yield
(%) Reference

6
26:74

Phosphoric
pH = 6.0

4.5–7.5 × 10−6 mmol 0.5 24 NR 22 [40]

4.9–10
10:90

Citrate-phosphate
pH = 3.0

2150–4300 2.45–5 1 (±) 60 [39]

10
10:90

Citrate-phosphate
pH = 3.0

2500 5 1 (±) 99 [41]

6.2
10:90

Citrate-phosphate
pH = 3.0

1500 3.05 0.33 (±) 27 [42]

NR = not reported.

Bortolomeazzi et al. used the HPR and H2O2 in the synthesis of DHIE from IE (mixture
of E and Z isomers) in methanol-citrate-phosphate buffers to obtain a crystalline product
(yield 25%) containing four DHIE isomers and [(E)-(±)-trans-dehydrodiisoeugenol] being
the most abundant of this mixture (yield 95.7%) [42]. Pereira et al. obtained 98.3% with
the HPR-H2O2 system of (±)-DHIE, and the resolution of enantiomers was then directly
performed by HPLC with an analytical ChiralPak AD column [43].

4.2. Peroxidase of Cocos nucifera L. for Synthesis of DHIE

The coconut water, obtained from green coconuts (Cocos nucifera L.), contains peroxi-
dases [44]. IE is transformed of DHIE using coconut water and H2O2 with a 55% yield, in
this method, only the enantiomer (−)-DHIE was obtained. Authors suggest that this effect
is due to the presence of an auxiliary protein in the coconut water [44]. In another study,
the use of coconut water as a catalyst yielded 60% of the enantiomer (−)-DHIE [45].

4.3. Laccase for Synthesis of DHIE

The pure laccase isolated from Rhus vernicifera Stokes (tree) catalyzed the oxidation
of IE to give a mixture of dimeric and tetrameric compounds. The main product of this
reaction was DHIE, with a 41% yield [46].

4.4. Cell Culture of Plants for Synthesis of DHIE from IE

The DHIE can also be obtained from IE, using nine plant cell cultures or calli of
Medicago sativa, Phaseolus vulgaris, Mamilaria huitzilopochtli, Psacalium composite, Cucumis
melo, Prunus serotina, Bovardia ternifolia, Coriandrum sativum and Dacus carota. In this method,
three compounds were observed where DHIE was obtained in higher amounts. The best
yield of DHIE (23%) was obtained with B. ternifolia [47]. In another study, DHIE was
obtained from IE with B. ternifolia cultivated under nutritional stress, and H2O2 with a
yield of 77% [48].
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4.5. Microorganisms for Synthesis of DHIE

(+)-DHIE was obtained from IE biocatalyzed by Pseudomonas putida NCIM 2176 cell
culture with a yield of 16% [49]. In addition, IE was transformed into the racemic mixture
of DHIE by Bacillus pumulus [50].

5. Synthesis of DHIE Derivatives

Different derivatives of DHIE have been obtained by structural modifications in order
to improve their biological potential and physiochemical properties. The modifications of
DHIE involve the reaction of the propenyl chain and phenolic hydroxyl (Figure 4).
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Compound 1 (Figure 4) was obtained from (±)-DHIE using methyl iodide and K2CO3
in acetone (yield 77%) [51]; or methyl iodine and NaH in tetrahydrofuran (56% yield) [52];
or dimethyl sulphate and K2CO3 and acetone (yield 86%) [36]; in addition, in another study,
instead of K2CO3, NaOH in ethanol was used [53].

The aldehyde 2 was synthetized from (±)-DHIE, and aldehyde 3 from compound
1 using KIO4 and OsO4 in water-tetrahydrofuran with a yield of 96% and 90%, respec-
tively [51].

The reaction of DHIE with meta-chloroperoxybenzoic acid in dichloromethane gave
compound 4 (yield of 20%) [51]. Juhasz et al. obtained derivative 4 from DHIE with OsO4
in dioxane with a yield of 49% [38].

Compound 5 was prepared from DHIE with benzyl bromide (58% yield) [54]. Juhasz
et al. obtained derivate 5 from DHIE with benzyl chloride and K2CO3 in dimethylfor-
mamide with a yield of 61% [38].
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Compound 6 was synthesized from (±)-DHIE by acetylation with acetic anhydride
and pyridine in tetrahydrofuran (18% yield) [52]. Also, compound 6 was obtained with
acetyl chloride and triethyl amine (23% yield) [54]. Compounds 7, 8 and 9 were obtained
from (−)-DHIE and benzyl halide with K2CO3 in dimethylformamide. The aldehyde 10
was synthesized from compound 7 using 2,3-dichloro-5,6-dicyano-1,4-benzoquinone in
water with a yield of 87%. The carboxylic acid 11 was obtained from aldehyde 10 and Ag2O
(yield 41%). The derivative 12 was synthesized from 10 and NaBH4 in ethanol with a yield
of 70% [54].

The mixture of DHIE and allyl bromide with K2CO3 in acetone produced derivative 13
(yield 73%). Compound 13 in dimethylformamide was submitted to microwave irradiation
producing 14 (yield 53%). The derivative 15 was obtained by the reaction of 14 and I2 in
ethanol water with a yield of 7% [18].

Triazolylglycosides 17a–d and 18a–d were synthetized using acetylenic-(±)-DHIE (16)
and acetylated sugar (Scheme 1) [36].
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6. Biological Activity of DHIE

DHIE (5 mg/kg/21 days, subcutaneous) toxicity studies have shown normal histo-
logical architecture of the liver and kidney, and functional biochemical tests were also
normal, suggesting that DHIE produced no toxic effect, at least in mice [9]. Given the low
toxicity of the DHIE, it is interesting to pay attention to the potential biological properties
of this compound.

6.1. Anti-Oxidant Effect of DHIE

Oxidative stress is produced by free radicals, which could cause health problems such
as cancer, inflammation, and neurodegenerative diseases, among others. Anti-oxidants
have the ability to capture free radicals inhibiting oxidative stress and helping in the
prevention of these diseases [55]. DHIE has demonstrated anti-oxidant and neuroprotective
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properties. As an anti-oxidant, DHIE preserves the activities of anti-oxidant enzymes
such as superoxide dismutase, glutathione peroxidase, and glutathione reductase in the
glutamate-injured neuronal cells [56]. In addition, DHIE increases reactive oxygen species
scavenging activity [12,57–59] and inhibits the production of nitric oxide [56].

DHIE shows 2,2-diphenyl-1-(2,4,6-trinitrophenyl)hydrazyl (DPPH) radical scaveng-
ing activity with the IC50 values of 1.312 mM [12], 5.320 mM [58], 0.075 mM [56], and
66.02 µg/mL [59]. Moreover, Hou et al. reported that DHIE shows 12% of scavenging
activity [57]. In contrast, Lin et al. reported that DHIE did not exhibit DPPH radical
scavenging activities [28]. Taken together, these data suggest that DHIE shows only weak
anti-DPPH radical activity [58]. Furthermore, the anti-oxidant activity could be evalu-
ated with a 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assay. In this
context, DHIE showed high ABTS radical scavenging activities-IC50 = 8.43 µg/mL [59],
IC50 = 12.3 µM [28], and ≈60% [57] of the scavenging activity. Also, DHIE showed rel-
atively high hydroxyl radical scavenging activity. However, DHIE has no effect on the
superoxide radical [59]. The potential anti-oxidant activity exhibited by DHIE could be
explained by its structural proprieties as: (1) DHIE contains an OH group at C(4) that is
important for the anti-oxidant activity; (2) DHIE has a methoxy group at C(4) in ring C,
and this group reduced the ABTS cation radical-scavenging activity [28].

6.2. Anti-Parasitic Activity of DHIE

Neglected tropical diseases (NTD) are a group of diseases that prevail in develop-
ing countries and affect more than one billion people. Among them is Chagas disease,
leishmaniasis, and schistosomiasis. Trypanosoma cruzi is transmitted by insect bites and
is responsible for the Chagas disease. Species of Leishmania, including Leishmania amazo-
nensis, among many others, are transmitted to humans by the bite of a sand fly, causing
leishmaniasis disease. Schistosomiasis is caused by trematode worms of the Schistosoma
genus [60].

DHIE has been demonstrated to exert trypanocidal activity against T. cruzi, inducing
swelling of mitochondria and disorganization of mitochondrial cristate, the Golgi complex,
and other organelle alterations [10]. Other authors studied the activity of (±)-DHIE and
the enantiomers against trypomastigotes of T. cruzi [10,18,52,61]; they found that (−)-DHIE
displayed the best activity with IC50 of 23.46 µg/mL, and (+)-DHIE had a lower effect with
IC50 value of 87.73 µg/mL, and the racemic mixture showed the lowest activity with IC50
of 127.17 µg/mL [43,52].

DHIE inhibited promastigotes of Leshmania major with the IC50 of 9.59 µg/mL, induc-
ing apoptosis. Also, this compound was active against intracellular amastigotes in murine
macrophages with the EC50 = 4.71 µg/mL, showing better activity than the meglumine
antimoniate (EC50 = 216.2 µg/mL) reference drug [45].

DHIE was tested against Schistosomas mansoni and killed 100% of the adult worms
at 50 µM (EC50 = 25.94 µM) without affecting the cell line [17]. The (±)-DHIE displayed
the best activity against S. mansoni adults (LC50 = 53.57 µM); the (−)-DHIE showed low
activity (LC50 = 91.71 µM); whereas the (+)-DHIE had no activity (LC50 = 209.4 µM) [43]. In
this line, Meleti et al. reported that (±)-DHIE at 200 µg/mL induced 100% of mortality of
S. mansoni [52]. Moreover, the oral administration of 400 mg/kg of DHIE to mice infected
with S. mansoni reduced worm burden by 50% and decreased the number of immature eggs
by 50–60%, suggesting that DHIE could be used in association with another anti-parasitic
as praziquantel to achieve a synergic effect [17].

6.3. Anti-Bacterial Activity of DHIE

One of the main problems with bacterial infections is antibiotic resistance, which
has increased worldwide. Mycobacterium is not the exception, and many species of this
genus have developed multidrug resistance (MDR). In recent years, the number of patients
with tuberculosis (TB) has increased, particularly, in those patients with compromised
immunological systems [62].
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DHIE has been effective against Mycobacterium strains [9,13,54]. Moreover, DHIE
displayed antimycobacterial activity against Mycobacterium abscesses (MIC = 9.76 µg/mL),
Mycobacterium fortuitum (39.06 µg/mL), and Mycobacterium massiliense (39.06 µg/mL). In-
hibition of biofilm formation of these strains was also tested, but no significant activity
was observed. Also, it was found that DHIE had activity against non-tuberculosis My-
cobacterium strains (MIC = 3.12–6.25 µg/mL). Moreover, DHIE has been shown to be
effective against four multiresistant Mycobacterium strains and 12 strain clinical isolation
(MIC = 3.12–25 µg/mL) [13]. (−)-DHIE was tested in a Tuberculosis animal model, induc-
ing disease with M. tuberculosis H37Rv or an MDR, where the dose of 5 mg/kg decreased the
pulmonary bacillary burdens at day 30 of treatment, and a significant pneumonia reduction
at days 30 and 60 of treatment [9]. However, this compound showed no activity in some
bacteria, such as Escherichia coli, Pseudomonas fluorescens, and Listeria monocytogenes [63].

6.4. Anticancer Activity of DHIE

Cancer is a group of diseases that is characterized by uncontrolled cell growth, and
it has the potential to invade or spread to other organs or tissue of the body. The cancer
cells evade growth suppressors, resisting cell death and enabling replicative immortality.
Cancer is one disease with significant morbidity and mortality over the world; is the
second worldwide cause of death (8.97 million deaths) after ischemic heart disease, and it
is expected to increase in the next years [64].

The cytotoxic activity of DHIE has been studied on different cancer cell lines, such as
leukemia (CEM/ADR5000), breast cancer (MDA-MB-231-pcDNA, MDA-MB-231-BCRP),
colorectal cancer (HCT116p53+/+, HCTp53−/−), glioblastoma (U87MG), hepatoblastoma
(HepG2), melanoma (BRAF-V600E, MAMEL-80A, SK-MEL28, BRAF-V600E-A2058, BRAF
wildtype, MV3, SK-MEL505), rat adenocarcinoma (CC531), mouse melanoma (B1-F1 and
B16-F10); the IC50 values varied from 4.3 to 22.4 µg/mL. Also, the leukemia cell line
(CCRF-CEM) treated with the DHIE cell cycle was analyzed by flow cytometer; the results
indicated that this compound induced apoptosis [26].

DHIE inhibited the growth of HCT116 and SW620 (colorectal cancer) cell lines with
IC50 values of 54.32 and 46.74 µM, respectively. The cell cycle was examined by a flow
cytometer. The results indicated that DHIE inhibited the cell growth of both colorectal
cancer lines by the induction of cell cycle arrest and induced autophagy in HCT116 and
SW620 cell lines [11].

DHIE showed cytotoxic activity against A-549, MCF7, and HCT-15 cell lines; the
IC50 values were 2.0, 1.6, and 10.0 µM, respectively. This compound inhibited in vitro
phospholipase Cγ1 (IC50 value = 15.8 µM), which plays an essential role in the proliferation
and progression of human cancer [65].

DHIE showed anti-proliferative activity against four non-small cell lung cancer cell
lines (A549, NCI-H23, NCI-H520, and NCI-H460) with IC50 values of 22.19, 20.03, 30.20, and
35.01 µM, respectively. In NCI-H23 and A549, DHIE induced autophagy and its association
with apoptosis [66].

These studies show that DHIE could be a candidate to be a chemo-therapeutic agent
and could prevent cancer.

6.5. Anti-Inflammatory Effect of DHIE

Inflammation is a set of physiological processes that an organism starts in response
to foreign stimuli, including pathogens, such as viruses and bacteria, and inorganic parti-
cles [67]. Inflammation is a response to diverse diseases ranging from trauma and infection
to immune-mediated disease and neoplasia. As such, inflammation can be a nonspecific
finding but remains a valuable indicator or pathology that can itself lead to disease whether
left unchecked [68]. In this sense, recent investigations have shown that inflammation is a
major factor in the progression of various chronic diseases/disorders, including diabetes,
cancer, cardiovascular diseases, eye disorders, arthritis, obesity, autoimmune diseases, and
inflammatory bowel disease [69].
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Some evidence has demonstrated that DHIE has anti-inflammatory properties. In
this line, Murakami et al. and Fujisawa et al. found that DHIE inhibits the expression
of COX-2, but not COX-1, in RAW264.7 murine macrophages and RBL-2H3 cells when
stimulated with lipopolysaccharide (LPS) [12,58] and dinitrophenyl-human serum albumin
(DNP-HAS), respectively. Moreover, the DHIE decreases the levels of prostaglandin D2
(PGD2) in DNP-HAS-stimulated RBL-2H3 cells [70]. These data suggest that DHIE may be
an inhibitor of COX-2 gene expression and, as a result, may inhibit the production of PGD2.

(±)-DHIE decreases the expression of p65 NF-κB in DNP-HAS-stimulated RBL-2H3
cells [70] and inhibits NF-κB binding in RAW264.7 cells [58]. Moreover, it is widely known
that LPS can stimulate Iκ-B phosphorylation and degradation in macrophage cell cultures;
however, in cell treatment with DHIE, the Iκ-B-α phosphorylation and degradation are
inhibited [58]. These data strongly suggest that DHIE can inhibit the activity of NF-κB by
suppressing the phosphorylation-dependent proteolysis of Iκ-B-α in LPS-stimulated RAW
264.7 cells.

In addition, (±)-DHIE suppresses TNFα production in DNP-HAS-stimulated RBL-2H3
cells [70]. Similarly, (+)-DHIE inhibits the release of TNF-α in antigen-stimulated RBL-2H
cells [71]. Altogether, these data suggest that both the (±)-DHIE and (+)-DHIE decrease
the production of the pro-inflammatory mediators. Taken together, these data suggest that
DHIE could act as an anti-inflammatory agent through the inhibition of NF-κB activation.

6.6. Other Biological Properties of DHIE

Takeyoshi et al. evaluated the skin sensitization potencies induced by DHIE. In this
sense, DHIE was classified as a moderate sensitizer and showed a 50% of sensitization
rate in the guinea pig maximization test and was classified as a moderate sensitizer in the
non-RI LLNA test, this compound induced dose-depend on lymph node cell proliferation,
and its E3 value was estimated as 9.4% [72].

In addition, it has been analyzed the interaction between DHIE and peroxisome
proliferator-active receptor (PPAR), which is a receptor target for the treatment of diabetes
mellitus type 2. In this line, DHIE was shown to act as an agonist on the PPAR ligand
binding domain [73,74]. Muchrtaridi et al. demonstrated that DHIE formed a hydrogen
bond network of His323, Tyr379, His449, and Ser489. The hydrophobic tail of the DHIE
fitted into a “diphenyl pocket”. Thus, DHIE might be potent as an agonist PPAR [74].

The adipocyte browning and its associated metabolic have favored the search for
natural compounds that can be able to treat metabolic diseases. In this line, Yoon et al.
demonstrated that DHIE induced the expression of the proteins characteristic of brown-like
adipocytes in C3H10T1/2 mesenchymal stem cells. DHIE induced uncoupling protein
1 (Ucp1) and expression of other thermogenic genes in C3H10T1/2 mesenchymal stem
cells via a mechanism involving protein kinase A (PKA). DHIE treatment also inhibited
the expression of white-adipocyte–specific genes. Moreover, DHIE treatment promoted
lipolysis via PKA mediated pathway [75]. Taken together, DHIE is an inducer of brown-like
adipocyte formation with lipolytic properties, suggesting that DHIE could be used as a
potential anti-obesity agent. However, it is necessary to realize studies in both animal
models and clinical ones that support this hypothesis.

El-Alfy et al. studied whether DHIE could indirectly interact with the endocannabinoid
system via inhibiting the fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase
(MAGL) enzymes. In this context. DHIE was able to inhibit FAAH with an IC50 of 7.02 µM
but did not exhibit MAGL inhibition [76]. These data suggest that DHIE, by inhibiting
FAAH could induce its biological effects through the endocannabinoid system. However, it
is necessary to carry out in vivo studies to confirm these findings.

7. Pharmacokinetic of DHIE

Pharmacokinetics studies the dynamic movements of chemical compounds during
their passage through the body and, as such, encompasses the kinetics of absorption, distri-
bution, metabolism, and excretion (ADME). Proper characterization and understanding
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of the pharmacokinetic properties of a new compound are critical for safe and effective
drug development.

A study demonstrated that after 16 min of administration of DHIE (100 mg/kg,
intravenous) to rats, the highest concentration of this compound was detected in the liver,
lung, kidneys, spleen, heart, muscle, testes, stomach, intestine, and brain [77]. The principal
tissues where DHIE remained for a longer time were the liver, brain, and intestine. These
observations suggest that DHIE is stable and widely distributed in the body. In consequence,
the liver, brain, and intestine are likely to be the most important target tissues involved in
the biological effects of DHIE. A previous study demonstrated that DHIE showed high
concentration in cerebral nuclei such as the hippocampus, striatum, cortex, cerebellum,
brainstem, and hypothalamus at 8 min after the administration of the compound [78]. In
addition, a study demonstrated that the permeability of DHIE is moderate as its apparent
permeability (Papp) value is about 10−6 cm/s, and the primary transport mechanism for
DHIE was passive diffusion [79]. These observations suggest that DHIE could cross the
blood-brain barrier (BBB) rapidly and could be useful for the treatment of diseases that
involve the central nervous system. However, further studies are necessary to corroborate
this hypothesis. In addition, DHIE showed a distribution half-life (t1/2α = 26.8 ± 0.4 min)
and an elimination half-life (t1/2β = 389.1± 76.3 min), and the volume of distribution in the
central compartment (Vc) of DHIE was 0.197± 0.003 mg/(µg/mL) [80]. These data suggest
that DHIE is quickly absorbed and well distributed throughout the body. Regarding
metabolism, DHIE undergoes demethylation and a ring-opening reaction in vivo after
administration to rats [81]; the main metabolites are M1 and M2 (Figure 5). Finally, the
excretion of DHIE in urine and faeces was studied after intravenous and intragastric
administration to rats. The amount of DHIE and its metabolites excreted was higher in
faeces than in urine, suggesting that DHIE and its metabolites are eliminated principally in
the faeces [82].
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8. Biological Activity of Semi-Synthetic DHIE Derivatives

Compound 1 has been evaluated in vitro for trypanocidal activity against trypamastig-
ote forms of T. cruzi. This compound displayed parasite lysis of 21.1% and IC50 values of
28 µM [18], and 378.4 µM [52]. In contrast, DHIE was more active as parasite lysis was
greater than 50% with the IC50 = 100.8 µM value [52].

In Addition, compound 1 showed a cytotoxic activity of 52.8% for HCT-166 (human
colorectal carcinoma), 52% for MCF-7 (human breast adenocarcinoma) and 13.9% for
K562 (chronic myeloid leukemia), did not show activity for human cell line HL-60 (acute
promyelocytic leukemia) [51].

Compound 2 showed a minimum cytotoxic activity on cell lines MCF-7 (0.98%) and
HL-60 (9.47%). Moreover, this compound did not exhibit cytotoxic activity in K562 and
HCT-166 cell lines. Compound 3 did not show cytotoxic activity for HCT-166, MCF-7, K562
and HL-60. However, compound 4 exhibited a high cytotoxic activity on the HL-60 (96.9%),
MCF-7 (18.7%) and K562 (16.8%) and showed no effect on tumor cell HCT-166 viability.
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Moreover, compound 4 was also cytotoxic to human non-tumor cells (PBMC), with a 66.9%
of inhibition [51].

Compounds 5 and 6 were evaluated against trypomastigote forms of T. cruzi, showing
the IC50 of 450.7 and 399.0 µM values, respectively [52]. Comparing DHIE with compounds
2, 5, and 6, the presence of a hydroxyl group in DHIE enhances trypanocidal activity.

Alvarenga et al. demonstrated the antimycobacterial ability of the compounds 5, 7, 8,
9, 10, 11 and 12 (Figure 4) against M. massiliense, M. fortuitum and M. abcessus, as well as the
inhibition effect of biofilm formation fast-growing mycobacteria. This study showed that
compounds 11 and 12 exhibited a significant inhibitory effect on planktonic growth of the
three stains of mycobacteria tested, with even lower MIC values than those observed with
DHIE. They showed that compounds 11 and 12 were more effective in inhibiting microbial
film formation than DHIE [54]. Therefore, it appears that the presence of an alcoholic
hydroxyl group may favor the interaction with receptors to be able to induce susceptibility
of the three stains of mycobacteria tested.

The semi-synthetic derivatives 1, 6, 13, 14 and 15 were tested against T. cruzi. The antit-
rypanosomal activity for all compounds tested was higher than DHIE. Nevertheless, these
compounds exhibited activity only against the trypomastigote form and were not active
against the intracellular amastigote. Compound 14 exhibited higher activity against trypo-
mastigotes of T. cruzi (IC50 = 5.0 µM), followed by compound 15, showing IC50 = 10.5 µM
and compound 6, exhibiting IC50 = 17.9 µM. These data suggest that the presence of an
additional substitution in the aromatic ring of DHIE contributed to the antitrypanosomal
activity. However, this compound presents limited oral bioavailability estimation (<85%,
Paap < 1.0 × 10−6 cm/s) in parallel artificial membrane permeability assays (PAMPA) due
to excessive lipophilicity [18].

Compounds 17a–d, as well as 18a–d, were evaluated in vitro to α-glucosidase. The
compounds 17a–d were inactive against α-glucosidase; however, compounds 18a exhib-
ited an IC50 = 0.23 mmol/L, 18b IC50 = 0.33 mmol/L, 18c IC50 = 0.36 mmol/L and 18d
the IC50 = 0.38 mmol/L against α-glucosidase, were less compared to acarbose with an
IC50 = 0.054 mmol/L [36]. All these compounds showed a moderate inhibitory activity to
α-glucosidase close to acarbose.

9. Conclusions

This review shows that DHIE can be obtained in good yields from isoeugenol using
metallic catalysts or enzymes. In this regard, HRP is the best option to obtain (±)-DHIE;
coconut water is better for obtaining only the (−)-DHIE enantiomer. Besides, DHIE has
moderated sensitivity and low toxicity. DHIE exhibits a broad spectrum of biological
activities, such as anti-oxidant, anti-inflammatory, anti-parasitic, anti-microbial, especially
against some Mycobacterium species, and cytotoxic against different cancer cell lines. Also,
DHIE produces anti-diabetic and anti-obesity activity. These data indicate that DHIE could
be used to treat diseases, especially those caused by parasites such as T. cruzi and S. mansoni,
because there are few drugs that can be used against them, and they have low effectiveness.
Moreover, DHIE shows a good distribution and crosses the brain barrier suggesting that it
can be used in nervous system diseases. Finally, the semi-synthetic derivatives from DHIE
were obtained from a simple chemical modification of the DHIE in propenyl chain and
phenolic hydroxyl, improving the biological effect and pharmacokinetic properties.

10. Perspectives

Recently, there has been a particular interest in DHIE properties. DHIE provide effect
against a broad spectrum of bacterial, parasitic, and cytotoxic against different cancer cell
lines. Moreover, DHIE shows anti-oxidant and anti-inflammatory effects. However, more
systematics preclinical work and clinical trials are necessary before it can be considered as
a potential drug to improve health in either acute or chronic diseases such as anti-bacterial,
anti-parasitic, anti-inflammatory, anti-diabetic, and anti-obesity.
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