T908 Polymeric Micelles Improved the Uptake of Sgc8-c Aptamer Probe in Tumor-Bearing Mice: A Co-Association Study between the Probe and Preformed Nanostructures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Co-Associations of the Probe with Preformed Nanostructures
2.3. Nanosystems Characterization
2.3.1. Particle Size and Zeta Potential Measurements
2.3.2. Transmission Electron Microscopy (TEM)
2.3.3. Atomic Force Microscopy (AFM)
2.4. In Vitro Release of the Probe from Nanosystems
2.5. Cellular Uptake
2.6. Biodistribution in B-Cell Lymphoma Bearing Mice Model
2.7. Pharmacokinetic Studies in Mice
2.8. Statistical Analysis
3. Results
3.1. The Initiative
3.2. Co-Associations of the Probe with Preformed Nanostructures
3.3. Nanosystems Characterization
3.4. In Vitro Probe Release from Nanosystems
3.5. Cellular Uptake of Probe Nanosystems
3.6. Biodistribution in A20 Tumor-Bearing Mice
3.7. Pharmacokinetic Studies in Mice
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Keefe, A.D.; Pai, S.; Ellington, A. Aptamers as therapeutics. Nat. Rev. Drug Discov. 2010, 9, 537–550. [Google Scholar] [CrossRef]
- Que-Gewirth, N.S.; Sullenger, A.B. Gene therapy progress and prospects: RNA aptamers. Gene Ther. 2007, 14, 283–291. [Google Scholar] [CrossRef][Green Version]
- Abeydeera, N.D.; Egli, M.; Cox, N.; Mercier, K.; Conde, J.N.; Pallan, P.S.; Mizurini, D.M.; Sierant, M.; Hibti, F.-E.; Hassell, T.; et al. Evoking picomolar binding in RNA by a single phosphorodithioate linkage. Nucleic Acids Res. 2016, 44, 8052–8064. [Google Scholar] [CrossRef]
- Chandola, C.; Neerathilingam, M. Aptamers for Targeted Delivery: Current Challenges and Future Opportunities. In Role of Novel Drug Delivery Vehicles in Nanobiomedicine; Tyagi, K., Garg, N., Shukla, R., Bisen, P.S., Eds.; IntechOpen: London, UK, 2019. [Google Scholar]
- Yoon, S.; Rossi, J.J. Aptamers: Uptake mechanisms and intracellular applications. Adv. Drug Deliv. Rev. 2018, 134, 22–35. [Google Scholar] [CrossRef]
- Bouchard, P.; Hutabarat, R.; Thompson, K. Discovery and Development of Therapeutic Aptamers. Annu. Rev. Pharmacol. Toxicol. 2010, 50, 237–257. [Google Scholar] [CrossRef] [PubMed]
- Kulabhusan, P.K.; Hussain, B.; Yüce, M. Current Perspectives on Aptamers as Diagnostic Tools and Therapeutic Agents. Pharmaceutics 2020, 12, 646. [Google Scholar] [CrossRef]
- Shangguan, D.; Tang, Z.; Mallikaratchy, P.; Xiao, Z.; Tan, W. Optimization and Modifications of Aptamers Selected from Live Cancer Cell Lines. ChemBioChem 2007, 8, 603–606. [Google Scholar] [CrossRef]
- Shangguan, D.; Cao, Z.; Meng, L.; Mallikaratchy, P.; Sefah, K.; Wang, H.; Li, Y.; Tan, W. Cell-Specific Aptamer Probes for Membrane Protein Elucidation in Cancer Cells. J. Proteome Res. 2008, 7, 2133–2139. [Google Scholar] [CrossRef][Green Version]
- Saha, S.; Sparks, A.B.; Rago, C.; Akmaev, V.R.; Wang, C.J.; Vogelstein, B.; Kinzler, K.W.; Velculescu, V. Using the transcriptome to annotate the genome. Nat. Biotechnol. 2002, 20, 508–512. [Google Scholar] [CrossRef]
- Tian, X.; Yan, L.; Zhang, D.; Guan, X.; Dong, B.; Zhao, M.; Hao, C. PTK7 overexpression in colorectal tumors: Clinicopathological correlation and prognosis relevance. Oncol. Rep. 2016, 36, 1829–1836. [Google Scholar] [CrossRef][Green Version]
- Speers, C.; Tsimelzon, A.; Sexton, K.; Herrick, A.M.; Gutierrez, C.; Culhane, A.; Quackenbush, J.; Hilsenbeck, S.; Chang, J.; Brown, P. Identification of Novel Kinase Targets for the Treatment of Estrogen Receptor–Negative Breast Cancer. Clin. Cancer Res. 2009, 15, 6327–6340. [Google Scholar] [CrossRef][Green Version]
- Chen, R.; Khatri, P.; Mazur, P.; Polin, M.; Zheng, Y.; Vaka, D.; Hoang, C.D.; Shrager, J.; Xu, Y.; Vicent, S.; et al. A Meta-analysis of Lung Cancer Gene Expression Identifies PTK7 as a Survival Gene in Lung Adenocarcinoma. Cancer Res. 2014, 74, 2892–2902. [Google Scholar] [CrossRef][Green Version]
- Calzada, V.; Moreno, M.; Newton, J.; González, J.; Fernández, M.; Gambini, J.P.; Ibarra, M.; Chabalgoity, A.; Deutscher, S.; Quinn, T.; et al. Development of new PTK7-targeting aptamer-fluorescent and -radiolabelled probes for evaluation as molecular imaging agents: Lymphoma and melanoma in vivo proof of concept. Bioorg. Med. Chem. 2017, 25, 1163–1171. [Google Scholar] [CrossRef]
- Müller-Tidow, C.; Schwäble, J.; Steffen, B.; Tidow, N.; Brandt, B.; Becker, K.; Schulze-Bahr, E.; Halfter, H.; Vogt, U.; Metzger, R.; et al. High-Throughput Analysis of Genome-Wide Receptor Tyrosine Kinase Expression in Human Cancers Identifies Potential Novel Drug Targets. Clin. Cancer Res. 2004, 10, 1241–1249. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Liu, Q.; Zhang, C.; Yuan, J.; Fu, J.; Wu, M.; Su, J.; Wang, X.; Yuan, X.; Jiang, W. PTK7 regulates Id1 expression in CD44-high glioma cells. Neuro-Oncology 2015, 17, 505–515. [Google Scholar] [CrossRef][Green Version]
- Xie, S.; Ai, L.; Cui, C.; Fu, T.; Cheng, X.; Qu, F.; Tan, W. Functional Aptamer-Embedded Nanomaterials for Diagnostics and Therapeutics. ACS Appl. Mater. Interfaces 2021, 13, 9542–9560. [Google Scholar] [CrossRef] [PubMed]
- Reinemann, C.; Strehlitz, B. Aptamer-modified nanoparticles and their use in cancer diagnostics and treatment. Swiss Med. Wkly. 2014, 144, w13908. [Google Scholar] [CrossRef]
- Bulbake, U.; Doppalapudi, S.; Kommineni, N.; Khan, W. Liposomal Formulations in Clinical Use: An Updated Review. Pharmaceutics 2017, 9, 12. [Google Scholar] [CrossRef] [PubMed]
- Lamichhane, N.; Udayakumar, T.S.; D’Souza, W.D.; Simone, C.B.; Raghavan, S.R.; Polf, J.; Mahmood, J. Liposomes: Clinical Applications and Potential for Image-Guided Drug Delivery. Molecules 2018, 23, 288. [Google Scholar] [CrossRef][Green Version]
- Ahmed, K.S.; Hussein, S.A.; Ali, A.; Korma, S.A.; Lipeng, Q.; Jinghua, C. Liposome: Composition, characterisation, preparation, and recent innovation in clinical applications. J. Drug Target. 2019, 27, 742–761. [Google Scholar] [CrossRef]
- Shah, S.; Dhawan, V.; Holm, R.; Nagarsenker, M.S.; Perrie, Y. Liposomes: Advancements and innovation in the manufacturing process. Adv. Drug Deliv. Rev. 2020, 154–155, 102–122. [Google Scholar] [CrossRef]
- Gao, W.; Hu, C.-M.J.; Fang, R.H.; Zhang, L. Liposome-like nanostructures for drug delivery. J. Mater. Chem. B 2013, 1, 6569–6585. [Google Scholar] [CrossRef]
- Kraft, J.C.; Freeling, J.P.; Wang, Z.; Ho, R.J. Emerging Research and Clinical Development Trends of Liposome and Lipid Nanoparticle Drug Delivery Systems. J. Pharm. Sci. 2014, 103, 29–52. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Allen, T.M.; Cullis, P.R. Liposomal drug delivery systems: From concept to clinical applications. Adv. Drug Deliv. Rev. 2013, 65, 36–48. [Google Scholar] [CrossRef]
- Wan, C.; Allen, T.M.; Cullis, P.R. Lipid nanoparticle delivery systems for siRNA-based therapeutics. Drug Deliv. Transl. Res. 2014, 4, 74–83. [Google Scholar] [CrossRef]
- Glisoni, R.J.; Quintana, S.S.L.; Molina, M.; Calderón, M.; Moglioni, A.G.; Sosnik, A. Chitosan-g-oligo(epsilon-caprolactone) polymeric micelles: Microwave-assisted synthesis and physicochemical and cytocompatibility characterization. J. Mater. Chem. B 2015, 3, 4853–4864. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Moretton, M.A.; Glisoni, R.; Chiappetta, D.A.; Sosnik, A. Molecular implications in the nanoencapsulation of the anti-tuberculosis drug rifampicin within flower-like polymeric micelles. Colloids Surf. B Biointerfaces 2010, 79, 467–479. [Google Scholar] [CrossRef]
- Charbgoo, F.; Alibolandi, M.; Taghdisi, S.M.; Abnous, K.; Soltani, F.; Ramezani, M. MUC1 aptamer-targeted DNA micelles for dual tumor therapy using doxorubicin and KLA peptide. Nanomed. Nanotechnol. Biol. Med. 2018, 14, 685–697. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Zhang, J.; Hao, W.; Wang, T.; Liu, J.; Xie, Y.; Xu, S.; Liu, H. Copolymer micelles function as pH-responsive nanocarriers to enhance the cytotoxicity of a HER2 aptamer in HER2-positive breast cancer cells. Int. J. Nanomed. 2018, 13, 537–553. [Google Scholar] [CrossRef][Green Version]
- Cuestas, M.L.; Glisoni, R.J.; Mathet, V.; Sosnik, A. Lactosylated-poly (ethylene oxide)-poly (propylene oxide) block copolymers for potential active drug targeting: Synthesis and physicochemical and self-aggregation characterization. J. Nanopart. Res. 2013, 15, 1–21. [Google Scholar] [CrossRef]
- Glisoni, R.; Sosnik, A. Encapsulation of the Antimicrobial and Immunomodulator Agent Nitazoxanide Within Polymeric Micelles. J. Nanosci. Nanotechnol. 2014, 14, 4670–4682. [Google Scholar] [CrossRef] [PubMed]
- Glisoni, R.J.; Sosnik, A. Novel Poly(Ethylene Oxide)-b-Poly(Propylene Oxide) Copolymer-Glucose Conjugate by the Microwave-Assisted Ring Opening of a Sugar Lactone. Macromol. Biosci. 2014, 14, 1639–1651. [Google Scholar] [CrossRef]
- Lecot, N.; Glisoni, R.J.; Oddone, N.; Benech, J.; Fernandez-Lomonaco, M.; Cabral, P.; Sosnik, A. Glucosylated Polymeric Micelles Actively Target Curcumin to a Breast Cancer Model. Adv. Ther. 2020, 4, 2000010. [Google Scholar] [CrossRef]
- Lecot, N.; Rodríguez, G.; Stancov, V.; Fernández, M.; González, M.; Glisoni, R.J.; Cabral, P.; Cerecetto, H. Development of fluorescent- and radio-traceable T1307-polymeric micelles as biomedical agents for cancer diagnosis: Biodistribution on 4T1 tumor-bearing mice. Braz. J. Pharm. Sci. 2020, in press. [Google Scholar]
- Alexandridis, P.; Hatton, T.A. Poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymer surfactants in aqueous solutions and at interfaces: Thermodynamics, structure, dynamics, and modeling. Colloids Surf. A Physicochem. Eng. Asp. 1995, 96, 1–46. [Google Scholar] [CrossRef]
- Alexandridis, P.; Holzwarth, J.F.; Hatton, T.A. Micellization of Poly(ethylene oxide)-Poly(propylene oxide)-Poly(ethylene oxide) Triblock Copolymers in Aqueous Solutions: Thermodynamics of Copolymer Association. Macromolecules 1994, 27, 2414–2425. [Google Scholar] [CrossRef]
- Newman, M.J.; Balusubramanian, M.; Todd, C.W. Development of adjuvant-active nonionic block copolymers. Adv. Drug Deliv. Rev. 1998, 32, 199–223. [Google Scholar] [CrossRef]
- Coeshott, C.M.; Smithson, S.; Verderber, E.; Samaniego, A.; Blonder, J.M.; Rosenthal, G.J.; Westerink, M. Pluronic® F127-based systemic vaccine delivery systems. Vaccine 2004, 22, 2396–2405. [Google Scholar] [CrossRef] [PubMed]
- Shen, S.-S.; Yang, Y.-W. Dynamics of antigen delivery and the functional roles of L121-adjuvant. Vaccine 2015, 33, 4341–4348. [Google Scholar] [CrossRef] [PubMed]
- Badiee, A.; Shargh, V.H.; Khamesipour, A.; Jaafari, M.R. Micro/nanoparticle adjuvants for antileishmanial vaccines: Present and future trends. Vaccine 2013, 31, 735–749. [Google Scholar] [CrossRef]
- Han, I.-K.; Kim, Y.B.; Kang, H.-S.; Sul, D.; Jung, W.-W.; Cho, H.J.; Oh, Y.-K. Thermosensitive and mucoadhesive delivery systems of mucosal vaccines. Methods 2006, 38, 106–111. [Google Scholar] [CrossRef]
- Todoroff, J.; Ucakar, B.; Inglese, M.; Vandermarliere, S.; Fillee, C.; Renauld, J.-C.; Huygen, K.; Vanbever, R. Targeting the deep lungs, Poloxamer 407 and a CpG oligonucleotide optimize immune responses to Mycobacterium tuberculosis antigen 85A following pulmonary delivery. Eur. J. Pharm. Biopharm. 2013, 84, 40–48. [Google Scholar] [CrossRef]
- Calzada, V.; Baez, J.; Sicco, E.; Margenat, J.; Fernández, M.; Moreno, M.; Ibarra, M.; Quinn, T.P.; Gambini, J.P.; Cabral, P.; et al. Preliminary in vivo characterization of a theranostic aptamer: Sgc8-c-DOTA-67Ga. Aptamers 2017, 1, 19–27. [Google Scholar]
- Sicco, E.; Báez, J.; Margenat, J.; García, F.; Ibarra, M.; Cabral, P.; Moreno, M.; Cerecetto, H.; Calzada, V. Derivatizations of Sgc8-c aptamer to prepare metallic radiopharmaceuticals as imaging diagnostic agents: Syntheses, isolations, and physicochemical characterizations. Chem. Biol. Drug Des. 2018, 91, 747–755. [Google Scholar] [CrossRef]
- Sicco, E.; Baez, J.; Ibarra, M.; Fernández, M.; Cabral, P.; Moreno, M.; Cerecetto, H.; Calzada, V. Sgc8-c Aptamer as a Potential Theranostic Agent for Hemato-Oncological Malignancies. Cancer Biother. Radiopharm. 2020, 35, 262–270. [Google Scholar] [CrossRef]
- Sicco, E.; Mónaco, A.; Fernandez, M.; Moreno, M.; Calzada, V.; Cerecetto, H. Metastatic and non-metastatic melanoma imaging using Sgc8-c aptamer PTK7-recognizer. Sci. Rep. 2021, 11, 19942. [Google Scholar] [CrossRef]
- Urmann, K.; Modrejewski, J.; Scheper, P.T.; Walter, J.-G. Aptamer-modified nanomaterials: Principles and applications. BioNanoMaterials 2017, 18, 1–17. [Google Scholar] [CrossRef]
- Glisoni, R.J.; García-Fernández, M.J.; Pino, M.; Gutkind, G.; Moglioni, A.; Alvarez-Lorenzo, C.; Concheiro, A.; Sosnik, A. β-Cyclodextrin-conjugated hydrogels for localized ocular release of antibacterial thiosemicarbazones. Carbohydr. Polym. 2013, 93, 449–457. [Google Scholar] [CrossRef]
- Monterrubio, C.; Paco, S.; Olaciregui, N.G.; Pascual-Pasto, G.; Vila-Ubach, M.; Cuadrado-Vilanova, M.; Ferrandiz, M.M.; Castillo-Ecija, H.; Glisoni, R.; Kuplennik, N.; et al. Targeted drug distribution in tumor extracellular fluid of GD2-expressing neuroblastoma patient-derived xenografts using SN-38-loaded nanoparticles conjugated to the monoclonal antibody 3F. J. Control Release 2017, 255, 108–119. [Google Scholar] [CrossRef]
- Seremeta, K.; Chiappetta, D.A.; Sosnik, A. Poly(epsilon-caprolactone), Eudragit (R) RS 100 and poly(epsilon-caprolactone)/Eudragit (R) RS 100 blend submicron particles for the sustained release of the antiretroviral efavirenz. Colloids Surf. B Biointerfaces 2013, 102, 441–449. [Google Scholar] [CrossRef]
- Fu, Z.; Xiang, J. Aptamer-Functionalized Nanoparticles in Targeted Delivery and Cancer Therapy. Int. J. Mol. Sci. 2020, 21, 9123. [Google Scholar] [CrossRef] [PubMed]
- Movassaghian, S.; Merkel, O.M.; Torchilin, V.P. Applications of polymer micelles for imaging and drug delivery. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2015, 7, 691–707. [Google Scholar] [CrossRef] [PubMed]
Samples | Temp. (°C) | Z-Average (nm) | Size Distribution by Intensity (%) | |||
---|---|---|---|---|---|---|
Dh (nm) (±S.D.) | % Intensity (±S.D.) | PDI | Z-Potential (mV) (±S.D.) | |||
Free-probe | 25 | 12.9 (2.2) | 26.6 (3.4) | 100.0 (0.0) | 0.417 (0.114) | −12.8 (2.6) |
PPL | 189.8 (6.3) | 249.3 (20.2) | 100.0 (0.0) | 0.403 (0.031) | −35.2 (0.6) | |
PPL-probe | 236.4 (8.2) | 263.9 (8.4) | 100.0 (0.0) | 0.401 (0.072) | −31.3 (0.5) | |
PPL-c | 171.6 (3.2) | 213.0 (15.7) | 100.0 (0.0) | 0.379 (0.017) | −64.9 (0.8) | |
PPL-probe-c | 186.6 (4.8) | 241.4 (19.1) | 100.0 (0.0) | 0.363 (0.033) | −64.9 (0.8) | |
Free-probe | 37 | 11.8 (0.2) | 42.1 (11.8) | 100.0 (0.0) | 0.405 (0.016) | −8.0 (0.7) |
PPL | 202.1 (11.5) | 256.6 (17.6) | 100.0 (0.0) | 0.404 (0.056) | −33.5 (0.7) | |
PPL-probe | 176.2 (17.0) | 192.0 (18.9) | 100.0 (0.0) | 0.151 (0.056) | −28.9 (0.7) | |
PPL-c | 184.2 (7.7) | 221.1 (14.6) | 100.0 (0.0) | 0.420 (0.045) | −60.7 (1.0) | |
PPL-probe-c | 203.9 (6.0) | 226.1 (19.3) | 100.0 (0.0) | 0.391 (0.043) | −64.0 (2.9) |
PMs (10% w/v) | Temp. (°C) | Peak 1 | Peak 2 | PDI (±S.D.) | Z-Potential (mV) (±S.D.) | ||
---|---|---|---|---|---|---|---|
Dh (nm) (±S.D.) | % Intensity (±S.D.) | Dh (nm) (±S.D.) | % Intensity (±S.D.) | ||||
F127 | 25 | ** 44.1 (3.1) | 86.4 (1.3) | * 5.3 (0.2) | 13.3 (1.3) | 0.473 (0.013) | −3.7 (0.3) |
F127–probe | ** 31.8 (7.3) | 100.0 (0.0) | -- | -- | 0.447 (0.058) | −3.0 (0.8) | |
F127 | 37 | ** 21.5 (0.3) | 96.2 (2.7) | -- | -- | 0.271 (0.034) | −3.0 (0.7) |
F127–probe | ** 30.4 (0.9) | 100.0 (0.0) | -- | -- | 0.487 (0.068) | −2.2 (0.5) | |
T1307 | 25 | ** 64.4 (1.8) | 53.7 (1.5) | * 6.9 (0.5) | 46.3 (1.5) | 0.551 (0.081) | −5.0 (0.3) |
T1307–probe | ** 24.0 (3.2) | 81.2 (8.8) | *** 170.5 (58.0) | 18.8 (8.8) | 0.459 (0.080) | −4.4 (0.6) | |
T1307 | 37 | ** 18.9 (0.8) | 100.0 (0.0) | -- | -- | 0.331 (0.067) | −4.6 (0.5) |
T1307–probe | ** 25.9 (5.1) | 100.0 (0.0) | -- | -- | 0.450 (0.024) | −2.6 (0.4) | |
T908 | 25 | *** 174.3 (23.1) | 47.7 (0.7) | * 6.4 (0.8) | 52.3 (0.7) | 0.502 (0.076) | −7.9 (0.6) |
T908–probe | ** 10.7 (0.1) | 93.6 (1.3) | *** 166.4 (9.1) | 6.4 (1.3) | 0.447 (0.018) | −3.4 (0.5) | |
T908 | 37 | ** 89.6 (13.3) | 47.9 (2.8) | * 8.6 (0.1) | 52.1 (2.8) | 0.305 (0.055) | −6.7 (0.6) |
T908–probe | ** 19.8 (1.9) | 100.0 (0.0) | -- | -- | 0.264 (0.092) | −2.4 (0.3) |
Parameter | Value | RSE (%) |
---|---|---|
CL (mL/min) | 0.158 | 27.9 |
V1 (mL) | 10.4 | 13.9 |
Q (mL/min) | 0.585 | 11.0 |
V2 free-probe (mL) | 22.3 | 20.2 |
V2 T908-probe (mL) | 54.8 | 35.3 |
IIV CL (%) | 83.8 | 26.7 |
IIV V1 (%) | 45.1 | 23.3 |
IIV Q (%) | 30.7 | 28.1 |
IIV V2 (%) | 32.8 | 46.8 |
RUV (ROI/µL) | 3.9 | 12.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castelli, R.; Ibarra, M.; Faccio, R.; Miraballes, I.; Fernández, M.; Moglioni, A.; Cabral, P.; Cerecetto, H.; Glisoni, R.J.; Calzada, V. T908 Polymeric Micelles Improved the Uptake of Sgc8-c Aptamer Probe in Tumor-Bearing Mice: A Co-Association Study between the Probe and Preformed Nanostructures. Pharmaceuticals 2022, 15, 15. https://doi.org/10.3390/ph15010015
Castelli R, Ibarra M, Faccio R, Miraballes I, Fernández M, Moglioni A, Cabral P, Cerecetto H, Glisoni RJ, Calzada V. T908 Polymeric Micelles Improved the Uptake of Sgc8-c Aptamer Probe in Tumor-Bearing Mice: A Co-Association Study between the Probe and Preformed Nanostructures. Pharmaceuticals. 2022; 15(1):15. https://doi.org/10.3390/ph15010015
Chicago/Turabian StyleCastelli, Romina, Manuel Ibarra, Ricardo Faccio, Iris Miraballes, Marcelo Fernández, Albertina Moglioni, Pablo Cabral, Hugo Cerecetto, Romina J. Glisoni, and Victoria Calzada. 2022. "T908 Polymeric Micelles Improved the Uptake of Sgc8-c Aptamer Probe in Tumor-Bearing Mice: A Co-Association Study between the Probe and Preformed Nanostructures" Pharmaceuticals 15, no. 1: 15. https://doi.org/10.3390/ph15010015