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Abstract: A series of coumarin derivatives and isosteres were synthesized from the reaction of triflic
intermediates with phenylboronic acids, terminal alkynes, and organozinc compounds through
palladium-catalyzed cross-coupling reactions. The in vitro cytotoxic effect of the compounds was
evaluated against two non-small cell lung carcinoma (NSCLC) cell lines (A-549 and H2170) and
a normal cell line (NIH-3T3) using cisplatin as a reference drug. Additionally, the effects of the most
promising coumarin derivative (9f) in reversing the epithelial-to-mesenchymal transition (EMT) in
IL-1β-stimulated A549 cells and in inhibiting the EMT-associated migratory ability in A549 cells were
also evaluated. 9f had the greatest cytotoxic effect (CC50 = 7.1 ± 0.8 and 3.3 ± 0.5 µM, respectively
against A549 and H2170 cells) and CC50 value of 25.8 µM for NIH-3T3 cells. 9f inhibited the IL-
1β-induced EMT in epithelial cells by inhibiting the F-actin reorganization, attenuating changes
in the actin cytoskeleton reorganization, and downregulating vimentin in A549 cells stimulated
by IL-1β. Treatment of A549 cells with 9f at 7 µM for 24 h significantly reduced the migration of
IL-1β-stimulated cells, which is a phenomenon confirmed by qualitative assessment of the wound
closure. Taken together, our findings suggest that coumarin derivatives, especially compound 9f,
may become a promising candidate for lung cancer therapy, especially in lung cancer promoted by
NSCLC cell lines.

Keywords: anticancer activity; lung cancer; non-small-cell lung cancer; epithelial–mesenchymal
transition; metastasis; coumarin derivative

1. Introduction

Cancer is characterized by cells with uncontrolled division, genome heterogeneity,
and invasiveness to other tissues via blood or lymph nodes. According to the World Health
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Organization (WHO) reports, almost nine million cancer-related deaths annually occur [1].
Among cancers, lung cancer is one of the most common types, with a mortality rate of
around 18.4% according to the GLOBOCAN report [2].

Cancer metastasis is defined as the formation of new tumors in tissues away from
the primary site; it accounts for a vast majority of the morbidity and mortality of patients
and is associated with about 90% of all cancer-associated deaths [3,4]. In the past decade,
an increasing number of studies have provided strong evidence to proposed that epithelial–
mesenchymal transition (EMT)—a known cellular program allowing polarized cells to
shift to a mesenchymal phenotype with increased cellular motility [5]—has a central role
in cancer progression and metastatic dissemination [6–8]. For this reason, the EMT has
become as a target of interest for anticancer therapy [9,10].

Furthermore, cancer therapy is complex due mainly to drug resistance, which leads to
less effectiveness of the anticancer agents. Therefore, the discovery and development of
new chemotherapeutic agents with greater efficacy is a very urgent need.

Coumarins are a class of secondary metabolites chemically characterized by the fusion
of a benzene with an α-pirone ring [11]. Their pharmacological applications are widely
described [12–17], highlighting its applications in the treatment of several human cancer
and in the inhibition of cell growth of several cancer cell lines [18–27], including lung
cancer [21,28–37]. Its low toxicities [38,39], associated with its potential to inhibit sev-
eral proteins associated with lung cancer (tyrosine kinase, telomerase, NF-κB, ERK1/2,
EGFR, STAT proteins, HSP 90, PI3K, Bax, among others) [24,26,28], makes them promising
prototypes for the development of new anti-lung cancer drugs.

In view of the above, the aim of this study was to synthesize a series of coumarins
derivatives obtained through palladium-catalyzed cross-coupling reactions (PCCCR) and
evaluate their cytotoxic effects in vitro in two non-small two cell lung carcinoma (NSCLC)
cell lines (A549 and H2170). Additionally, we investigated the potential of the most
promising coumarin derivative (9f) in reversing the epithelial-to-mesenchymal transition
(EMT) in IL-1β-stimulated A549 cells, and in inhibiting the EMT-associated migratory
ability in A549 cells.

2. Results and Discussion
2.1. Chemistry

The synthesis of the coumarin core can be performed by different synthetic method-
ologies, among which the most common are Pechmann, Wittig, Knoevenagel, and Perkin
reactions [11]. Cross-coupling reactions catalyzed by transition metals, such as the Suzuki–
Miyaura, Negishi [40], and Sonogashira [41] reactions, have become powerful alternatives
to the formation of carbon–carbon bonds [42,43] and allowed the introduction of various
substituents in all positions of the basic nucleus, leading to analogous, homologous, or
libraries of compounds [44].

The preparation of target compounds (coumarins, quinolones, and chromen-4-ones)
involved the formation of triflic methanesulfonate derivatives as key intermediates 4,
5a–b, and 6, thanks to the cross-coupling reactions. 6- and 7-hydroxycoumarin 2a–b and
6-hydroxyquinolone 1a are commercially available, and 3-hydroxy-chromen-4-one 3 was
synthesized following a reported preparation [45]. Attempts to prepare 6-OTf quinolone
from 1a and triflic anhydride resulted exclusively in the formation of the 2,6 di-triflic adduct
1b. Therefore, our efforts focused on the preparation of N-Me quinolone 1c. However,
N-alkylation of quinolone 1a needed a first transient protection of the phenol by an acetyl
group (compounds 1d–e) according to Scheme 1.

Reaction of the respective hydroxyl cores (cpds 1c, 2a–b, and 3) with triflic anhydride
in the presence of pyridine afforded the corresponding triflic intermediates 4, 5a–b, and 6
in high yields (≥75%), as illustrated in Scheme 2.

With triflic intermediates 4, 5a,b, and 6 in hand, our attention next turns to the
Suzuki–Miyaura cross-coupling reaction. Reaction with various boronic acids enables
the preparation of a small library of 6- and 7-substituted coumarins (cpds 8a–f, 9a–g).
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The use of a catalytic amount of tetrakis(triphenylphosphine) palladium(0) (5.0 mol %) in
the presence of NaHCO3 as a base led efficiently to the target compounds (see Table 1).
However, for the introduction of a pyridine moiety in the coumarin structure, K3PO4 was
preferred over NaHCO3 (Table 1, cpds 8d and 9g). For these 2 cpds, the reaction was
performed in Toluene/EtOH/H2O and yielded the expected compounds 8d and 9g in 74%
and 82% yields, respectively. Starting from the Otf-flavone derivative 6, the use of Pd(Oac)2
(5.0 mol %) in the presence of KF furnished 10 in moderate yield (50%) (Scheme 3).
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Table 1. Preparation of compounds 7, 8a–g, 9a–f, and 10 through Suzuki–Miyaura conditions.

Cpd X R Base Catalyst.
(5.0 mol %) Solvent Yield (%)

8a O 7-(4-OCH3)-Ph NaHCO3 Pd(PPh3)4 MeOH 71
8b O 7-(2-OCH3)-Ph NaHCO3 Pd(PPh3)4 MeOH 84
8c O 7-(2-Cl)-Ph NaHCO3 Pd(PPh3)4 MeOH 71
8d O 7-(Pyridin-4-yl) K3PO4 Pd(PPh3)4 Toluene/EtOH/H2O (4:1:1) 74
8e O 7-(4-CF3)-Ph NaHCO3 Pd(PPh3)4 MeOH 78
8f O 7-(3,4-Cl)-Ph NaHCO3 Pd(PPh3)4 MeOH 59
9a O 6-(4-OCH3)-Ph NaHCO3 Pd(PPh3)4 MeOH 73
9b O 6-(3-OCH3)-Ph NaHCO3 Pd(PPh3)4 MeOH 71
9c O 6-(2-OCH3)-Ph NaHCO3 Pd(PPh3)4 MeOH 76
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Table 1. Cont.

Cpd X R Base Catalyst.
(5.0 mol %) Solvent Yield (%)

9d O 6-(4-Cl)-Ph NaHCO3 Pd(PPh3)4 MeOH 45
9e O 6-(2-Cl)-Ph NaHCO3 Pd(PPh3)4 MeOH 71
9f O 6-(3,4-Cl)-Ph NaHCO3 Pd(PPh3)4 MeOH 68
9g O 6-(Pyridin-4-yl) K3PO4 Pd(PPh3)4 Toluene/EtOH/H2O (4:1:1) 82
7 NCH3 6-(4-OCH3)-Ph NaHCO3 Pd(PPh3)4 MeOH 81

10 - 3-(4-Ome)-Ph KF Pd(Oac)2 MeOH 50
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Sonogashira reaction with different terminal alkynes resulted in seven compounds
(Table 2).

Table 2. Preparation of compounds 11, 12a–c, and 13a–c through Sonogashira cross-coupling reaction
in CH3CN.

Cpd X R Base Ligand/Catalyst Additive Yield %

12a O Ph Et3N Pd(PPh3)2Cl2 CuI 75
12b O CH2OCH2Ph Et3N Pd(PPh3)2Cl2 CuI 38
12c O CH2OH K2CO3 S-Phos/Pd(Oac)2 TBAI 75
13a O Ph K2CO3 S-Phos/Pd(Oac)2 TBAI 78
13b O (CH2)3Ph K2CO3 S-Phos/Pd(Oac)2 TBAI 76
13c O CH2OH K2CO3 S-Phos/Pd(Oac)2 TBAI 72
11 NCH3 Ph K2CO3 S-Phos/Pd(Oac)2 TBAI 78

Palladium-catalyzed Sonogashira cross-coupling is a widely used method to synthe-
size functional molecules containing an alkyne unit. Traditional Sonogashira coupling
with Pd(PPh3)2Cl2 (3.0 mol %) and Et3N typically requires the use of a Cu(I) halide salt as
a cocatalyst to have high reaction productivity. So, starting from coumarin 5b and under
these conditions, the phenyl acetylene moiety was introduced under microwave irradiation
in 75% yield (cpd 12a). However, with Obn propargylalcohol, the same conditions yielded
12b in only 38% yield. Recently, Chorley et al. highlighted the efficacy of Pd(Oac)2 and
2-dicyclohexylphosphino-2′,6′-dimethoxybiphenyl (Sphos) as an effective catalytic system
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for the Sonogashira cross-coupling reaction [46]. In addition, the presence of tetrabutylam-
monium iodide (TBAI) as an additive increased the yield of the reaction [47]. Under these
conditions and without the protection of propargylic alcohol, we isolated the target alkyne
derivative 12c in 75% yield. These last conditions applied to Otf intermediates 4 and 5b
in the presence of various terminal alkynes, yielding target compounds 11 and 13a–c in
satisfactory yields (>70%, see Table 2) (Scheme 3).

Negishi cross-coupling reactions represent an extremely versatile tool for the introduc-
tion of alkyl substituents. As reported by Knochel et al. [48] and in the presence of Sphos
(10.0 mol %) and Pd(Oac)2 (5.0 mol %), it was possible to perform at room temperature an
efficient cross-coupling reaction between Otf coumarin 5a–b and benzyl zinc reagent (see
Scheme 3, cpds 14 and 15).

Lastly, the subsequent reduction of alkynes 12a and 13a was performed by catalytic
hydrogenation, leading respectively to cpds 16 and 17, as depicted in Scheme 3.

All synthesized compounds had their chemical structures confirmed by 1H and 13C NMR
and mass spectrometry, and all spectra data are available in the Supplementary Material.

2.2. Biological Evaluation
2.2.1. Effects of Coumarin Derivatives on Cell Viability

All the synthetic coumarins (7, 8a–f, 9a–g, 10, 11, 12a–c, 13a–c, 14–17) were first
screened for their in vitro cytotoxic activity at a single concentration (12 µM) against
NSCLC cell line (human lung adenocarcinoma A549) for 24 h, using the well-established
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The results of
A549 cells viability are reported in Figure 1.
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Figure 1. Effect of synthetic coumarin derivatives on cell viability. The viability of A549 cells was
determined using the MTT assay after exposure at a single concentration (12 µM) of the compounds
or cisplatin (2.6 µM) for 24 h. The percentage of inhibition was calculated considering the cells treated
with medium (DMEM), which was considered as 100% of cell viability (dotted line). Bars represent
the mean ± S.D. from three independent experiments.

The results showed that compounds 8b, 9c, 9g, 12c, 13b, 13c, 14, 15, and 16 showed
little or no cytotoxicity. Compounds 7, 8a, 8c, 8d, 8e, 9a, 9b, 9d, 9e, 10, 11, 12a–b, 13a, and
17 showed a moderate cytotoxicity by inducing a reduction in cell viability within 80–60%.
Compounds 8f and 9f, which have in common the presence of a 3,4-dichloro-phenyl group
((3,4-Cl)-Ph), induced a strong cytotoxicity by decreasing the A549 cells viability to values
below 50%.

Among these two compounds, 9f was the most promising, reducing the A549 cells
viability to less than 20%. Thus, this compound was selected and had its concentration
that reduces the viable cell number by 50% (CC50) determined against two cancer cell
lines (human lung adenocarcinoma A549 and H2170 cell lines) and one non-cancer cell
line (NIH-3T3), and showed CC50 values (mean ± S.D.) of 7.1 ± 0.8 µM, 3.3 ± 0.5 µM,
and 25.8 ± 1.7 µM against A549, H2170, and NHI-3T3 cells, respectively (Supplementary
Materials II). Distinct explanations might be used to sustain this fact, including biochemical
and metabolic changes between cell lines. While normal cells follow a set of organized
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metabolic programs, cancer cells show intrinsic or acquired resistance to apoptosis and also
a metabolic reprogramming in order to meet the increased energy demands [49]. Facing
these results, we can notate that 9f showed to be the most potent against cancer cells (A549
and H2170 cell lines) than against healthy cell (NIH-3T3 cell line).

These cytotoxicity results are better than those observed for the most cytotoxic coumarins
from other studies against the A549 cells, such as umbelliprenin (IC50 = 52 ± 1.97 µM) [33];
3-arylcoumarin derivative (8-(acetyloxy)-3-(4-methanesulfonyl phenyl)-2-oxo-2H-chromen-
7-yl acetate) with IC50 = 24.2 µM [31]; and iodinated-4-aryloxymethylcoumarins (6-chloro-
and 7-chloro-4-(4-iodo-phenoxymethyl)-chromen-2-one) with IC50 = 7.57 µM [35]; these
latter bearing chlorine atoms in their structures, as observed in the most active compounds
of the present study (coumarins 8f and 9f).

On the basis of cytotoxic effect, the concentration of 7 µM of 9f was chosen for further to
characterize the antitumor activity by investigating their effects on the process of inhibition
of the EMT-associated migratory ability and epithelial-to-mesenchymal transition (EMT) in
IL-1β-stimulated A549 cells.

2.2.2. Effect of 9f on IL-1β-Induced EMT in A549 Cells

The EMT process is characterized by the phenotypic conversion of epithelial into
mesenchymal cells that occurs with great frequency in fibrotic tissues, embryonic cells, and
cancer. This transition increases the invasion capacity and the migratory potential of cells,
which are characteristic of metastatic cancer, contributing additionally to the development
of drug resistance in cancer [50–55].

To determine whether compound 9f acts as an inhibitory compound of EMT in ep-
ithelial cells, the morphological changes induced by IL1-β on A549 cells was observed. As
shown in Figure 2A,B, the A549 cells maintained to culture medium (DMEM) or treated
with compound 9f exhibited, in a confluent monolayer, a cobblestone-like cell morphol-
ogy, which is characteristic of epithelial cells. Cells treated with 1 ng/mL IL-1β exhibited
an evident morphological change and acquired a spindle-like morphology with the loss
of cell–cell interactions that is a characteristic feature of mesenchymal cells (Figure 2C).
A549 cells treated with 9f exhibited an impairment in changes in its mesenchymal charac-
teristics induced by IL-1β (Figure 2D), suggesting that 9f possesses inhibitory effects on
IL-1β-induced F-actin reorganization.

To evaluate the effect of compound 9f on actin cytoskeleton organization, A549 cells
were IL-1β-stimulated and evaluated by staining with FITC-labeled phalloidin. As pre-
sented in Figure 2E,F, the A549 cells maintained to culture medium (DMEM) or treated
with 9f exhibited an abundant deposition of actin filament in the cortical region, which
determines a cellular cobblestone-like morphology typical of epithelial cells. Stimula-
tion with IL-1β induced a cytoskeleton reorganization, leading to the activation of actin
polymerization and the morphologic cell reorganization, which indicate a differentiation
from the epithelial to mesenchymal phenotype (Figure 2G). Treatment with 9f attenuated
the changes in the actin cytoskeleton reorganization in A549 cells stimulated by IL-1β
(Figure 2H).

To corroborate whether this morphological transformation represents EMT, immunoflu-
orescent staining was used to quantify the vimentin, which is a mesenchymal marker most
commonly associated with EMT and involved in cancer progression [56].

As shown in Figure 3A,B, 24 h incubation with 1 ng/mL IL-1β increased signifi-
cantly the expression of vimentin in A549 cells compared with those maintained in DMEM
medium (control). We found that the treatment of cells with 9f (7 µM) significantly di-
minished the expression of mesenchymal marker vimentin in IL-1β-stimulated A549 cells
(Figure 3A,B), which is a phenomenon confirmed by the quantitative assessment by flow cy-
tometry (Figure 3B–C). The treatment of cells with 9f did not change the levels of vimentin
expression in unstimulated cells with IL-1β (Figure 3A–C). This result showed that 9f
treatment suppresses IL-1β-induced EMT in A549 cells through downregulating vimentin.
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Figure 2. Compound 9f inhibited IL-1β-induced EMT in vitro. A549 cells were treated with 9f
(7 µM) in the presence or absence of 1 ng/mL IL-1β. Cells were photographed using phase-contrast
microscopy (A–D) or fluorescence microscopy (E–H). Cells were exposure to treatment with DMEM-
medium (A–E), 9f (B–F), IL-1β (C–G), or 9f + IL-1β (D–H) for 24 h. (Asterisks) Epithelial cells
arranged in a cobblestone-like monolayer. (Arrowheads) Cells with an elongated, mesenchymal
morphology. Actin (green) was detected via immunofluorescence in formaldehyde-fixed cells with
FITC-conjugated phalloidin (1:100). Nuclei were counterstained with DAPI. Magnification ×100
(insert, magnification ×200) for phase-contrast microscope and ×400 for fluorescence microscope.

Given the good results of 9f in inhibiting the IL-1β-induced EMT in epithelial cells,
we investigated whether 9f could affect the EMT-associated migratory ability in A549
cells. For this, in vitro wound-healing assay was performed to evaluate whether 9f acts as
an anti-metastatic agent in A549 cells.
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Figure 3. Compound 9f downregulates the expression of mesenchymal cell marker vimentin in
IL-1β-induced EMT. A549 cells were treated with compound 9f (7 µM) in the presence or absence of
1 ng/mL IL-1β. The mesenchymal markers vimentin was detected by immunofluorescence. (A) Cells
were exposed to treatment with DMEM medium, 9f, IL-1β, or IL-1β + 9f for 24 h. Vimentin (green)
was detected and measured (B) via immunofluorescence in formaldehyde-fixed cells with FITC-
conjugated antibody. Nuclei were counterstained with DAPI. Magnification ×400 for fluorescence
microscope. (C,D) Flow cytometry analysis showing the reduced expression of vimentin in IL-1β-
induced EMT under 9f treatment. In the graph in (C), bars represent the mean ± S.D. from three
independent experiments. (+) p < 0.01 and (+++) p < 0.001 compared with respective DMEM-treated
cells and (*) p < 0.01 and (***) p < 0.001 compared with IL-1β-stimulated cell medium-treated cells.
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As shown in Figure 4A,B, IL-1β-treated cells exhibited an increase in wound closure
within 24 h compared with those not treated with IL-1β (control). Treatment of cells with
9f at 7 µM for 24 h significantly reduced the migration of IL-1β-stimulated cells, which is
a phenomenon confirmed by qualitative assessment of the wound closure (Figure 4A,B).
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Figure 4. The effect of 9f on the migration of A549 cells assayed by the wound-healing assay. Cells
were treated with 9f at 7 µM, and images were captured to calculate the scratch closure. In (A),
representative photomicrography images showing the cell migration toward the cell-free area after
treatment with DMEM (control) or 9f and after 24 h. In (B), the graph shows the percentage of
scratch covered, which was measured by quantifying the total distance the cells moved from the
edge of the scratch toward the center of the scratch, using ImageJ software, followed by conversion
to a percentage of the wound covered. Values represent mean ± S.D. from three independent
experiments. (+++) p < 0.001 compared with respective DMEM-treated cells and (***) p < 0.001
compared with IL-1β-stimulated cell vehicle-treated cells.

3. Materials and Methods
3.1. Compounds (Synthetic Coumarins)

Compounds 1d [57], 3 [45], 5b [58], 6 [59], 8a [60], 8d [46], 9a [60], 9b and 9c [61],
9d [59], 9g [62], 10 [59], 12a [63], 13a [64], and 17 [65] were synthesized, and the structure
of these compounds has been confirmed by comparison with NMR spectral data from
the literature.

All other coumarin derivatives: triflic intermediates (4, 5a, 5b, 6); Suzuki–Miyaura
adducts (7, 8a–g, 9a–f); Sonogashira adducts 11, 12a–c, 13 a–c); Negishi adducts (14 and
15); and alkyl coumarin derivatives obtained by catalytic hydrogenation (16 and 17) were
prepared according to the synthetic procedures described in the Supplementary Material.

3.2. Biological Assays
3.2.1. Cell line and Cell Culture

A549, H2170, and normal mouse fibroblast (NIH-3T3) cell lines were obtained from
the Rio de Janeiro Cell Bank (BCRJ). A549 and NIH-3T3 cells were maintained in Dulbecco’s
Modified Eagle Medium (DMEM), while the H2170 cell line was maintained in Roswell
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Park Memorial Institute (RPMI)-1640. The culture media were supplemented with 10% fetal
bovine serum (FBS), 2 mM L-glutamine, and 40 µg/mL gentamicin. All cells were cultured
in a humidified atmosphere contained 5% CO2 incubator at 37 ◦C. For experiments, cells
were grown to 90% confluence. All experiments were conducted using cells with passage
numbers less than 10.

3.2.2. Cell Viability Assay and Treatment

The effect of coumarin derivatives on cell viability was evaluated by the MTT assay at
a single dose according to the NCI testing protocol or at different concentrations for IC50
determination [66]. Coumarin derivatives were dissolved in dimethyl sulfoxide (DMSO)
and then diluted with DMEM. Briefly, cells were plated in 96-well plates (2 × 104/well)
and each coumarin derivative at 12 µM was added to the culture medium, and the cell
cultures were continued for 24 h. Cisplatin (2.6 µM) was used as a reference drug. There-
after, the medium was replaced with fresh DMEM containing 5 mg/mL MTT. Following
an incubation period (4 h) in a humidified CO2 incubator at 37 ◦C and 5% CO2, the super-
natant was removed, and dimethyl sulfoxide solution (DMSO, 150 mL/well) was added to
each cultured plate. After incubation at room temperature for 15 min, the absorbance of the
solubilized MTT formazan product was spectrophotometrically measured at 540 nm. Three
individual wells were assayed for each treatment, and the percentage viability relative to
the control sample was determined as (absorbance of treated cells/absorbance of untreated
cells) × 100%. Only the compound that reduced the viability by more than half the value of
the control cells were screened in a range of concentration (10−8 to 10−3 M) with the A549,
H2170, and NHI-3T3 cell lines. The concentration of 9f compound that reduced the viable
cell number by 50% (CC50) was determined using a non-linear regression approach, and
the mean value of CC50 for each cell type was calculated from triplicate.

3.2.3. Epithelial-to-Mesenchymal Transition (EMT) Induction and Coumarin
Derivatives Treatment

For induction of the EMT process, A549 cells (1 × 105 per well) were seeded in 24-well
culture plates and treated with 1 ng/mL IL-1β (Peprotech, Rocky Hill, NJ, USA) for 24 h.
In the unstimulated cells, DMEM medium was added. Then, the morphological alteration
of cells was observed under a microscope. This protocol for EMT induction is as reported
in the previous literature [67]. To evaluate the effects of coumarin derivative with respect
to EMT induced by IL-1β, cells were pretreated with compound 9f at 7 µM, being this
treatment also maintained during stimulation with IL-1β for 24 h.

3.2.4. Immunofluorescence Staining

After 24 h, cells were fixed for 15 min at 4 ◦C with 4% paraformaldehyde in PBS.
Cells were permeabilized with 0.1% Triton X-100 and washed with PBS. Next, cells were
incubated with FITC-conjugated phalloidin (1:100) for 2 h at room temperature and then
rinsed several times with PBS. Following an additional washing step with PBS, cells were
stained with 10 µg/mL DAPI at room temperature for 10 min for the visualization of cell
nuclei. Cell morphology was determined using an inverted epifluorescence microscope
(Nikon Eclipse 50i). Fluorescence quantification was done using ImageJ 1.47 software (NIH,
Bethesda, MD, USA). Images were analyzed through the “Measure” menu, which allowed
analyzing the fluorescence intensity signal per cell from original photomicrographs.

In another set of experiments, the analysis for vimentin, a well-recognized marker
for its selective expression and specific role in the mesenchymal state, was performed.
After treatment, cells were fixed, permeabilized, and washed as described above. Next,
the slides were incubated with an anti-vimentin antibody (1:100) at 4 ◦C overnight. The
next day, the slides were incubated with secondary antibody goat anti-rabbit-FITC (1:100)
dilutions at room temperature for 1 h. Lastly, cells were stained with DAPI (Invitrogen;
Thermo Fisher Scientific, Inc., Waltham, MA, USA) and washed with PBS. Stained cells
were analyzed by a flow cytometer (FACSCanto II, Becton Dickinson, San Jose, CA, USA)
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accompanied with the BD FACSDIVA™ software for data analysis. The cell-associated
fluorescence of 5000 cells per sample was measured as mean fluorescence intensity (MFI)
in the FL1 channel. The MFI values were corrected for unspecific staining by subtracting
the fluorescence of cells unstained (negative control).

3.2.5. In Vitro Scratch Wound Healing Assay

To evaluate the effect of 9f on epithelial motility, we performed the scratch assay as
described by Cardoso et al. [68]. Cells were maintained in 24-well plates until they reached
90% confluency. Thereafter, a vertical stripe on the cell monolayer was made using a sterile
pipette (200 µL) tip. The wells were washed with PBS to remove dead cells and debris, and
then, 9f was added at a concentration of 7 µM. As a control, the cells were treated with cell
culture medium. Photographs were captured by a digital camera connected to an inverted
microscope (Olympus IX70) at 0 and 24 h after scratch. The migration gap area of the cells
was measured by ImageJ software (https://imagej.nih.gov/ij/; accessed on 24 November
2020, Center for Information Technology, National Institute of Health, Bethesda, MA, USA).
Each measurement was repeated three times.

3.2.6. Statistical Analysis

Data were expressed as mean ± standard deviation (S.D.). The statistical analysis
involving two groups was done using Student’s t-test. Analysis of variance followed by the
Tukey’s test was used to compare three or more groups. Values of p < 0.05 were considered
as indicative of significance.

4. Conclusions

In conclusion, twenty-six coumarin derivatives were synthesized through PCCCR
and were evaluated for their anti-lung cancer properties against two non-small cell lung
carcinoma (NSCLC) cell lines. Coumarins 8f and 9f, presenting a 3,4-dichloro-phenyl
radical, inhibited in vitro the growth of both human lung adenocarcinoma cells in low
micromolar concentration. Derivative 9f regulates the epithelial-to-mesenchymal transition
(EMT) suppressing the mesenchymal marker vimentin and cancer cell migration in IL-
1β-stimulated A549 cells. Taken together, our findings suggest that coumarin derivatives,
especially compound 9f, may become a promising hit in the process of lung cancer drug
discovery, especially in lung cancer promoted by non-small cell lung carcinoma (NSCLC)
cell lines.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ph15010104/s1, (I): All synthetic procedures and compounds
characterization. All spectroscopy figures. (II): Cytotoxic concentration (CC50) of 9f compound on
A549, H2170 and NIH3T3 cells.
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44. Završnik, D.; Muratović, S.; Makuc, D.; Plavec, J.; Cetina, M.; Nagl, A.; De Clercq, E.; Balzarini, J.; Mintas, M. Benzylidene-bis-(4-
hydroxycoumarin) and benzopyrano-coumarin derivatives: Synthesis, 1H/13C-NMR conformational and X-ray crystal structure
studies and in vitro antiviral activity evaluations. Molecules 2011, 16, 6023–6040. [CrossRef] [PubMed]

45. Spadafora, M.; Postupalenko, V.Y.; Shvadchak, V.V.; Klymchenko, A.S.; Mély, Y.; Burger, A.; Benhida, R. Efficient synthesis of
ratiometric fluorescent nucleosides featuring 3-hydroxychromone nucleobases. Tetrahedron 2009, 65, 7809–7816. [CrossRef]

46. Yamaguchi, Y.; Nishizono, N.; Kobayashi, D.; Yoshimura, T.; Wada, K.; Oda, K. Evaluation of synthesized coumarin derivatives
on aromatase inhibitory activity. Bioorg. Med. Chem. Lett. 2017, 27, 2645–2649. [CrossRef] [PubMed]

47. Chorley, D.F.; Furkert, D.P.; Brimble, M.A. Synthesis of the spiroketal core of the pinnatifinoside family of natural products. Eur. J.
Org. Chem. 2016, 2016, 314–319. [CrossRef]

http://doi.org/10.1007/BF01377116
http://doi.org/10.1016/j.lungcan.2003.09.005
http://doi.org/10.1016/j.ejmech.2015.08.033
http://doi.org/10.1016/j.ejmech.2016.03.087
http://doi.org/10.1016/j.ejmech.2015.07.010
http://www.ncbi.nlm.nih.gov/pubmed/26188907
http://doi.org/10.1016/j.ejmech.2019.111587
http://doi.org/10.2174/1871520618666171229185926
http://www.ncbi.nlm.nih.gov/pubmed/29298657
http://doi.org/10.1590/1414-431x20176455
http://www.ncbi.nlm.nih.gov/pubmed/28902928
http://doi.org/10.3892/etm.2013.1054
http://www.ncbi.nlm.nih.gov/pubmed/23837071
http://www.ncbi.nlm.nih.gov/pubmed/25667442
http://doi.org/10.1186/2008-2231-20-69
http://doi.org/10.1016/j.ejmech.2013.12.061
http://doi.org/10.1016/j.bmc.2010.03.069
http://doi.org/10.1016/j.ejmech.2011.12.025
http://doi.org/10.2174/0929867053507315
http://www.ncbi.nlm.nih.gov/pubmed/15853704
http://doi.org/10.1016/S0278-6915(99)00010-1
http://doi.org/10.1002/1521-3773(20021115)41:22&lt;4176::AID-ANIE4176&gt;3.0.CO;2-U
http://doi.org/10.1246/cl.2002.756
http://doi.org/10.1002/chin.200506236
http://doi.org/10.1002/adsc.200404150
http://doi.org/10.3390/molecules16076023
http://www.ncbi.nlm.nih.gov/pubmed/21772234
http://doi.org/10.1016/j.tet.2009.07.021
http://doi.org/10.1016/j.bmcl.2017.01.062
http://www.ncbi.nlm.nih.gov/pubmed/28512028
http://doi.org/10.1002/ejoc.201501225


Pharmaceuticals 2022, 15, 104 14 of 14

48. Manolikakes, G.; Dong, Z.; Mayr, H.; Li, J.; Knochel, P. Negishi Cross-Coupling Compatible with Unprotected Amide Functions.
Chem. Eur. J. 2009, 15, 1324–1328. [CrossRef]

49. Kalyanaraman, B. Teaching the basics of cancer metabolism: Developing antitumor strategies by exploiting the differences
between normal and cancer cell metabolism. Redox Biol. 2017, 12, 833–842. [CrossRef]

50. Gavert, N.; Ben-Ze´ev, A. Epithelial-mesenchymal transition and the invasive potential of tumors. Trends Mol. Med. 2008,
14, 199–209. [CrossRef]

51. Bruzzese, F.; Leone, A.; Rocco, M.; Carbone, C.; Piro, G.; Caraglia, M.; Di Gennaro, E.; Budillon, A. HDAC inhibitor vorinostat
enhances the antitumor effect of gefitinib in squamous cell carcinoma of head and neck by modulating ErbB receptor expression
and reverting EMT. J. Cell Physiol. 2011, 226, 2378–2390. [CrossRef]

52. Valastyan, S.; Weinberg, R.A. Tumor metastasis: Molecular insights and evolving paradigms. Cell 2011, 147,
275–292. [CrossRef] [PubMed]

53. Arias, A.M. Epithelial mesenchymal interactions in cancer and development. Cell 2001, 105, 425–431. [CrossRef]
54. Kalluri, R.; Weinberg, R.A. The basics of epithelial-mesenchymal transition. J. Clin. Investig. 2009, 119, 1420–1428. [CrossRef]
55. Yan, L.; Yu, H.H.; Liu, Y.S.; Wang, Y.S.; Zhao, W.H. Esculetin enhances the inhibitory effect of 5-Fluorouracil on the proliferation,

migration and epithelial-mesenchymal transition of colorectal cancer. Cancer Biomark. 2019, 24, 231–240. [CrossRef] [PubMed]
56. Jiang, Y.N.; Ni, X.Y.; Yan, H.Q.; Shi, L.; Lu, N.N.; Wang, Y.N.; Li, Q.; Gao, F.G. Interleukin 6-triggered ataxia-telangiectasia mutated

kinase activation facilitates epithelial-to-mesenchymal transition in lung cancer by upregulating vimentin expression. Exp. Cell
Res. 2019, 381, 165–171. [CrossRef]

57. Wang, T.-C.; Chen, Y.-L.; Tzeng, C.-C.; Liou, S.-S.; Tzeng, W.-F.; Chang, Y.-L.; Teng, C.-M. α-Methylidene-γ-butyrolactones:
Synthesis and evaluation of quinolin-2(1H)-one derivatives. Helv. Chim. Acta 1998, 81, 1038–1047. [CrossRef]

58. Plougastel, L.; Pattanayak, M.R.; Riomet, M.; Bregant, S.; Sallustrau, A.; Nothisen, M.; Wagner, A.; Audisio, D.; Taran, F. Sydnone-based
turn-on fluorogenic probes for no-wash protein labeling and in-cell imaging. Chem. Commun. 2019, 55, 4582–4585. [CrossRef]

59. Kumar, A.; Rao, M.L.N. Pot-economic synthesis of diarylpyrazoles and pyrimidines involving Pd-catalyzed cross-coupling of
3-trifloxychromone and triarylbismuth. J. Chem. Sci. 2018, 130, 165–175. [CrossRef]
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