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Abstract: Multidrug resistance (MDR), for which the mechanisms are not yet fully clear, is one of the
major obstacles to cancer treatment. In recent years, signal transducer and activator of transcription 3
(STAT3) were found to be one of the important MDR mechanism pathways. Based on the previous
research, zhankuic acid A, B, and C were found to have collateral sensitivity effects on MDR cancer
cells, and MDR inhibitory activity of zhankuic acid methyl ester was found to be better than that
of its acid. Therefore, we executed a systematic examination of the structure–activity relationship
of zhankuic acid methyl ester derivatives to collateral sensitivity in MDR cancer cells. The results
showed that compound 12 is the best in terms of chemoreversal activity, where the reversal fold was
692, and the IC50 value of paclitaxel combined with 10 µM compound 12 treatment was 1.69 nM in
MDR KBvin cells. Among all the derivatives, methyl ester compounds were found to be better than
their acids, and a detailed discussion of the structure–activity relationships of all of the derivatives is
provided in this work. In addition, compounds 8, 12, and 26 were shown to influence the activation
of STAT3 in KBvin cells, accounting for part of their chemoreversal effects. Our results may provide
a new combined therapy with paclitaxel to treat multidrug-resistant cancers and provide a new
therapy option for patients.

Keywords: multidrug resistance; signal transducer and activator of transcription 3 (STAT3); zhankuic acid

1. Introduction

Although various advanced cancer therapies have emerged, chemotherapy remains
an effective treatment for cancer patients. However, multidrug resistance (MDR), which
occurs during or after treatment in a short period, is one of the obstacles accounting for
cancer treatment failure [1–3]. There are a number of reasons for the formation of MDR,
including irregular metabolism, distribution, and absorption to target cells. As cancer
cells develop multidrug resistance, the anti-cancer efficacy of chemotherapeutic drugs
decreases, which subsequently leads to cancer metastasis and recurrence [4]. Mechanisms
of multidrug resistance have been studied intensively, including drug efflux, growth factors,
genetic factors, and increased DNA repair ability [4–7]. For example, ATP-binding cassette
(ABC) proteins, such as P-glycoprotein (P-gp), play important roles in multidrug resistance
and have drawn much attention due to their potential for therapeutic usage [8,9].
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Unfortunately, P-gp inhibitors have failed to achieve clinical use due to drug toxicity,
adverse drug interactions, and pharmacokinetic issues [10]. Recently, a phenomenon called
collateral sensitivity, defined as sensitizing cancer cells to chemotherapeutic agents by
another agent was proven to have therapeutic potential clinically [11]. Several molecular
collateral sensitivity mechanisms were found, including elevation of ATP hydrolysis, al-
terations of drug target proteins, and increased generation of reactive oxygen species [12].
In addition, as identified by our group [13], danazol has demonstrated a collateral sensitiv-
ity effect via reduction of phosphorylation of signal transducer and activator of transcrip-
tion 3 (STAT3) and reduction of STAT3-regulated down-stream signals in MDR cells [14].

In addition, STAT3 can be upregulated by Janus-activated kinase 2 (JAK 2), toll-like
receptor 4 (TLR 4), human epidermal growth factor receptor (EGFR), IL-6-type family,
and several G protein-coupled receptors (GPCRs), which significantly associates develop-
ment of resistance in various cancers [15–17]. Therefore, inhibition of STAT3 activation can
be an effective method to reduce resistant cancer cell growth. For instance, inhibition of the
JAK2/STAT3 pathway has been shown to reverse paclitaxel resistance in human ovarian
tumors [18]. By silencing STAT3, cancer resistance to doxorubicin, cisplatin, and pacli-
taxel can be re-sensitized [19]. Moreover, through induction of the IL-6/STAT3 pathway,
the estrogen receptor and DNA repair were downregulated, and inhibition of STAT3
and PARP (poly ADP-ribose polymerase) induced cell death in the palbociclib-resistant
cells [20]. Moreover, overexpression of PAX3 (paired box homeotic gene 3) or activation
of STAT3 led to vemurafenib, a selective inhibitor of Braf, resistance in melanoma cells,
and silencing of PAX3 and STAT3 reduced growth of vemurafenib resistance melanoma
cells [21,22].

In 2017, the n-hexane extract of Taiwanofungus camphoratus exhibited inhibitory activity
on STAT3 pathways in EGFR wild-type NSCLC (non-small cell lung cancer) cells [23].
However, the active principals were not identified in this study. Our group has stud-
ied Taiwanofungus camphoratus and its related species, T. salmoneus for a while [24–27].
Our previous studies showed that zhankuic acid A, B, and C, major triterpenoids in
Taiwanofungus camphoratus, have collateral sensitivity effects on the MDR cancer cell line
(KBvin) and P-gp inhibitory effects on the P-gp over-expressed cell line (ABCB1/
Flp-InTM-293) [27–29]. In addition, zhankuic acid A can bind to the TLR4 receptor and
block an LPS-induced inflammation cascade [30]. Moreover, zhankuic acid A can also
bind to JAK2 and block downstream signals, including STAT3 phosphorylation [31].
In MDR research, we found an interesting phenomenon indicating that the MDR in-
hibitory ability of zhankuic acid methyl ester was better than that of its acid, zhankuic acid,
in KBvin cells (Figure 1) [25]. For example, camphoratin E (2) (EC50 = 2.7 µM), the methyl
ester of zhankuic acid B (1), was shown to be more potent than its acid form (EC50 = 8.5 µM).
The same trend was also observed in the camphoratin G (3) and camphoratin F (4) pair [25].
This phenomenon aroused our interest. Therefore, we planned to conduct a systematic
examination of the structure–activity relationships among zhankuic acid type compounds
and their methyl ester derivatives on chemoreversal activity in MDR cancer cell lines. Fur-
thermore, the action mechanism of STAT3 phosphorylation of the most active compound
pairs was studied.
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2. Results and Discussion
2.1. Chemistry

Following previous studies, a variety of zhankuic acid-type compounds were selected
and gathered from our group based on their structures and available quantity. These com-
pounds were isolated from the fruiting body of T. camphoratus and T. salmoneus [25,27,32,33].
The dried plant materials were extracted by ether or methanol, partitioned, and then un-
dergone repeated silica gel chromatography with different eluents to obtain zhankuic acid
type compounds. The isolation process is summarized in Figure 2 and the names and
references are shown in Table 1 [25,27,32,33].
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Table 1. Name and reference of zhankuic acid-type compounds.

No Name Reference

5 Salmonone D [27]

7 Antcin B [32]

9 Salmonone E [27]

11 7α-hydroxy-3,11-dioxo-4α-methylergosta-8,24(28)-dien-26-oic acid [25]

13 Antcin K [33]

15 Zhankuic acid C [25]

17 Zhankuic acid C 3-O-formate [27]

19 Zhankuic acid B [32]

21 Antcin C [32]

23 Antcin A [25]

25 Camphoratin B [25]

27 3α,12α-dihydroxy-4α-methylergosta-8,24(28)-dien-11-on-26-oic acid [33]

The collected zhankuic acid type compounds (general structure I) were reacted with
potassium carbonate and iodomethane to obtain their methyl esters (general structure II)
with good yield (80–92%) (Scheme 1). The multidrug-resistant reversal ability of the twelve
acid natural products (5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25 and 27) and their methyl esters
(6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26 and 28) were all evaluated on MDR strain KBvin and
non-MDR HeLa S3 cells.
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2.2. Cytotoxic Evaluation of Compounds 5–28 on Hela S3 and KBvin Cells

Firstly, all derivatives were tested for cytotoxicity in HeLa S3 and KBvin cells (Table 2).
Generally, the methyl ester derivatives were more cytotoxic than their acid compounds.
The most extreme example (compound pair 5 and 6 (IC50 value of >40 and 19.83 µM in
KBvin, respectively) exhibited a twofold difference in IC50 values. Besides the methyl ester
in the R5 position, various substituents in the R1 position had no significant effects on the
activity, as evidenced by 12 with the carbonyl group and 28 with α-hydroxy substitution
(IC50 values of 22.29 µM and 30.98 µM in KBvin, respectively). More evidence was observed
on 18 with an α-O-formate substituent and compound 10 with a carbonyl substituent (IC50
values of 20.95 µM and 21.77 µM in KBvin, respectively). In the R3 position, the hydroxy
group can improve cytotoxicity regardless of its α or β position, such as compounds 6 and
26 (IC50 values of 19.83 µM and 27.32 µM in KBvin, respectively). In addition, carbonyl and
β-methyl of R3 substituents are also beneficial, such as 8, 18 and 22 (IC50 values of 24.44,
20.95 and 14.48 µM in KBvin, respectively). On the contrary, hydrogen in the R3 position,
such as 24 and 28, results in a deterioration of the cytotoxic effect (IC50 values of >40 and
30.98 µM in KBvin, respectively). Based on the results indicating that the lowest IC50 values
for the KBvin and HeLa S3 cells were 14 µM and 21 µM, two sets of concentrations below
IC50 for both cells, which ruled out effects due to cytotoxicity, were selected for further
collateral sensitivity evaluation.

2.3. Collateral Sensitivity Evaluation of the Effects of Zhankuic Acid Type Compounds and Their
Methyl Esters on Paclitaxel Cytotoxicity

Collateral sensitivity of all the compounds was determined based on the anti-proliferative
effects of both HeLa and KBvin cells under co-treatment with paclitaxel and the compounds.
Reversal fold (RF), representing re-sensitizing activity, was defined as the IC50 value for
the paclitaxel-only group divided by the IC50 value of the co-treatment. The results are
shown in Table 3. Reversal folds among all derivatives are organized in Figure 3. It can
be seen that the most potent compounds are 8, 12 and 26 with RF values of 666, 692,
and 348, respectively.

In general, methyl ester derivatives have better collateral activity, manifested in the
form of the lower doses (5 µM and 10 µM) used in the methyl ester group, while the higher
doses (10 µM and 20 µM) were used in the acid group. In HeLa S3 cell group, none of the
derivatives exhibited a collateral sensitivity effect, as reflected in the low RF values. On the
other hand, the co-treatment group significantly improved the anti-proliferative effect of
paclitaxel in KBvin cells. In order to obtain more structural insights into collateral sensitivity,
the detailed structure–activity relationship is discussed in terms of the anti-proliferative
effects of the triterpene functional groups in KBvin cells at 10 µM.
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Table 2. Cytotoxicity IC50 of 5–28 compounds.
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No Structure KBvin HeLa S3

R1 R2 R3 R4 R5 IC50 (µM) IC50 (µM)

5 α-OH α-Me α-OH α-OH OH >40 >40

6 α-OH α-Me α-OH α-OH OMe 19.83 ± 0.33 21.78 ± 1.13

7 =O α-Me =O H OH 32.88 ± 1.16 >40

8 =O α-Me =O H OMe 24.44 ± 0.34 27.14 ± 1.36

9 =O α-Me α-OH α-OH OH >40 >40

10 =O α-Me α-OH α-OH OMe 21.77 ± 0.86 >40

11 =O α-Me α-OH H OH 32.41 ± 1.27 >40

12 =O α-Me α-OH H OMe 22.29 ± 0.19 29.00 ± 0.55

13 α-OH α-Me, β-OH β-OH H OH >40 >40

14 α-OH α-Me, β-OH β-OH H OMe >40 >40

15 α-OH α-Me =O α-OH OH >40 >40

16 α-OH α-Me =O α-OH OMe 28.23 ± 0.01 27.26 ± 1.66

17 α-OCOH α-Me =O α-OH OH >40 >40

18 α-OCOH α-Me =O α-OH OMe 20.95 ± 3.54 >40

19 α-OH α-Me =O H OH >40 >40

20 α-OH α-Me =O H OMe >40 >40

21 =O α-Me β-Me H OH >40 >40

22 =O α-Me β-Me H OMe 14.48 ± 1.00 26.79 ± 0.99

23 =O α-Me H H OH >40 >40

24 =O α-Me H H OMe >40 >40

25 α-OH α-Me β-OH H OH >40 >40

26 α-OH α-Me β-OH H OMe 27.32 ± 0.33 >40

27 α-OH α-Me H α-OH OH >40 >40

28 α-OH α-Me H α-OH OMe 30.98 ± 2.47 31.84 ± 2.67

Paclitaxel 1168.50 ± 75.02 12.11 ± 2.04
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Table 3. Collateral sensitivity evaluation of the effects of zhankuic acid-type compounds and their methyl esters on the
cytotoxicity of paclitaxel.
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20 659.03 ± 28.57 * 1.77 4.99 ± 1.39 * 2.43 

No Structure
Conc.
(µM)

KBvin HeLa S3

IC50 (nM) RF 1 IC50 (nM) RF 1

Paclitaxel only - 1168.50 ± 75.02 1.00 12.11 ± 2.04 1.00

R1 R2 R3 R4 R5 -

5 α-OH α-Me α-OH α-OH OH
10 1078.64 ± 77.01 1.08 7.96 ± 0.21 * 1.52
20 972.99 ± 37.93 * 1.20 7.53 ± 0.47 * 1.61

6 α-OH α-Me α-OH α-OH OMe
5 89.06 ± 0.43 * 13.12 4.76 ± 0.01 * 2.55

10 18.25 ± 4.97 * 64.02 4.13 ± 0.60 * 4.49

7 =O α-Me =O H OH
10 613.33 ± 2.78 * 1.91 7.94 ± 0.63 * 1.53
20 249.51 ± 23.44 * 4.68 6.67 ± 0.27 * 1.82

8 =O α-Me =O H OMe
5 58.41 ± 6.46 * 20.01 4.73 ± 0.15 * 2.56

10 1.75 ± 0.63 * 666.62 2.70 ± 1.32 * 4.49

9 =O α-Me α-OH α-OH OH
10 1075.33 ± 83.81 1.09 7.55 ± 0.63* 1.60
20 974.82 ± 60.89 1.20 8.03 ± 0.12* 1.51

10 =O α-Me α-OH α-OH OMe
5 77.86 ± 7.25 * 15.01 4.43 ± 0.26 * 2.73

10 52.92 ± 7.90 * 22.08 3.08 ± 1.20 * 3.93

11 =O α-Me α-OH H OH
10 730.30 ± 29.35 * 1.60 8.33 ± 0.16 * 1.45
20 279.61 ± 7.84 * 4.18 6.51 ± 0.25 * 1.86

12 =O α-Me α-OH H OMe
5 171.88 ± 73.04 * 6.80 4.65 ± 0.08 * 2.60

10 1.69 ± 0.17 * 692.59 2.61 ± 1.37 * 4.64

13 α-OH
α-Me,
β-OH

β-OH H OH
10 987.07 ± 75.18 1.18 17.93 ± 2.86 0.68
20 902.61 ± 7.57 * 1.29 9.11 ± 0.16 1.33

14 α-OH
α-Me,
β-OH

β-OH H OMe
5 664.92 ± 38.20 * 1.76 5.09 ± 0.19 * 2.38

10 293.99 ± 57.13 * 3.97 4.23 ± 1.42 * 2.86

15 α-OH α-Me =O α-OH OH
10 931.63 ± 24.81 * 1.25 15.44 ± 1.37 0.78
20 722.92 ± 23.34 * 1.62 9.49 ± 0.62 1.28

16 α-OH α-Me =O α-OH OMe
5 63.35 ± 6.10 * 18.44 5.00 ± 0.06 * 2.42

10 4.94 ± 3.31 * 236.38 3.36 ± 0.42 * 3.60

17
α-

OCOH α-Me =O α-OH OH
10 729.20 ± 13.82 * 1.60 5.07 ± 0.75 * 2.39
20 659.03 ± 28.57 * 1.77 4.99 ± 1.39 * 2.43

18
α-

OCOH α-Me =O α-OH OMe
5 41.12 ± 9.34 * 28.41 4.01 ± 0.01 * 3.02

10 26.08 ± 7.86 * 44.81 2.33 ± 0.78 * 5.21

19 α-OH α-Me =O H OH
10 682.65 ± 32.57 * 1.71 4.29 ±1.08 * 2.82
20 564.84 ± 25.45 * 2.07 4.19 ± 1.40 * 2.89

20 α-OH α-Me =O H OMe
5 444.16 ± 44.85 * 2.63 4.89 ± 0.18 * 2.47

10 103.47 ± 7.32 * 11.29 3.47 ± 0.32 * 3.49

21 =O α-Me β-Me H OH
10 769.34 ± 8.16 * 1.52 4.86 ± 0.51 * 2.49
20 657.20 ± 30.86 * 1.78 4.60 ± 1.44 * 2.63

22 =O α-Me β-Me H OMe
5 17.80 ± 6.56 * 65.66 2.94 ± 0.22 * 4.12

10 108.96 ± 15.25 * 10.72 0.51 ± 0.10 * 23.64
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Table 3. Cont.

No Structure
Conc.
(µM)

KBvin HeLa S3

IC50 (nM) RF 1 IC50 (nM) RF 1

23 =O α-Me H H OH
10 669.22 ± 39.57 * 1.75 4.65 ± 0.55 * 2.60
20 461.90 ± 46.61 * 2.53 4.26 ± 1.08 * 2.85

24 =O α-Me H H OMe
5 544.76 ± 24.01 * 2.14 4.62 ± 0.02 * 2.62

10 136.03 ± 27.36 * 8.59 4.59 ± 0.48 * 2.64

25 α-OH α-Me β-OH H OH
10 852.31 ± 47.93 * 1.37 5.10 ± 0.36 * 2.37
20 723.07 ± 6.95 * 1.62 5.07 ± 0.31 * 2.39

26 α-OH α-Me β-OH H OMe
5 6.33 ± 0.10 * 184.47 3.55 ± 0.29 * 3.41

10 3.35 ± 1.00 * 348.80 3.38 ± 0.25 * 3.58

27 α-OH α-Me H α-OH OH
10 681.06 ± 12.91 * 1.72 5.42 ± 0.01 * 2.23
20 558.44 ± 4.62 * 2.09 5.33 ± 0.04 * 2.27

28 α-OH α-Me H α-OH OMe
5 65.90 ± 5.37 * 17.73 4.68 ± 0.01 * 2.59

10 3.93 ± 1.96 * 297.23 4.02 ± 0.01 * 3.01
1 RF: Reversal fold = IC50 for the paclitaxel-only group/IC50 for the co-treatment group. * denotes p < 0.05 as compared to IC50 for the
paclitaxel-only group.
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For R5 acid-substituted compounds (odd compound number), the low concentration (conc.) was 10 µM, and the high conc.
was 20 µM. For the R5 ester-substituted compounds (even compound number), the low conc. was 5 µM, and the high conc.
was 10 µM.

In the R1 position, the carbonyl group contributed extensively to the collateral sen-
sitivity effect. The two most potent compounds were 8 and 12, with IC50 co-treatment
values of 1.75 nM and 1.69 nM, respectively, which convert to RF values of 666 and 692.
Additionally, for all compounds with α-hydroxy in the R1 position, 16, 26 and 28 had the
strongest inhibitory effects, with RF values of 236, 348 and 297, respectively. Substitution of
α-O-formate in the R1 position reduced chemoreversal ability, for example, compound 18
with an RF value of 44. In the R2 position, β-methyl decreased the chemoreversal effects,
which was verified by the low RF values in 15 (RF of 1.62). However, compound 6, with
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an α-methyl substituent, exhibited better chemoreversal activity than was the case for 15.
(RF values of 64.02 and 1.62, respectively). Therefore, we suspect that the configuration
at the R2 position plays an important role in target protein binding. In the R3 position,
the α-hydroxyl and β-methyl groups reduced inhibitory activity, for example, 14 and 22
with RF values of ~4 and 10, respectively. Interestingly, compound 22 with a β-methyl
substitution had better chemoreversal ability at low co-treatment concentrations, for which
the RF value was 66 at 5 µM and 11 µM at 10 µM. Moreover, β-hydroxyl retained its
chemoreversal ability, for example, compound 26 with an RF of 349. These results indicate
that the target protein binding site may be related to the hydrogen bonding with β-OH at
the R3 position. In addition, of the compounds 23, 24, 27 and 28 with the hydrogen group
at the R3 position, 28 was the most effective (RF of 297). The carbonyl substituted at R3
retained its inhibitory activity among most of the derivatives, such as compounds 8 and
16 (RF values of 666 and 236, respectively). In the R4 position, only hydrogen substitu-
tion led to better chemoreversal ability than that when using the α-hydroxyl substitution.
For example, 12 manifested stronger inhibitory activity than 10 (RF values of 692 and 22,
respectively). In the R5 position, as previously predicted, the ester derivatives exhibited
better chemoreversal ability than their acid derivatives, evidenced by compound pairs 7
and 8 (RF values of ~5 and 666, respectively) and compound pairs 11 and 12 (RF values of
4 and 692, respectively).

The dose–response curves of the most active compound pairs 7–8, 11–12, and 25–26
are shown in Figure 4. Cell viability was measured along with different concentrations of
paclitaxel combined with triterpenes. Paclitaxel resistance in KBvin cells can be observed
from 70–80% cell survival at a very high concentration of paclitaxel (1000 nM), where
HeLa was all died at 100 nM. The higher dose of the test compounds inhibited more cell
growth in HeLa S3 and KBvin. The ester derivatives (8, 12, 26) were more potent than
its acid (7, 11, 25), especially in MDR KBvin cells. Moreover, ester derivatives (8, 12, 26)
exhibited significant collateral sensitivity, evidenced by the extensive curve shift from
the paclitaxel-only group, especially in MDR KBvin cells. The most potent compounds
8 and 12 at 10 µM combined with paclitaxel at 1 nM can even kill 50% MDR KBvin cells,
significantly re-sensitizing the effect of paclitaxel.

A summary of the structure–activity relationship (SAR) of triterpene derivatives
are shown in Figure 5. In the R1 and R3 positions, the carbonyl substituent exhibited
better chemoreversal ability than the other substituents. When the α-methyl substituent
is epimerized to β-methyl in the R2 position, the inhibitory activity in KBvin cells was
reduced. In the R4 position, the hydrogen bond improved the collateral sensitivity. Finally,
the R5 ester derivatives were found to be more potent than their acid derivatives.

2.4. Research on the Mechanism of the Most Active Compounds

The multidrug resistance mechanisms of the most potent compounds (8, 12 and 26)
were studied, and their acid derivatives (7, 11 and 25) were also compared (Figure 6).
Expression of total STAT3 was significantly higher in resistant KBvin cells than in drug-
sensitive HeLaS3 cells, which means STAT3 phosphorylation was one of the resistance
mechanism pathways. (Figure 7) Inhibition of SATA3 could be a strategy for chemoreversal
activity in KBvin. According to previous research results indicating that zhankuic acid A
can block the phosphorylation of STAT3 [13], we decided to treat the derivatives of both
HeLa and KBvin cells in order to study the expression of phosphorylated STAT3 (Figure 8).
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The expression of phosphorylated STAT3 was significantly inhibited by the testing
compounds in both drug-sensitive HeLaS3 and drug-resistant KBvin cells, whereas the
expression of total STAT3 was not significantly influenced in KBvin cells. These results
indicated that the testing compounds influenced the activation of STAT3, which in turn
contributed to the collateral sensitivity of the triterpenes.

3. Materials and Methods
3.1. General

All chemicals were obtained from Merck or Sigma-Aldrich. The chemical reaction
was monitored using thin-layer chromatography (TLC) using silica gel 60 F254-pre-coated
glass plates with a thickness of 0.25 mm and a UV lamp to visualize the plate. Column
chromatography was performed using silica gel (230–400 mesh). Optical rotations of the
final compounds were measured with a Jasco P-2000 digital polarimeter. The infrared
(IR) spectra were obtained with a Jasco FT/IR-4000 FTIR spectrometer. The NMR spectra
were recorded on commercial instruments (Bruker AV 500 FT-NMR spectrometer). Low-
resolution and high-resolution mass spectra were performed using Fourier-transfer mass
spectrometry (FT-MS). Mass spectra were recorded in both positive modes with Bruker
APEX II (National Sun Yat-sen University). Acid natural products were isolated from Prof.
Tian-Shung Wu’s lab (Tainan, NCKU, Taiwan) [25,27,32,33].

3.2. General Procedure for Methylation

The starting material (0.01 g, 0.02 mmol), potassium carbonate (0.05 g, 0.04 mmol),
iodomethane (0.04 g, 0.03 mmol), and acetone (1 mL) were all mixed in a round-bottomed
flask. Then, the mixture was heated to reflux, and the reaction was monitored using thin-
layer chromatography. After completion of the reaction, the mixture was removed with
acetone by vacuuming, followed by extraction with water and ethyl acetate. The organic
layer was collected, dried over anhydrous MgSO4, and concentrated under vacuum condi-
tions. The reaction mixture was purified through silica gel column chromatography using
solvent system ethyl acetate/ hexane to obtain the methylation product. The 1H and 13C
NMR spectra of compounds were provided in Figures S1–S24.

3.3. Methyl 3α,7α,12α-Trihydroxy-4α-methylergosta-8,24(28)-dien-11-on-26-oate (6)

Colorless solid. Yield: 92%. [α]D
25 + 86 (c 0.0006, MeOH). UV (MeOH) λ max (log ε)

255 nm. IR (KBr) νmax 3464, 2954, 1652, 715 cm−1. Mp: 207 ◦C. 1H NMR (500 MHz, CDCl3,
ppm) δ 4.91 (d, J = 7.8 Hz, 1H, CH2-a), 4.87 (d, J = 7.2 Hz, 1H, CH2-b), 4.07 (d, J = 3.8 Hz,
1H, CH), 3.96 (s, 1H, CH), 3.82 (d, J = 2.4 Hz, 1H, CH), 3.67 (d, J = 1.2 Hz, 3H, OCH3),
3.64 (br, 1H, OH), 3.12 (m, 2H, CH2), 2.34 (m, 1H, CH), 2.12, (m, 2H, CH2), 1.96 (m, 4H,
CH2), 1.78 (m, 3H, CH, CH2), 1.69 (m, 10H, CH3, CH2, CH), 1.45 (m, 3H, CH2, CH), 1.35,
(m, 1H, CH), 1.28 (dd, J = 7.5, 3.2 Hz, 3H, CH3), 1.05 (s, 3H, CH3), 0.96 (t, J = 6.8 Hz, 6H,
CH3). 13C NMR (125 MHz, CDCl3, ppm) δ 200.5, 175.1, 153.6, 148.7, 148.6, 139.2, 110.9, 81.3,
71.7, 66.1, 51.9, 48.5, 46.7, 45.8, 45.5, 44.0, 37.1, 35.8, 35.6, 33.8, 31.5, 29.2, 28.3, 26.7, 22.4, 17.8,
16.5, 16.4, 16.2, 11.3. HR-ESI-MS m/z 525.3185 (M+Na)+ (calcd. for C30H46O6Na, 525.3185).

3.4. Zhankuic Acid A Methyl Ester (8)

Colorless solid. Yield: 91%. [α]D
25 + 23 (c 0.0006, MeOH). UV (MeOH) λ max

(log ε) 265 nm. IR (KBr) νmax 2935, 2874, 1676, 1162 cm−1. Mp: 112 ◦C. 1H NMR (500 MHz,
CDCl3, ppm) δ 4.92 (d, J = 6.7 Hz, 1H, CH2-a), 4.87 (d, J = 6.7 Hz, 1H, CH2-b), 3.67 (d,
J = 1.4 Hz, 3H, OCH3), 3.13 (q, J = 13.7, 6.9 Hz, 1H, CH), 3.07 (m, 1H, CH), 2.93 (d, J = 14.0
Hz, 1H, CH), 2.66 (m, 1H, CH), 2.54 (m, 3H, CH2, CH), 2.43 (m, 4H, CH2, CH), 2.11 (m, 1H,
CH), 1.92 (m, 2H, CH2), 1.53 (s, 3H, CH3), 1.42 (m, 5H, CH2, CH), 1.28 (dd, J =7.1, 2.9 Hz,
3H, CH3), 1.05 (d, J = 6.6 Hz, 3H, CH3), 0.94 (d, J = 5.7 Hz, 3H, CH3), 0.70 (s, 3H, CH3). 13C
NMR (125 MHz, CDCl3, ppm) δ 210.6, 202.6, 200.8, 175.0, 152.0, 145.5, 111.0, 57.3, 54.0, 51.9,
49.3, 48.9, 47.1, 45.6, 44.0, 39.0, 38.3, 37.6, 35.6, 34.7, 33.8, 31.3, 31.0, 27.8, 24.9, 18.5, 16.5, 16.3,
12.00, 11.4. HR-ESI-MS m/z 505.2925 (M+Na)+ (calcd. for C30H42O5Na, 505.2925).
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3.5. Methyl 7α, 12α-Dihydroxy-3,11-dioxo-4α-methylergosta-8,24(28)-dien-26-oate (10)

Colorless solid. Yield: 91%. [α]D
25 + 155 (c 0.0006, MeOH). UV (MeOH) λ max (log ε)

253 nm. IR (KBr) νmax 3452, 1647, 1367, 702 cm–1. Mp: 238 ◦C. 1H NMR (500 MHz, CDCl3,
ppm) δ 4.93 (d, J = 7.4 Hz, 1H, CH2-a), 4.92 (d, J = 7.4 Hz, 1H, CH2-b), 4.18 (br, 1H, OH),
4.02 (s, 1H, CH), 3.70 (s, 3H, OCH3), 3.12 (m, 1H, CH), 3.09 (m, 1H, CH), 2.89 (m, 1H, CH),
2.65 (br, 1H, OH), 2.53 (m, 1H, CH), 2.40 (m, 2H, CH), 2.05 (m, 4H, CH2, CH), 1.66 (m, 7H,
CH2, CH), 1.53 (m, 1H, CH), 1.42 (m, 3H, CH2, CH), 1.31 (m, 6H, CH2, CH), 1.26 (m, 1H,
CH), 1.20 (m, 1H, CH), 1.09 (d, J = 6.8 Hz, 3H, CH3), 0.97 (d, J = 6.8 Hz, 3H, CH3), 0.70
(s, 3H, CH3). 13C NMR (125 MHz, CDCl3, ppm) δ 212.8, 199.8, 175.1, 153.5, 148.4, 138.1,
111.0, 81.0, 65.9, 51.9, 48.4, 46.9, 45.6, 44.4, 43.9, 43.7, 37.6, 36.8, 35.5, 34.4, 33.7, 31.4, 30.6, 26.5,
22.3, 17.78, 16.5, 16.3, 11.7, 11.3. HR-ESI-MS m/z 523.3029 (M+Na)+ (calcd. for C30H44O6Na,
523.3029).

3.6. Methyl-7β-hydroxy-3,11-dioxo-4α-methylergosta-8,24(28)-dien-26-oate (12)

Pale yellow solid. Yield: 87%. [α]D
25 + 139 (c 0.0006, MeOH). UV (MeOH) λ max

(log ε) 250 nm. IR (KBr) νmax 3455, 2998, 2750, 1560 cm−1. Mp: 197 ◦C. 1H NMR (500 MHz,
CDCl3, ppm) δ 4.94 (d, J = 6.6 Hz, 1H, CH2-a), 4.90 (d, J = 5.5 Hz, 1H, CH2-b), 4.28 (br,
1H, OH), 3.70 (s, 3H, OCH3), 3.16 (q, J = 13.3, 7.20 Hz, 1H, CH), 3.08 (m, 1H, CH), 2.85 (m,
2H, CH), 2.51 (m, 3H, CH2, CH), 2.39 (m, 4H, CH2, CH), 2.07 (m, 4H, CH2, CH), 1.88, (d,
J = 13.3 Hz, 2H, CH2), 1.69 (m, 5H, CH2, CH), 1.31 (m, 6H, CH3), 1.09(m, 4H, CH3, CH),
0.95 (d, J = 5.9 Hz, 3H, CH3), 0.73 (s, 3H, CH3). 13C NMR (125 MHz, CDCl3, ppm) δ 212.9,
200.9, 175.0, 153.0, 148.5, 140.7, 111.0, 66.1, 57.6, 55.1, 51.9, 51.2, 47.1, 45.6, 44.6, 43.8, 37.6,
37.2, 35.8, 34.6, 33.8, 31.3, 30.7, 27.5, 23.1, 18.4, 16.5, 16.3, 11.9, 11.8. LR-ESI-MS m/z (rel. int.)
507 (M+Na)+.

3.7. Methyl 3α,4β,7β-Trihydroxyergosta-8,24(28)-dien-11-on-26-oate (methyl antcamphorol D, 14)

Colorless solid. Yield: 88%. [α]D
25 + 90 (c 0.0006, MeOH). UV (MeOH) λ max (log ε)

255 nm. IR (KBr) νmax 3340, 1635, 718 cm–1. Mp: 273 ◦C. 1H NMR (500 MHz, Acetone-d6,
ppm) δ 4.89 (m, 2H, CH2), 4.37 (q, J = 6.7 Hz, 1H, CH), 3.66 (s, 3H, OCH3), 3.6 (m, 1H,
CH), 3.44 (m, 1H, CH), 3.20 (q, J = 6.76 Hz, 1H, CH), 2.77 (m, 1H, CH), 2.68 (d, J = 13.7 Hz,
1H, CH), 2.44 (m, 2H, CH), 2.19 (m, 4H, CH2, CH), 2.08 (m, 1H, CH), 1.97 (m, 3H, CH2,
CH), 1.81 (m, 1H, CH), 1.65 (m, 1H, CH), 1.54 (m, 1H, CH), 1.48 (m, 1H, CH), 1.45 (m, 4H,
CH3, CH), 1.35 (m, 3H, CH2, CH), 1.25 (t, J = 3.9 Hz, 2H, CH2), 1.24 (s, 1H, CH), 1.23 (s,
3H, CH3), 0.96 (m, 3H, CH3), 0.76 (s, 3H, CH3). 13C NMR (125 MHz, CDCl3, ppm) δ 210.8,
202.8, 178.0, 177.5, 175.0, 148.6, 143.9, 110.9, 74.3, 73.8, 69.5, 57.6, 53.8, 51.9, 49.6, 47.4, 45.8,
43.3, 39.3, 35.6, 31.7, 29.3, 27.5, 27.0, 25.4, 25.1, 18.6, 16.5, 12.0. HR-ESI-MS m/z 525.3187
(M+Na)+ (calcd. for C30H46O6Na, 525.3187).

3.8. Methyl 3α,12α-Dihydroxy 4α-methylergosta-8,24(28)-diene-7,11-dion-26-oate (methyl
antcinate H, 16)

Pale yellow solid. Yield: 85%. [α]D
25 + 102 (c 0.0006, MeOH). UV (MeOH) λ max (log ε)

275 nm. IR (KBr) νmax 3592, 2908, 2336, 1670 cm–1. Mp: 170 ◦C. 1H NMR (500 MHz, CDCl3,
ppm) δ 4.91 (d, J = 7.7 Hz, 1H, CH2-a), 4.87 (d, J = 6.6 Hz, 1H, CH2-b), 4.05 (s, 1H, CH), 3.79
(d, J = 2.4 Hz, 1H, CH), 3.67, (d, J = 1.9 Hz, 3H, OCH3), 3.13 (dd, J = 14.6, 7.1 Hz, 1H, CH),
3.00 (dd, J = 13.0, 7.3 Hz, 1H, CH), 2.75 (br, 1H, OH), 2.53 (m, 1H, CH), 2.42 (dd, J = 15.5, 2.7
Hz, 1H, CH), 2.36 (m, 1H, CH), 2.23 (t, J = 15.2 Hz, 1H, CH), 2.13 (m, 2H, CH2), 1.90 (m, 5H,
CH3, CH), 1.73 (m, 2H, CH2), 1.44 (m, 4H, CH3, CH), 1.29 (s, 3H, CH3), 1.28 (d, J = 3.0 Hz,
2H, CH2), 1.27 (d, J = 3.0 Hz, 2H, CH2), 0.96 (t, J = 6.9 Hz, 6H, CH3), 0.64 (s, 3H, CH3). 13C
NMR (125 MHz, CDCl3, ppm) δ 202.4, 201.6, 175.1, 152.2, 148.5, 144.6, 110.9, 80.8, 70.4, 51.9,
49.5, 45.6, 41.8, 40.7, 38.3, 38.1, 35.4, 34.5, 33.9, 31.3, 31.1, 27.9, 27.8, 26.9, 23.9, 17.9, 16.3, 16.1,
15.6, 11.5. LR-ESI-MS m/z (rel. int.) 523 (M+Na)+.
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3.9. Zhankuic Acid Methyl Ester C 3-O-formate (18)

Yellow solid. Yield: 75%. [α]D
25 + 65 (c 0.0006, MeOH). UV (MeOH) λ max (log ε)

271 nm. IR (KBr) νmax 2355, 1683, 1546 cm–1. Mp: 169 ◦C. 1H NMR (500 MHz, CDCl3,
ppm) δ 8.08 (s, 1H, CHO), 5.10 (d, J = 2.4 Hz, 1H, CH), 4.92 (d, J = 7.2 Hz, 1H, CH2-a), 4.87
(d, J = 6.7 Hz, 1H, CH2-b), 4.09 (d, J = 3.9 Hz, 1H, CH), 3.67 (d, J = 1.7 Hz, 3H, OCH3), 3.13
(dd, J = 13.9, 7.2 Hz, 1H, CH), 3.02 (dd, J = 12.0, 7.7 Hz, 1H, CH), 2.54 (m, 1H, CH), 2.47 (m,
2H, CH2), 2.25 (m, 2H, CH2), 2.13 (m, 2H, CH2), 1.92 (m, 6H, CH2, CH), 1.46 (m, 2H, CH2),
1.37 (m, 1H, CH), 1.33 (s, 3H, CH3), 1.28 (dd, J = 7.1, 3.0 Hz, 3H, CH3), 1.24 (m, 1H, CH),
0.97 (d, J = 6.5 Hz, 3H, CH3), 0.89 (d, J = 7.0 Hz, 3H, CH3), 0.65 (s, 3H, CH3). 13C NMR
(125 MHz, CDCl3, ppm) δ 201.8, 201.1, 175.0, 160.7, 151.7, 148.5, 144.8, 111.0, 80.7, 73.1, 51.9,
49.5, 45.7, 45.6, 41.9, 38.0, 35.4, 33.8, 33.2, 31.3, 31.1, 28.4, 26.9, 26.3, 23.9, 17.9, 16.5, 16.3, 16.1,
15.2, 11.5. HR-ESI-MS m/z 551.2976 (M+Na)+ (calcd. for C31H44O7Na, 551.2976).

3.10. Methyl 3α-Hydroxy-7,11-dioxo-4α-methylergosta-8,24(28)-dien-26-oate (20)

Yellow solid. Yield: 82%. [α]D
25 + 166 (c 0.0006, MeOH). UV (MeOH) λ max (log ε)

265 nm. IR (KBr) νmax 3439, 2955, 2362, 1667 cm−1. Mp: 107 ◦C. 1H NMR (500 MHz, CDCl3,
ppm) δ 4.94 (d, J = 6.8 Hz, 1H, CH2-a), 4.89 (d, J = 6.2 Hz, 1H, CH2-b), 3.81 (br, 1H, OH),
3.69 (d, J = 2.0 Hz, 3H, OCH3), 3.16 (dd, J = 14.1, 7.2 Hz, 1H, CH), 2.91 (d, J = 13.5 Hz,
1H, CH), 2.65 (dd, J = 12.4, 7.5 Hz, 1H, CH), 2.54 (m, 2H, CH2), 2.43 (m, 2H, CH), 2.27
(t, J = 15.3 Hz, 1H, CH), 2.14 (m, 2H, CH), 1.93 (m, 4H, CH2, CH), 1.75 (m, 2H, CH2), 1.44
(m, 4H, CH3, CH), 1.33 (s, 3H, CH3), 1.30 (d, J = 2.8 Hz, 2H, CH2), 1.29 (d, J = 2.8 Hz, 2H,
CH2), 1.27 (m, 1H, CH), 0.98 (d, J = 7.1 Hz, 2H, CH2), 0.95 (d, J = 5.7 Hz, 2H, CH2), 0.69 (s,
3H, CH3). 13C NMR (125 MHz, CDCl3, ppm) δ 202.9, 175.0, 153.8, 148.6, 144.7, 110.9, 110.9,
70.3, 57.5, 53.9, 51.9, 49.5, 47.3, 45.8, 45.6, 41.1, 38.7, 38.1, 35.6, 34.5, 33.8, 31.2, 31.3, 29.1, 27.9,
25.0, 18.5, 16.3, 15.9, 12.0. LR-ESI-MS m/z (rel. int.) 507 (M+Na)+.

3.11. Methyl 7β-Hydroxy-3,11-dioxo-4α-methylergosta-8,24(28)-dien-26-oate (22)

White solid. Yield: 79%. [α]D
25 + 164 (c 0.0006, MeOH). UV (MeOH) λ max (log ε)

252 nm. IR (KBr) νmax 3354, 2872, 1720, 1636 cm–1. Mp: 188 ◦C. 1H NMR (500 MHz, CDCl3,
ppm) δ 4.93 (d, J = 6.9 Hz, 1H, CH2-a), 4.90 (d, J = 6.9 Hz, 1H, CH2-b), 4.42 (t, J = 8.1 Hz,
1H, CH), 3.70 (s, 3H, OCH3), 3.15 (dd, J = 14.3, 7.1 Hz, 1H, CH), 3.00 (m, 1H, CH), 2.86
(d, J = 14.0 Hz, 1H, CH), 2.73 (dd, J = 12.3, 6.0 Hz, 1H, CH), 2.52 (m, 1H, CH), 2.37 (m,
3H, CH2, CH), 2.29 (m, 1H, CH), 2.11 (m, 1H, CH), 1.96 (m, 3H, CH2, CH), 1.56 (m, 5H,
CH2, CH), 1.47 (s, 3H, CH3), 1.41 (m, 4H, CH2, CH), 1.30 (dd, J = 7.1, 3.17 Hz, 3H, CH3),
1.06 (d, J = 6.9 Hz, 3H, CH3), 0.95 (d, J = 5.9 Hz, 3H, CH3), 0.81 (s, 3H, CH3). 13C NMR
(125 MHz, CDCl3, ppm) δ 202.9, 175.0, 153.8, 148.6, 144.7, 110.9, 110.9, 70.3, 57.5, 53.9, 51.9,
49.5, 47.3, 45.8, 45.6, 41.1, 38.7, 38.1, 35.6, 34.5, 33.9, 31.2, 31.0, 29.1, 27.9, 25.0, 18.5, 16.3, 15.9,
12.0. LR-ESI-MS m/z (rel. int.) 507 (M+Na)+.

3.12. Methyl 4α-Methylergosta-8,24(28)-diene-3,11-dion-26-oate (24)

Yellow powder. Yield: 82%. [α]D
25 + 164 (c 0.0006, MeOH). UV (MeOH) λ max (log ε)

251 nm. IR (KBr) νmax 3608, 2957, 2356, 1706 cm–1. Mp: 105 ◦C. 1H NMR (500 MHz, CDCl3,
ppm) δ 4.93 (d, J = 7.2 Hz, 1H, CH2-a), 4.90 (d, J = 6.8 Hz, 1H, CH2-b), 3.70 (s, 3H, OCH3),
3.17 (m, 2H, CH), 2.81 (d, J = 14.7 Hz, 1H, CH), 2.64 (m, 1H, CH), 2.53 (m, 1H, CH), 2.37
(m, 4H, CH2, CH), 2.17 (m, 3H, CH), 1.94 (m, 3H, CH2, CH), 1.81 (m, 2H, CH2), 1.51 (m,
6H, CH2, CH), 1.40 (m, 3H, CH2, CH), 1.35 (m, 4H, CH3, CH), 1.30 (dd, J = 3.1, 1.8 Hz, 3H,
CH3), 1.27 (m, 1H, CH), 1.06 (d, J = 6.4 Hz, 3H, CH3), 0.94 (d, J = 6.0 Hz, 3H, CH3), 0.74 (s,
3H, CH3). 13C NMR (125 MHz, CDCl3, ppm) δ 213.3, 199.9, 175.0, 157.0, 148.7, 148.5, 138.7,
110.9, 57.8, 55.2, 53.0, 51.9, 50.6, 47.2, 45.6, 44.3, 37.8, 36.6, 35.7, 35.1, 33.8, 31.3, 30.2, 27.5,
23.7, 20.9, 18.3, 17.4, 16.3, 11.3. LR-ESI-MS m/z (rel. int.) 491 (M+Na)+.

3.13. Methyl 3α,7β-Dihydroxy-4α-methylergosta-8,24(28)-dien-11-on-26-oate (26)

Yellow solid. Yield: 84%. [α]D
25 + 156 (c 0.0006, MeOH). UV (MeOH) λ max (log ε)

254 nm. IR (KBr) νmax 3399, 2941, 1721, 1648 cm−1. Mp: 197 ◦C. 1H NMR (500 MHz, CDCl3,
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ppm) δ 4.90 (d, J = 7.4 Hz, 1H, CH2-a), 4.87 (d, J = 6.7 Hz, 1H, CH2-b), 4.36 (m, 1H, CH),
3.75 (d, J = 2.5 Hz, 1H, CH), 3.67 (d, J = 0.8 Hz, 3H, OCH3), 3.13 (dd, J = 14.2, 7.1 Hz, 1H,
CH), 2.80 (d, J = 13.6 Hz, 1H, CH), 2.67 (m, 1H, CH), 2.42 (m, 1H, CH), 2.34 (d, J = 13.6 Hz,
1H, CH), 2.02 (m, 6H, CH2, CH), 1.79 (m, 1H, CH), 1.66 (m, 1H, CH),1.58 (m, 2H, CH2),
1.53 (m, 2H, CH2), 1.60 (m, 2H, CH2), 1.53 (m, 1H, CH), 1.30 (m, 1H, CH), 1.27 (m, 4H, CH3,
CH), 1.21 (s, 3H, CH3), 0.98 (d, J = 6.8 Hz, 3H, CH3), 0.94 (d, J = 5.7 Hz, 3H, CH3), 0.77 (s,
3H, CH3). 13C NMR (125 MHz, CDCl3, ppm) δ 201.6, 175.0, 152.2, 148.7, 143.3, 110.8, 70.9,
70.4, 58.2, 54.4, 53.3, 51.9, 47.7, 45.8, 39.7, 37.2, 35.8, 34.2, 34.0, 31.5, 31.1, 29.3, 28.7, 27.9,
24.9, 18.5, 17.4, 16.5, 16.2, 12.1. HR-ESI-MS m/z 487.6417 (M+H)+ (calcd. for C30H47O5,
487.3417).

3.14. Methyl 3β,12β-Dihydroxy-11-oxo-4β-methylergosta-8,24(28)-dien-26-oate (methyl antcin M, 28)

Yellow solid. Yield: 87%. [α]D
25 + 70 (c 0.0006, MeOH). UV (MeOH) λ max (log ε)

258 nm. IR (KBr) νmax 2942, 2359, 1728, 1652 cm−1. Mp: 170 ◦C. 1H NMR (500 MHz, CDCl3,
ppm) δ 4.91 (d, J = 7.2 Hz, 1H, CH2-a), 4.87 (d, J = 6.8 Hz, 1H, CH2-b),4.09 (m, 1H, CH),
3.82 (m, 1H. CH) 3.70 (d, J = 1.6 Hz, 3H, OCH3), 3.16 (m, 1H, CH), 3.03 (m, 1H, CH), 2.55
(m, 1H, CH), 2.43 (m, 1H, CH), 2.30 (m, 1H, CH), 2.20 (m, 2H, CH2), 2.17 (m, 2H, CH2), 1.93
(m, 4H, CH2, CH), 1.85 (m, 2H, CH2), 1.76 (m, 4H, CH2, CH), 1.48 (m, 5H, CH2, CH), 1.33
(s, 3H, CH3), 1.30 (dd, J =7.1, 2.9 Hz, 3H, CH3), 0.99 (t, J = 6.5 Hz, 6H, CH3), 0.67 (m, 3H,
CH3). 13C NMR (125 MHz, CDCl3, ppm) δ 201.6, 175.1, 152.2, 148.5, 144.6, 110.9, 80.7, 70.3,
51.9, 49.5, 45.6, 45.5, 41.8, 40.7, 38.3, 38.1, 35.4, 34.5, 33.9, 31.3, 31.1, 28.9, 27.8, 26.9, 23.9, 17.9,
16.3, 16.0, 15.6, 11.5. LR-ESI-MS m/z (rel. int.) 509 (M+Na)+.

3.15. Culture of Cell Lines

Bioresource Collection and Research Center (Hsinchu, Taiwan) supplied the human
cervical epithelioid carcinoma cell line HeLaS3. Dr. Kuo-Hsiung Lee (University of North
Carolina, Chapel Hill, NC, USA) kindly gave multi-drug resistant human cervical cancer
cell line KBvin to us. All cancer cell lines were cultured in RPMI-1640 containing 10% FBS
at 37 ◦C in a humidified atmosphere of 5% CO2.

3.16. SRB Cytotoxicity Assay and Reversal Fold Calculation

The cells were treated with a series of concertation of chemotherapeutic agents and
combined without or with test compounds after 72 h; then 50% trichloroacetic acid (TCA)
was charged to fix the cell for 30 min. After air-drying, followed by 0.04% SRB stained for
30 min, and 1% acetic acid washing, 10 mM Tris base was applied to dissolve the bound
stain, and the absorbance was measured using the BioTek Synergy HT Multi-Mode Mi-
croplate Reader at 515 nm. Reversal folds were calculated by dividing the IC50 of chemother-
apeutic drug only by the IC50 of compound–chemotherapeutic drug combination treatment.

3.17. Enzyme-Linked Immunosorbent Assay (ELISA)

Semiquantitative measurements of STAT3 phosphorylated at Tyr705 and total STAT3
proteins in cell lysates were performed using the STAT3 (pY705) + Total ELISA Kit (Ab-
cam, Cambridge, CB2 0AX, UK) according to the manufacturer’s instructions. Briefly,
1 × 105 cells/well were seeded in a 6-well plate and treated with the test compounds for
24 h. The cells were solubilized using a chilled 1× cell extraction buffer PTR, and the
sample protein concentrations were determined using a BCA protein assay (Thermo Fisher,
Waltham, MA, USA). Samples were diluted to 300 ng/µL in a 1x cell extraction buffer PTR,
and 50 µL of all samples and controls were added to the appropriate wells. Then, 50 µL of
the antibody cocktail was added to each well. The plate was sealed and shaken at 400 rpm
for 1 h at room temperature. The plate was further washed three times with a wash buffer.
After removing any excess liquid, 100 µL of a TMB substrate were added to each well, after
which the samples were incubated for 15 min in the dark while being shaken at 400 rpm.
The plate was read at an OD of 450 nm after adding 100 µL of a stop solution to each well.
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4. Conclusions

A total of 12 triterpene derivatives were synthesized, and chemoreversal ability tests
were conducted. Among all of the derivatives, the RF values of 8 and 12 could be as much
as 600 times higher than that for the paclitaxel group in KBvin cells, whereas the IC50
values for 8 and 12 were similar to those of the paclitaxel-only treatment group in HeLa
S3 cells, indicating a strong collateral sensitivity effect. On the other hand, the resistance
mechanism study of compounds 8, 12, and 26 showed that the derivatives can inhibit the
ability of phosphorylation of STAT3 to poison resistant cancer cells. These results may
provide a new combined therapy with paclitaxel to treat multidrug-resistant cancers and
provide new therapy options for cancer patients.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ph14090916/s1, Figures S1–S24: 1H NMR and 13C NMR spectrum of compound 6, 8, 10, 12,
14, 16, 18, 20, 22, 26 and 28.
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