
pharmaceuticals

Review

Just a Reflection: Does Drug Repurposing Perpetuate
Sex-Gender Bias in the Safety Profile?

Ilaria Campesi 1,2,* , Giorgio Racagni 3 and Flavia Franconi 2

����������
�������

Citation: Campesi, I.; Racagni, G.;

Franconi, F. Just a Reflection: Does

Drug Repurposing Perpetuate

Sex-Gender Bias in the Safety

Profile? Pharmaceuticals 2021, 14, 730.

https://doi.org/10.3390/ph14080730

Academic Editor: Juan Carlos Saiz

Received: 24 June 2021

Accepted: 21 July 2021

Published: 27 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Biomedical Science, University of Sassari, 07100 Sassari, Italy
2 National Laboratory of Pharmacology and Gender Medicine,

National Institute of Biostructure and Biosystem, 07100 Sassari, Italy; franconi.flavia@gmail.com
3 Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy;

giorgio.racagni@unimi.it
* Correspondence: icampesi@uniss.it; Tel.: +39-079228518

Abstract: Vaccines constitute a strategy to reduce the burden of COVID-19, but the treatment of
COVID-19 is still a challenge. The lack of approved drugs for severe COVID-19 makes repurposing
or repositioning of approved drugs a relevant approach because it occurs at lower costs and in a
shorter time. Most preclinical and clinical tests, including safety and pharmacokinetic profiles, were
already performed. However, infective and inflammatory diseases such as COVID-19 are linked with
hypoalbuminemia and downregulation of both phase I and phase II drug-metabolizing enzymes
and transporters, which can occur in modifications of pharmacokinetics and consequentially of
safety profiles. This appears to occur in a sex- and gender-specific way because of the sex and
gender differences present in the immune system and inflammation, which, in turn, reflect on
pharmacokinetic parameters. Therefore, to make better decisions about drug dosage regimens and
to increases the safety profile in patients suffering from infective and inflammatory diseases such
as COVID-19, it is urgently needed to study repurposing or repositioning drugs in men and in
women paying attention to pharmacokinetics, especially for those drugs that are previously scarcely
evaluated in women.
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1. Introduction

Repurposing or repositioning old medications to treat new diseases or unmet needs is
an attractive and alternative form of drug discovery [1]. The oldest and very successful
repurposed drug is acetylsalicylic acid. Initially, in 1899, it was marked as an analgesic,
but, in 1980, it was repositioned as an anti-aggregating agent, at low doses, thanks to the
research of Sir John Vane [2,3]. For this research, in 1982, he became a Nobel laureate in
medicine. Perhaps in the very near future the aspirin could be again repurposed in oncology.
Daily treatment with acetylsalicylic acid for some years can prevent the development of
many cancers including colon-rectal cancer [4]. The non-selective adrenergic beta-blocker
propranolol, which has been used for decades as a cardiovascular drug since 2004, is
the first-choice therapy for infantile hemangioma, and it is the only approved drug for
complicated hemangioma [5]. Finally, thalidomide was repurposed twice. It was launched
in 1957 as a sedative or tranquilizer but was soon used throughout the world, except
in the US, for treating morning sickness in pregnant women. However, in 1962, it was
banned from the World Health Organization for its teratogenicity because it was calculated
that over 10,000 babies born by mothers treated with thalidomide present phocomelia [6].
The thalidomide tragedy prompted a revision of pre-marketing toxicity tests. However,
some years later its efficacy against erythema nodosum leprosum, a complication of leprosy,
was evidenced, and, in 1998, it was repurposed as an orphan drug for complications
of leprosy [7]. Because of thalidomide antiangiogenic properties, in 2006, its second
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repositioning occurs as a first-line agent for multiple myeloma, and because of its known
teratogen effects, the thalidomide dispensing is regulated by the System for Thalidomide
Education and Prescribing Safety program [8].

Nevertheless, the reported examples, the concept of repurposing (which is also called
repositioning, reprofiling, redirecting, switching, etc.) emerged in 2004 [9], when drug
repositioning was defined as the ability to find new indications for an old drug. Later, the
definition was expanded and now includes drugs withdrawn from the market for safety
issues, active molecules that failed the clinical phases for toxicity, or for low efficacy, exclud-
ing molecules that have not been clinically tested [10]. The repurposing or repositioning of
medications can help in individuating new treatments for diseases at a lower cost and in
a shorter time (Figure 1) because most preclinical and clinical tests, including safety and
pharmacokinetic profiles, were already performed [11–13]. Further, some countries such
as the US have a simplified procedure for the introduction on the market of repositioned
drugs [10].
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Three main steps characterize repurposing: recognition of the drug, efficacy of the
drug in preclinical and clinical investigation [14].

Some concerns affect the selection of the optimal dose because the previous drug
knowledge may not be suitable for the new indication [10–12,14,15]. This is relevant be-
cause the level of tolerable safety depends on its indications. For example, the adverse drug
effects could be less acceptable if the repositioned agent will be used to treat a less severe
disease than the original one [16]. In addition, the common use of the paradigm “one dose
fits all”, neglecting the sex differences in body dimension and composition, metabolism,
and elimination [17], may lead to the risk of women’s overmedication contributing, at least
in part, to women-biased adverse drug reactions (ADR) [18].

A challenge concerns intellectual property. The repurposed drugs have relatively
weak intellectual protection, and this is related only to the indication and patent on indica-
tions [19]. They are also a potential legal challenge on the basis that the new indication was
predictable from data in the scientific literature [16].

The recent COVID-19 pandemic induced by coronavirus SARS-CoV-2 has raised
serious global concerns for public health and constitutes a societal and economic emergency
all over the world. Unfortunately, no specific drugs are available to fight this pandemic,
leading to thousands of deaths over the world. There is a large interest to accelerate the
discovery and/or development of active and safe drugs towards this pandemic. As already
mentioned, the value of drug repurposing is to speed up the traditional process of drug
discovery by identifying a novel clinical use for drugs that have already proven to be safe
and effective in humans and are approved for other indications.
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The efficacy and safety profiles of several drugs are deeply affected by sex and gen-
der [17,18,20–22]. These are two specific but inseparable concepts that often interact
in a continuous, multi-dimensional, entangled manner. Sex is limited to the biological
body [23–26]. Genes and sexual hormones have pivotal roles in determining male and
female phenotypes [20,27–29]. Gender definition is more difficult, and it includes socioeco-
nomic status, income, education, neighborhood characteristics, lifestyles such as smoking,
environmental exposures including drugs, access to healthcare, and other social determi-
nants of health [30]. The social differences between women and men depend on the single
society and culture and are changeable over time, being different among countries and
cultures. In other words, beyond the genes and hormones, the experience of life such as
smoking may modify male and female phenotypes [31,32]. Some authors have proposed
the term sex- and gender-based medicine [33,34], whereas others have proposed sex- and
gender-specific health [33]. In this study, in accordance with other authors [33–36], we use
the term “sex and gender”, which recognizes the value of both the biological and social
contest as already stated by other authors [17,37].

Men and women have both sex-specific inflammation and sex-specific immunity [15,38,39]
(see also below), even if the biological basis of this sexual dimorphism is not yet fully clear.
In addition, COVID-19 (see also below) appears sexually dimorphic [40–43].

This review aimed to verify whether the repurposed drugs proposed for COVID-19
focus on the sex and gender differences observed in the pandemic and drug response. In
other words, this review aimed to verify if the drug data obtained in COVID-19-free subjects
can be translated to COVID-19 patients, especially in critically ill individuals. In addition,
it is stressed that it is mandatory to consider sex and gender as a variable for ameliorating
the clinical management of COVID-19 patients and to increase the safety profile.

2. Drugs Candidates for Repurposing in COVID-19 Infection

Numerous medications approved for other diseases have been tested and/or are still
tested. Overall, they involve (a) specific drugs (agents under investigation or reported to
have effects against COVID-19 inhibiting one or more steps of the coronavirus lifecycle;
(b) medications that may help cure the effects of COVID-19 patients such as infection
and massive inflammation, which lead to severe complications such as coagulopathy and
acute respiratory distress syndrome [44]. Currently, the FDA has approved three thera-
pies: (a) convalescent plasma, anti-Ebola agent: remdesivir alone or in association with
baricitinib, and two monoclonal antibodies: casirivimab/imdevimab (REGN-COV2) [45].
However, there are some concerns related to their efficacy [46].

2.1. Drugs Inhibiting One or More Steps of SARS-CoV-2 Lifecycle: Virus Attachment and Entry

The virus enters the cells via endocytosis or through the interaction with the spike
(S) protein of the virus and angiotensin-converting enzyme 2 (ACE2) and transmembrane
protease serine 2 (TMPRSS2) [47]. It was also hypothesized that dipeptidyl peptidase
4 (DPP4) could be a functional receptor for the S protein of SARS-CoV-2 [48]; if so, the
DPP4 inhibitors may play a role in preventing and decreasing the risk and progression
of COVID-19 [49]. Moreover, it was suggested that numerous compounds (estradiol,
spironolactone, isotretinoin, and retinoic acid) may down-regulate ACE2 receptors [50],
and inhibitors of TMPRSS2 (bicalutamide, camostat mesylate, and nafamostat), inhibitors
of DPP4, and inhibitors of endocytotic transport (chloroquine, hydroxychloroquine, amodi-
aquine, artemisinin and artesunate baricitinib, chlorpromazine, niclosamide, imatinib, and
amiodarone) could be useful to treat COVID-19 [50].

2.2. Drugs Inhibiting One or More Steps of SARS-CoV-2 Lifecycle: Viral Replication

The replication of the virus requires RNA-dependent RNA polymerase. Some antivi-
rals such as favipiravir, galidesivir, tenofovir, sofosbuvir, and clevudine could inhibit it,
whereas other antivirals (remdesivir, emtricitabine) inhibit the replication of RNA [50].
Additionally, some protease inhibitors (atazanavir, danoprevir, darunavir, lopinavir, and
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ritonavir) used for the treatment of human immunodeficiency virus and acquired im-
mune deficiency syndrome (HIV/AIDS) and the immunosuppressant levamisole have
been repurposed for COVID-19 [50]. Other drugs (alfa interferon, beta interferon, and
peginterferon lambda, tetracycline derivatives) could inhibit viral reproduction [50].

2.3. Drugs Inhibiting One or More Steps of SARS-CoV-2 Lifecycle: Virion Assembly and Release

After the formation, the new virus reaches cell membranes and is released by exocy-
tosis. Some antivirals such as oseltamivir and daclatasvir and the immunosuppressant
sirolimus could act at this level blocking the viral replication, and thus they have been
suggested for COVID-19 treatment [51,52].

2.4. Drugs Potentially Counteracting the Effects of SARS-CoV-2 Infection

COVID-19 is linked with an immune and inflammatory response leading in the severe
form of the disease to cytokine storm [53]. This is, in turn, linked with complications like
acute respiratory distress syndrome, macrophage activation syndrome, lymphopenia, and
coagulopathy [54]. This leads to test anti-inflammatory drugs such as non-steroidal anti-
inflammatory drugs, glucocorticoids, kinase inhibitors, and interleukin antagonists [46].
Some macrolide antibiotics are evaluated to be repositioned in COVID-19 [46]. To attenu-
ate the respiratory complications, several drugs (nintedanib, pirfenidone, pamrevlumab,
bevacizumab, aviptadil, eculizumab, and conestat alfa) are currently being evaluated [46].
Fibrinolytic therapy has been proposed to threat the activation of coagulation, and tissue-
plasminogen activator and alteplase are under investigation [46]. In addition, some general
anesthetics (ketamine, sevoflurane, and isoflurane) have also been proposed to reduce
systemic inflammation and acute respiratory distress syndrome severity; the antidepres-
sants (fluoxetine and fluvoxamine) have been proposed to counteract hyper-inflammatory
symptoms [46]. Based on the androgen effect on TMPRSS2 expression [55], numerous
clinical trials are testing the ability of androgen deprivation therapies or anti-androgens
to mitigate COVID-19. Selective estrogen receptor modulators (SERM) are repurposed
as anti-viral drugs against the Ebola virus, human immunodeficiency virus (HIV), and
HCV infections [56]. Moreover, estrogen receptors are localized in the respiratory tract, and
their presence suggests that estrogen may have a role in respiratory viral infections [57];
therefore, SERM could be used for COVID-19.

Vitamin D exerts pleiotropic effects, and its deficiency leads to increased susceptibility
to several diseases [58]. Recently, this drug has been repurposed for COVID-19 because low
vitamin D status is associated with various degrees of disease severity and mortality [58].
In addition, an observational study shows that mortality is inversely associated with
vitamin D supplementation [59]. Interestingly, it interacts with ACE2 (the entry door of
virus), attenuates cytokine release, and preserves cell junctions, strengthening cellular
immunity [58]. Notably, vitamin D is more active in women with autoimmune diseases
than men [60]. The effect of sex on vitamin D levels is unclear, but the majority of data
sustains that it is lower in women than in men [61–64]. Thus, it is plausible that the vitamin
D activities could be influenced by sex.

This brief excursus makes clear that a myriad of drugs already used with other
indications has been repurposed for this dramatic pandemic.

3. Sex and Gender Aspects in COVID-19

In viral infections, sex- and gender-based differences appear to be common. Nu-
merous investigations and governmental data evidenced numerous and relevant sex and
gender differences in COVID-19, even if sex-stratified data were reported in only 74 out
of 187 countries on the Global Health 5050 [40]. Sex and gender strongly influence the
severity and mortality of the disease, which hare higher in men than in women across the
lifespan [41–43]. COVID-19 is more devastating in old men [53], who have a higher risk for
intensive care unit admissions and mechanical ventilation [65]. Further, men die twice as
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much compared with women [65]. The higher rates of mortality or severity in men are still
present after adjusting for comorbidities.

The precise origin of these sex and gender differences is not clear; however, they have
been recently summarized [66]. In part, they can depend on biological factors (sex) such
as genes, hormones, and diversity in inflammatory host responses (16). Sex differences
in immunological and inflammatory diseases persist across all lifespans [38], with the
aging of the immune system more pronounced in men than in women [39]. Besides, these
differences can be gender-dependent because they involve the social role, lifestyles such as
smoking, which is a risk factor, identity, and relations, which play a role, for example, in
exposure [65]. Men tend to have habits that could be conducive to viral transmission [67].
Sex and gender differences in access to healthcare facilities may lead to further variability
in disease progression [68]. Notably and relevantly, women seem to have more often long-
term COVID-19, which persists for longer than 12 weeks, and experience more negative
social and economic impacts [69,70]. Understanding the basis of such differences is of great
relevance for clinical management [71].

4. Sex and Gender Aspects in Drug Response in COVID-19

Generally, women are less enrolled in clinical trials, although with some excep-
tions [17]; in COVID-19 trials, women only represented ~1/3 of subjects [65]. The under-
representation of women has been observed both in randomized clinical trials and in some
observational studies [65]. The under-enrollment of women for some authors depends on
the lower severity of COVID-19 in women [72]. For others, it depends on ethical reasons
linked to fear of teratogen effects. Indeed, in 1977, the Food and Drug Administration
(FDA) guidelines excluded women from all trials [73]. Currently, this has completely
changed [20,74–76].

The low enrollment of women could stem from the assumption that the male perspec-
tive represents the norm [37]. This situation leads to poor scientific rigor, and it makes
it difficult to compare the efficacy of different therapies [17,20]. Currently, only very few
registered clinical trials for COVID-19 in ClinicalTrials.gov present sex and gender as
explicit criteria of enrollment or analytical variables [77]. In particular, women are under-
enrolled, the outcomes are scarcely disaggregated by sex, and sex and gender differences
are inadequately considered in the analysis of the data [78].

Although this is slowly changing, especially in phase 3 trials [79], early-stage trials
are still heavily male-biased [20]. Relevantly, there are some studies where the women
enrolled prevail over men, especially in phase 3 [80,81]. Therefore, the information deriving
from the early stage is mainly missing in women, with some exceptions [81]. This lack of
knowledge reflects repurposed drugs.

Growing evidence suggests that men and women may have different pharmacokinetic
and pharmacodynamic responses to pharmacological agents [17,21,82,83]. For example,
women have a stronger response to vaccinations and more adverse effects than men [82,83].

5. Can Male and Female COVID-19 Patients Have the Same Pharmacokinetics as
COVID-19 Free Patients?

Beyond physiological differences, chemical and sociocultural aspects affect pharma-
cokinetic and pharmacodynamic processes [17,20,21]. For example, looking at new drug
applications that reported sex analysis: 6–7% reports evidenced sex and gender phar-
macokinetic differences over 40% [17]. Currently, pharmacokinetic studies were often
performed in healthy subjects, and women were scarcely represented [21] even if numerous
sex differences in pharmacokinetics are described [17].

Sex and gender pharmacokinetic differences involve differences in absorption, distri-
bution, drug-metabolizing enzymes of both phase I and II, and transporters, and some of
them seem to be sensible to exogenous and endogenous sexual hormones [17,21,22]. For
example, in human jejunal and ileal tissues, P-glycoprotein is higher in men than women,
influencing the bioavailability of cyclosporine A, a P-glycoprotein substrate [84]. Finally,
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glomerular filtration, tubular secretion, and tubular reabsorption show sex differences
leading to generally higher renal clearance in men than in women [17,21,22].

Bioequivalence studies, which are mainly performed in men, evidence that men and
women may have a different response to excipients [22,85]. For example, PEG400 ranging
from 0.5 to 1.5 g increases and decreases the bioavailability of ranitidine in men and women,
respectively [22].

This sexual dimorphism in pharmacokinetics also occurs in antiviral drugs, and some
differences are exemplified in Table 1.

Table 1. Pharmacokinetic of some protease inhibitors in the presence of ritonavir in non-COVID-19 patients: effect of sex.

Drug Pharmacokinetic Parameters Men vs. Women References

Saquinavir

AUC 0–12h
Cmin

25% higher in women
3-fold higher in women [86]

AUC 0–24h, Cmin, Cmax Higher in women [87]

AUC 0–24h
Cmin, Cmax,

CL

Higher in women

NS
[88]

AUC 0–12h, Cmin, Cmax, Higher in women with low significance [89]

AUC 0–24h, Cmax, Higher in women [90]

Ritonavir

AUC 0–24h, Cmax, Cmin, CL
AUC, Cmax

Median apparent oral CL

NS
Higher in women
Lower in women

[88]

[91]

AUC0–12h, Cmax Higher in women [87]

AUC 0–24h, Cmax, Higher in women [90]

Indinavir
CL,

Cmin (after correction for deviation from
70 kg of body weight)

Lower in women
Lower in women

[92]

Lopinavir AUC 0–12h, Cmin, Cmax NS [87]

Atazanavir AUC 24h, Cmax
CL

NS
Lower in women

[90]
[93]

Darunavir AUC 12h NS [94]

AUC: area under the curve; CL: clearance; Cmin: the minimum blood plasma concentration reached by a drug before administration of a
second dose; Cmax: the maximum (or peak) serum or plasma concentration that a drug achieves; NS: not significant.

Inflammation can affect pharmacokinetics and pharmacodynamics contributing to
variability in drug response. Several investigations illustrated pharmacokinetic alterations
in patients with inflammation and infectious diseases [95]. Indeed, inflammation and infec-
tious diseases can alter body fluid distribution, blood protein concentrations, absorption,
distribution, metabolism, and excretion of drugs [96,97]. It has long been known that the
half-life of theophylline is increased in acute virus infections in asthmatic children [98,99].
During influenza B, several asthmatic children were been hospitalized for ADR induced
by treatment with theophylline [100]. Notably, interferon-α in hepatitis B decreases theo-
phylline clearance, increasing its half-life [101]. Interferon therapy is associated with
decreased cytochrome P450 (CYP) 1A2 activity, whereas the effect on other CYP enzymes
is more variable [95]. Sarilumab and tocilizumab, antibodies against IL-6 receptors, elevate
the metabolism of simvastatin and reduce its area under the curve (AUC) [102,103].

Globally, acute or chronic inflammation (Table 2) down-regulate both liver and in-
testinal CYP, carboxylesterases (CES), phase II enzymes, and transporters [95,104–107]
occurring to impaired absorption and pre-systemic and hepatic metabolic biotransforma-
tion. IL-6, a good biomarker to test severe cases of COVID-19 [71], plays a pivotal role in
the downregulation [108] of CYP (especially CYP1A, CYP3A, CYP2C9, and CYP2C19) and
CES1 (Table 2). The inhibition of CES1 reduces the transformation of prodrug oseltamivir,
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which is more efficiently produced by women’s livers than by men’s [109].
Therefore, the acute or chronic inflammation shifts towards a poorer metabolizing

phenotype. This phenotype may be reverted to its physiological status using inhibitors of
the inflammatory pathway such as IL-6 monoclonal antibodies [108]. The downregulation
of CYP induced by tocilizumab may be present after the tocilizumab suspension [110]. In
our opinion, clinicians should be aware that the use of tocilizumab and perhaps the use of
other anti-inflammatory drugs might change the activity of CYP enzyme, modifying the
pharmacokinetics of drugs, which in turn may occur in inspected drug interactions and
food-drug interactions.

In this contest, it is not surprising that COVID-19 patients display much higher con-
centrations of lopinavir (using ritonavir-boosted lopinavir) than HIV patients treated with
the same dose [111,112]. In fact, the estimated dose in COVID-19 patients compared with
HIV patients to reach EC50 is about 60- to 120-fold higher [111]. Lopinavir is metabo-
lized by CYP3A4, an enzyme that is more active (20–30%) in females than in males [113].
Therefore, it is also plausible that repurposed medications metabolized by CYP3A4 may
present sexual dimorphism in pharmacokinetic, which could also be due to the major
inflammation observed in men with COVID-19 than in women [53]. In line with these
observations, in animals, inflammation effects on CYP expression appear to be sex and
CYP enzyme-dependent [81], while, to the best of our knowledge, we still do not know if
sex and gender control this in humans.

Acute and chronic inflammatory responses can induce hypoalbuminemia [114]. In
COVID-19, hypoalbuminemia is linked with viral load, severity of acute lung injury, and
organ dysfunction [115] and is associated with worse outcomes [116]. Hypoalbuminemia
widely influences distribution volume and the therapeutic and safety profiles of medica-
tions as only the unbound fraction of the drug is active.

Table 2. Examples of the effect of lipopolysaccharide and pro-inflammatory cytokines on human
CYP enzymes CES1 and CES2, phase II enzymes, and drug transporters.

Targets Inflammatory Triggers

CYP2C8, CYP3A4 LPS, TNF-α, IL-1β, IL-6

CYP1A2, CYP2B6, CYP2C9 IL-6, IFN-γ

CYP2B6 IFN-γ

CES1 and 2 IL-6

mRNA encoding CYP1A2, CYP2B6,
CYP2E1, UGT2B7, SULT1A1, OAT2,

CYP3A4, MRP2
IFN-a2B

CES: carboxylesterases; IFN: interferon; OAT2: organic anion transporter, SULT: sulfotransferase, UGT2B7:
UDP-glucuronosyltransferase 2B7; multidrug MRP2: resistance-associated protein 2. Data from [104–107,117].

In conclusion, the above data suggest that the inhibition of enzymes and hypoalbu-
minemia can elevate the exposure to medications that are substrates of inhibited enzymes
or reduce the activity of pro-drugs or increase the concentration of free drugs. They also
suggest that the pharmacokinetic phenotype is dynamic; in other words, it can be transitory.
All this could be strongly influenced by sex and gender.

Importantly, the prevalence of smoking is major among men, and this can play a role
in the higher severity of COVID-19 in men [118]. In cigarette smoking, there are polycyclic
aromatic compounds, which can induce CYP enzymes (CYP1A1, CYP1A2, CYP2E1) and
isoforms of uridine diphosphate glucuronosyltransferase and other drug-metabolizing
enzymes [119–121]. Besides, tobacco smoke increases inflammation in a sex- and gender-
dependent manner [31,122]. The above data indicate that the variables sex–gender and
smoking habit should be included in the design and statistical analysis of clinical trials to
reduce heterogeneity and to increase adherence to real life.
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6. Can Male and Female COVID-19 Patients Have the Same Safety Profile as
COVID-19 Free Patients?

All drugs may induce ADR. Spontaneous reports are essential for post-marketing
surveillance, but they may cause several limitations including underreporting, variations
in the quality of information, missing data, etc. [123]. The eventual sex–gender bias in
reporting ADR has not been fully calculated [124,125]. Actually, it emerges that women
have lower safety profiles [17,126–129]. Notably, most drugs have been excluded from
the market because of their toxic effects, which have been described mainly in women
([20] and cited literature). Women seem to be admitted to hospitals for ADR more than
men ([130], however, about this last point there are no univocal data [131,132]). Besides,
women have a bigger immune response to vaccines than men [82,83], but they also have
more common severe side effects [133–135]. Unfortunately, no sufficient attention has been
paid to sexual dimorphism in vaccine clinical trials, including those for SARS-CoV-2 vac-
cines [136]. In addition, local and general ADR are being addressed yet are not segregated
by gender [136–138]. However, a clinical trial of the adenovirus-vector vaccine candidate
measured adverse effects outcomes and reported that females experienced ADR such as
fever more commonly than males [138].

Utilizing VigiBase, Zekarias et al. [139] found that QT-prolongation has a rate of 31%
and 19% in men and women with COVID-19, respectively. Whereas, in COVID-19-free
patients, the QT-prolongation prevails in women [140]. Pro-inflammatory cytokines elevate
the risk of QT-prolongation and fatal arrhythmias [141] and reduce the activity of CYP
(Table 2). This is crucial because COVID-19 patients often have myocardial damage that
might be a trigger for enhanced arrhythmic risk [142]. Both chloroquine and hydroxychloro-
quine are metabolized by CYP3A4 and, when they are used in combination with antiviral
agents such as lopinavir/ritonavir, atazanavir, remdesivir, or other inhibitors of CYP3A4,
the risk of QT-prolongation and drug-induced cardiac death could be enhanced [143].

Not all repurposed drugs prolong QT: tocilizumab and sarilumab, for example, can
shorten it [144]. In addition, other sex differences in ADR with hydroxychloroquine and
lopinavir/ritonavir are described. Hepatitis, diarrhea, nausea, vomiting, and other hepatic
and kidney-related events are more reported in men, whereas, in women the most reported
are diarrhea, nausea, vomiting, and upper abdominal pain [139]. Further, psychiatric
ADR induced by hydroxychloroquine prevail in women in indications such as rheumatic
diseases, systemic lupus erythematosus, or malaria [145], while, in COVID-19 patients,
they prevail in men [146]. It is not known if the higher rate depends on a higher proportion
of men treated by hydroxychloroquine, or by severe COVID-19 observed in men, which
may promote, in turn, pharmacokinetic changes.

It is a still matter of discussion how risky is the use of non-steroidal anti-inflammatory
drugs in COVID-19 [147].

These data suggest that our knowledge on drugs gained in COVID-19-free individuals
is not readily transferable to patients with COVID-19, and this could produce a deterioration
of the safety profile.

7. Conclusions

COVID-19 is a global health concern, which requires further investigations to identify
the key players in sex and gender bias found in disease outcomes and, more importantly,
in response to anti-viral treatment modalities including the drug safety profile.

Drug discovery and development is a long and complex challenge at varied levels
such as the drug design, clinical setting, and the regulatory, intellectual property, and
commercial levels. Therefore, because of the emergency determined by COVID-19, re-
purposing seems to be a good choice to accelerate the whole process. However, looking
at the studies with repurposed drugs in COVID-19, it emerges that sex and gender have
been neglected; although we are in front of a disease that presents significant sex and
gender differences [148] and where the essential sexually dimorphic immune system plays
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a crucial role [53] decreasing, for example, drug-metabolizing enzymes and transporters
activities leading to changes in the pharmacokinetics [104–106,111,117].

Therefore, it is necessary to promote more sex- and gender-sensitive research also in
repurposing to have drugs that are equally safe and effective for women and men using
sex and gender as a biological variable to optimize therapy in both men and women and to
strengthen the use of gender medicine in daily clinical practice.
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